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Abstract—Collaboration through knowledge sharing is critical
for the success of intelligent fault diagnosis in a complex In-
dustrial Internet of Things (IIoT) system that comprises various
interconnected subsystems. However, since the subsystems of an
IIoT system may be owned and operated by different stake-
holders, sharing fault diagnosis knowledge while preserving data
security and privacy is challenging. While decentralized data ex-
change has been proposed for cyber-physical systems and digital
twins based on the Web 3.0 paradigm, decentralized knowledge
sharing in knowledge-based intelligent fault diagnosis is less
investigated. To address this research gap, we propose a Web
3.0 application for collaborative knowledge-based intelligent fault
diagnosis using blockchain-empowered decentralized knowledge
inference (BDKI). Our proposed mechanism enables workers to
self-evaluate their ability to contribute to the knowledge infer-
ence with their local knowledge graphs. The knowledge-sharing
requestor can then choose a worker with the best evaluation
result and initiate collaborative training. To demonstrate the
efficiency and effectiveness of BDKI, we evaluate it using well-
known datasets. Results show that BDKI delivers a favorable
inference model with higher overall accuracy and less training
effort compared to inference models trained using conventional
knowledge inference with random training sequences.

Index Terms—Industrial Internet of Things, Fault Diagnosis,
Decentralized Knowledge Inference, Web 3.0

I. INTRODUCTION

Through the integration of computing, communication, and
control, the Industrial Internet of Things (IIoT) establishes
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connections among machines, computers, and people, en-
abling intelligent industrial operations with heightened au-
tomation. This integration has ushered in a new era of safe,
collaborative, robust, and efficient production across various
industries. However, serious safety incidents might happen
due to machine malfunctions, mistaken actions, or cyber-
attacks. Consequently, ensuring the reliability of IIoT systems
is imperative to safeguard industrial processes and maintain
operational integrity. Among the various strategies employed
to enhance IIoT system reliability, fault diagnosis has emerged
as a focal point of research and innovation, drawing consider-
able attention from both academia and industry. Meanwhile,
the advent of big data and machine learning has given impetus
to the era of intelligent fault diagnosis. For example, using
neural networks to differentiate faulty conditions from normal
conditions and automatically spot early signs of equipment
failure allows maintenance decisions to be optimized over
different time horizons, such as weeks or months, to ensure
timely and cost-efficient part procurement and/or maintenance
personnel assignments. Therefore, intelligent fault diagnosis
provides much safer and more efficient approaches to enhance
the reliability of IIoT systems.

A key factor in the success of intelligent fault diagnosis is
the comprehensive cognition of the overall system status and
data completeness. Since complex IIoT systems have evolved
to encompass decentralized and spatially distributed but in-
terconnected subsystems, a failure observed in one subsystem
may have underlying relations with other failures observed in
another subsystem. Thus, fault detection and countermeasures
may need to be taken across different subsystems to ensure the
normal operation of the overall system. While each subsystem
may have local measurements and local fault diagnosis models
specifically designed and implemented to make fault diagnosis
or maintenance decisions, the fault diagnosis result of the
overall system should take into account of all relevant localized
diagnosis results, such as those achieved through a consensus-
based algorithm. Furthermore, manually designing simulation
cases to capture all types of faults by any subsystem owner
alone is a challenging task owing to the complexity and
dynamism of the underlying subsystems or knowledge gaps.
Thus collaboration through knowledge sharing is beneficial for
more comprehensive intelligent fault diagnosis in IIoT systems
[1].

However, collaborative efforts have brought about a series
of privacy and security challenges, especially when IIoT
subsystems are operated by different stakeholders. These chal-
lenges may be overcome by requiring the entire system to
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comply with the decentralized requirements of the Web 3.0
paradigm, which encompasses a series of technologies such
as blockchain, consensus algorithms, and smart contracts to
ensure that multiple parties participating in a system can
collaborate without central control and mutual trust. The Web
3.0 paradigm has been proposed for data exchange among
decentralized autonomous organizations to ensure security and
privacy in cyber-physical systems and digital twins [2]–[4]
residing in IIoT systems. Thus, we envision a decentralized
intelligent fault diagnosis over Web 3.0 for IIoT systems. That
is, after each subsystem has made its own fault diagnosis
decisions using its own fault diagnosis knowledge, it may
exchange its fault diagnosis knowledge with others through
a transparent medium such as the blockchain, achieving a
collaborative fault diagnosis that is more practical for future
intelligent fault diagnosis in IIoT systems.

Nevertheless, the lack of interoperability between fault
diagnosis techniques of different subsystems in IIoT systems
due to heterogeneous data collected from different sensors,
equipment, or industrial processes makes collaborative intelli-
gent fault diagnosis challenging. To overcome this challenge,
knowledge-based intelligent fault diagnosis has emerged as
the most recent research trend, where collected fault diagnosis
knowledge can be maintained in a universal knowledge base
(KB). In particular, knowledge-based intelligent fault diagnosis
that leverages a KB represented by knowledge graphs that is
well known for their ability to handle highly heterogeneous
data and ensure interoperability has become the state of the art
[5], [6]. A knowledge inference method utilizing a distributed
knowledge representation learning algorithm that embeds sev-
eral knowledge graphs into a continuous vector space for
knowledge inference was investigated in [7]. Knowledge can
be shared by sharing the trained reasoning model that contains
the vector space without directly sharing the data. However, in
that study, knowledge representation learning was performed
on carefully partitioned knowledge graphs, whereas individual
fault knowledge graphs are usually constructed and maintained
independently by each subsystem in IIoT systems. Thus,
conventional distributed knowledge inference algorithms that
focus on dataset decomposition and parameter aggregation are
insufficient for accomplishing distributed knowledge inference
for intelligent fault diagnosis in IIoT systems. The authors
in [8] proposed a distributed knowledge inference framework
that overcomes this obstacle. The proposed framework uses
a centralized coordinator to handle the distributed training,
thereby allowing participants to train a reasoning model with
their local knowledge graphs continuously without any dataset
manipulation. However, the proposed framework still relies
on a central control unit, and the trustworthiness of the
central coordinator could become a key concern among diverse
stakeholders in IIoT systems to adopt the proposed framework.
To our best knowledge, studies on decentralized knowledge
inference over Web 3.0 are still lacking in the literature.

To bridge the research gap identified above, we extend the
aforementioned distributed knowledge inference framework
[8] by proposing a Web 3.0 application that incorporates
a blockchain-empowered decentralized knowledge inference
(BDKI) mechanism for intelligent fault diagnosis in IIoT

(a) (b)

Fig. 1. Collaborative knowledge sharing among participants

systems. In our proposal, after one participant has requested
a knowledge sharing task as the requestor, other participants
may help complete the knowledge sharing task with their
local knowledge graphs as workers. Since more than one
worker may have valuable knowledge in their local knowledge
graphs as illustrated in Fig.1, we formulate the BDKI paradigm
as an iterative collaboration process. Specifically, when a
knowledge-sharing request is published through the request
matching interface by a knowledge sharing requestor, a group
of workers would evaluate their ability to contribute to the
request with a newly proposed task evaluation function. The
requestor then chooses one worker with the best evaluation
result and initiates a round of training. The requestor may
attempt to further improve its reasoning model by picking a
worker with the second-best evaluation result and initiating
another round of training. The process continues until the
requestor is satisfied or all the workers have joined the iterative
knowledge inference process once. Since there is no central
control in the proposed mechanism, the blockchain-based
system ensures openness, scalability, anonymity, security, and
reliability for the knowledge sharing of intelligent fault diag-
nosis in IIoT systems.

We conducted empirical studies to prove that the proposed
BDKI mechanism can deliver a reasoning model that out-
performs most reasoning models trained by the distributed
reasoning method with random training sequences proposed
in [8]. Specifically, we use a fault knowledge graph of a
real industrial process, namely the Tennessee Eastman (TE)
process, to show that the proposed mechanism can work with
practical IIoT systems. Additionally, we use FB15K-237 and
WN18RR datasets to show that the proposed mechanism can
scale up to large-scale knowledge graphs. Furthermore, we use
the WN18RR dataset to show that the proposed mechanism
can deliver a reasoning model that has a high overall accuracy
with less training effort. In summary, the contributions of this
work are as follows:

• To the best of our knowledge, this is the first study to
propose a BDKI mechanism for intelligent fault diagnosis
in IIoT systems.

• We present a novel Web 3.0 application for decentralized
knowledge-based intelligent fault diagnosis, with a task
evaluation function that provides usable and practical
references for the workers to estimate their possible
contributions, enabling the requestor to select a worker
for collaborative training according to the evaluation
results. This application can be be practically realized
for modern IIoT systems in general, especially those with
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diverse stakeholders;
• With empirical study, we show that the proposed BDKI

mechanism is efficient and effective. Therefore, the pro-
posed Web 3.0 application is both useful and beneficial
for distributed IIoT systems.

The rest of this paper is organized as follows. Related
works are reviewed in Section II. The proposed model and
methodology are described in Section III. Evaluation results
are presented in Section IV.

II. RELATED WORK

A. Knowledge-based Intelligent Fault Diagnosis in IIoT Sys-
tems

Measured signals (e.g., vibration, noise, or pressure) of
mechanical components can be analyzed and compared to
prior knowledge obtained from healthy systems to identify
faulty symptoms [9]. Also, the characteristics of a system can
be learned through machine learning algorithms. For example,
authors in [10] constructed a classification and regression tree
to find the deciding thresholds of the features to diagnose
faults in a variable refrigerant flow system. Moreover, studies
have shown that different maintenance requirements need to
be analyzed from different kinds of signals, and maintenance
actions could be determined with different maintenance ex-
pectations, such as weeks or months before predicted failure.
For instance, a multiple classifier approach is proposed in
[11] to identify integral type faults from machine failures due
to wear and tear effects of usage and stress on equipment
parts. Different maintenance management results are assigned
to different classifiers, such as SVM or K-nearest neighbor,
to identify maintenance requirements and minimize expected
costs. Intelligent fault diagnosis is found to be a cost-effective
and compelling approach to ensure the reliability of IIoT
systems.

However, machine learning algorithms need to be carefully
designed for different fault types of different components. To
overcome this obstacle and accomplish fault diagnosis at the
system level, knowledge-based intelligent fault diagnosis has
become the state of the art for IIoT systems [1]. Whereas data-
driven approaches such as machine learning approaches can
detect and locate component failures, knowledge-based intel-
ligent fault diagnosis is particularly well suited for complex
or multi-element systems/processes for which detailed math-
ematical models are not available. Typically, a knowledge-
based intelligent fault diagnosis system consists of a KB
with observations and knowledge embedded in experiences.
Knowledge such as the root-cause investigation and the fault
recovery process can be maintained in the KB for efficient
decision-making at the system level. Meanwhile, an inference
engine in the knowledge-based intelligent fault diagnosis ap-
plies reasoning methods to the known facts in order to help
reveal any unknown or indirect relation between the system
behavior and a faulty state of the system.

To ensure interoperability of the knowledge-based intel-
ligent fault diagnosis, ontologies conceptualize the domain
knowledge with its properties and relations by defining the
classes of objects with nouns. For example, the authors of [12]

defined four classes in the fault diagnosis ontology model for
loaders: FaultMode with two subclasses, namely FaultCause
and FaultEffect; FaultEquipment, indicating the location of
faults; FaultMaintenance, describing the fault repair methods;
and Parameters, expressing the data collected by sensors. In
addition, real observations regarding the individual causes and
symptoms of, and maintenance actions in response to, a fault
can be added to create a knowledge graph, which is a new type
of knowledge representation [13]. A knowledge question-and-
answer system for fault diagnosis based on knowledge graphs
was established in [14]. As complex IIoT systems have evolved
to encompass decentralized and spatially distributed but in-
terconnected subsystems, how to share data among various
stakeholders has become a concern. Utilizing the decentraliza-
tion technique of the Web 3.0 paradigm, security, anonymity,
scalability, and reliability can be ensured for data exchange
among decentralized autonomous organizations. Researchers
have investigated distributed knowledge-based intelligent fault
diagnosis with independent knowledge graphs constructed and
maintained in each subsystem of the IIoT system [8]. But
central control is still required in their work. In this work,
we focus on decentralized knowledge-based intelligent fault
diagnosis over Web 3.0 with distributed knowledge graphs,
which is more practical than previous approaches.

B. Distributed Knowledge Inference
The effectiveness of knowledge-based intelligent fault diag-

nosis using knowledge graphs depends on the completeness
and correctness of the knowledge graphs. The inference en-
gine in the knowledge-based intelligent fault diagnosis adopts
reasoning methods to infer new conclusions and derive new
relations among entities in order to enrich the knowledge
graphs. Ontologies and their object properties can be expressed
with the resource description framework (RDF) schema. Then,
a knowledge graph is constructed with RDF triples. TransE,
an algorithm that translates entities and relations to low-
dimensional expressions in the embedding space, was origi-
nally proposed in [15]. Furthermore, chains of reasoning can
be expressed by paths in the graph. Thus, knowledge graphs
can be analyzed as graphs with graph topology algorithms.
A reasoning method with knowledge inference was proposed
in [16]. It uses reinforcement learning (RL) with pre-trained
embeddings to predict if a head entity and a given tail entity
have a relation. The path searching problem was formalized in
[17] as a partially observed Markov decision process using RL
to predict the tail entity given the head entity and the relation.

Meanwhile, distributed knowledge inference has been stud-
ied to tackle the scalability, performance, and KB isolation
issues. In [18], the translation of embedded expressions of
knowledge graphs was transformed into distributed ones to
resolve the efficiency issue. In [7], a distributed translation
of embedding learning was proposed to further improve the
approach proposed in [18] by carefully designing the par-
tition of the edges and vertices of the knowledge graph.
Nevertheless, distributed knowledge inference based on local
knowledge graphs maintained by different participants did
not attract much research attention until a distributed path-
based reasoning algorithm was proposed in [8]. However,
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their work involves a central coordinator that coordinates the
collaborative training process, which introduces a single point
of failure and privacy problems. In this work, we focus on
decentralized knowledge inference that is more secure and
privacy-preserving.

III. SYSTEM MODEL AND METHODOLOGY

In this section, we introduce the proposed BDKI mecha-
nism for knowledge-based intelligent fault diagnosis with a
knowledge graph in IIoT systems.

A. System Overview

Fig. 2. The Workflow of Proposed Mechanism

The overall system architecture of our Web 3.0 application
is shown in Fig. 2. we propose to incorporate a blockchain-
empowered request matching interface implemented as a smart
contract for requestors and workers in the system to publish,
browse, and match knowledge requests among the partici-
pants. Consider an M -participant IIoT system, each participant
maintains a reasoning model that embeds its local knowledge
graph and tries to complete the reasoning model with a BDKI
mechanism. A BDKI process starts when a participant m
requests assistance from other participants to complete its
reasoning model that embeds the local knowledge graph. As a
task requestor, the participant m publishes a task through the
blockchain-empowered request matching interface. The other
participants can browse published tasks through the request
matching interface and evaluate a task by evaluating their
abilities to complete the requestor’s reasoning model with a
task evaluation protocol. Then, they will submit their task
evaluation results in a proposal through the request matching
interface as workers. The requestor will choose which proposal
to accept. Then, the request matching interface will notify the
worker whose proposal is accepted by the requestor. Upon
receiving the notification, the worker will start performing
the knowledge inference task with its local knowledge graph.
Finally, the requestor will retrieve the result with the URL

submitted through the request matching interface, which con-
cludes a round of BDKI training. If the requestor wants to
know if the other participants can help complete its reasoning
model further, it will pick another worker from the submitted
proposals and start a new round of training until it is satisfied.

The proposed mechanism utilizes the blockchain for mes-
sage exchange, which enables a scalable and open system. Fur-
thermore, it leverages a distributed knowledge inference based
on path-based reasoning and RL proposed in [8]. Furthermore,
there are two major problems that must be addressed: 1)
how should workers evaluate if they can help complete the
requestor’s reasoning model? 2) how should the requestor
choose a worker? In the next section, we will briefly introduce
the distributed knowledge inference algorithm and address the
aforementioned problems by introducing the task evaluation
protocol and proposal evaluation for the requestor in detail.

B. Methodology

As more than one participant (i.e., workers) may have valu-
able knowledge that could help the requestor to improve the
local knowledge graph, after receiving the trained reasoning
model from one worker, the requestor may choose another
worker and start a new round of training to see if any other
participants could help further improve its reasoning model.

For the participant m, we denote the local knowledge graph
as Bm, the set of embeddings of entities in Bm as Em, and the
set of embeddings of relations in Bm as Rm. Then, knowledge
graphs of all participants are denoted by B = {B1, . . . ,BM}.
More specifically, each local knowledge graph Bm is com-
posed by a collection of triples (em,n1

, rm,n, em,n2
) where

em,n1
, em,n2

∈ Em respectively denote the embeddings of en-
tities n1 and n2 in Bm, and rm,n ∈ Rm denotes the embedding
of relation n in Bm. The triples in each Bm are modeled by
a directed labeled multigraph Gm = (Vm, Em,Rm), where
entities in Em are modeled by vertices Vm and rm,n is
represented as an edge in the graph Em.

1) Distributed Path-based Reasoning Algorithm: In [8], a
distributed knowledge inference framework was proposed with
a path-based reasoning algorithm based on RL. After training
its reasoning model with a reasoning agent, the proposed
framework allows participants to record the entities along the
paths with the original query as a handover query HQm. By
sharing the handover queries with other participants, the dis-
tributed reasoning agent can connect links across knowledge
graphs B to address scattered reasoning path problems. It has
been proven that participants with small knowledge graphs can
benefit significantly from the proposed distributed reasoning
framework by initiating training and asking other participants
to continue the training using their local knowledge graphs
with the handover queries. Thus, in this work, we apply the
distributed knowledge inference framework proposed in [8]
to our BDKI mechanism. The participant trains its reasoning
model with a local knowledge graph and hands over its queries
to the other participants in the IIoT system as the requestor,
while the others are the workers. Specifically, the reasoning
process is a deterministic partially observed Markov decision
process. During training, the participant can only observe the
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head entity em,q1 and relation rm,q of the query triple, and its
current location etm per step t. The answer of the query triple,
em,q2 remains hidden. The observation of the reasoning agent
of participant m with Bm at time step t is then derived as

Ot
m = (etm, em,q1 , rq,n) (1)

The state space of the reasoning agent of participant m
consists of all valid combinations in Em ∗ Em ∗Rm ∗ Em. The
reasoning agent will choose from the state space at time step
t. Thus, the state of the agent at time step t is denoted as

St
m = (etm, em,q1 , rm,q, em,q2) (2)

The set of possible actions of the agent of participant m at
time step t that consists of all the outgoing edges of the vertex
etm in graph Gm are derived as

At
m={(etm, r, v)∈Em|r∈Rm, v∈Vm, (etm, r, v)∈Gm} (3)

A path is formed as the reasoning agent transits from
one state to the next by selecting an edge and walking to
the incident vertex from the current vertex. All the path
histories are stored in a long short-term memory (LSTM)
based recursive neural network (RNN) network and a two-
layer feedforward network that helps the agent to choose
from the possible actions At

m. The transition function can be
formulated as

δ(St
m, At

m) = (v, em,q1 , rm,q, em,q2), v ∈ Vm (4)

Specifically, the LSTM network stores the sequential histo-
ries to encode the path history Ht−1

m , the actions an agent
has taken At−1

m , and the observation Ot
m, as Ht

m, where
Ht

m = (Ht−1
m , At−1

m , Ot
m). Then, based on the history, the

policy network chooses an action atm from a probability
distribution over all available actions dtm conditioned on the
query relation rm,q , where

dtm = softmax(At
m(Wm2ReLU(Wm1[h

t
m;Ot

m; rm,q])))
(5)

atm ∼ Categorical(dtm) (6)

A reward is given if the answer entity is reached at step T .
Given the state at step T is ST

m = (eTm, em,q1 , rm,q, em,q2), the
reward is calculated as

Reward(ST
m) =

{
1, eTm = em,q2

0, else.
(7)

Finally, the reward is evenly split among the states on the
path within T time steps. The model parameter is trained and
updated during back-propagation.

Then, the handover queries, HQm, are derived as

HQm = ([etm]Tt=1, em,q1 , rm,q, em,q2) (8)

where Ehq can represent the set of embeddings of entities in
HQm.

The handover query is sent to the selected worker in the
IIoT system. A worker that receives a handover query checks
if the handover entities ehq of HQm exist in its KB. Using
eti to denote the corresponding handover entity found in the

Bi by participant i, with the original query em,q1 , rm,q, em,q2 ,
the state space of agent i is,

St
i = (eti, em,q1 , rm,q, em,q2) (9)

Let auc0 denote the initial overall accuracy that the re-
questor achieved after training with its local knowledge graph.
When a requestor publishes a task, it shares the trained policy
network RNNm, the handover queries HQm, and the initial
overall accuracy auc0 with the request matching interface. The
overall algorithm is summarized in Algorithm 1. Specifically,
the time complexity of the Algorithm 1 is O(n), where n is
the number of episodes set for the experiment.

Algorithm 1: Participant m trains its own reasoning
model as requestor

1 Given KBm, construct G
2 Given training queries (em1q, rmq, em2q)
3 Function TrainStep(At−1

m , rm,q):
4 At

m = LSTM(At−1
m , rm,q)

5 dtm =
softmax(At

m(Wm2ReLU(Wm1[h
t
m;Ot

m; rm,q])))
6 return atm ∼ Categorical(dtm)
7 Function Train:
8 sample a batch of triples from KBm

9 initialize At−1
m from batch

10 initialize HQm = []
11 construct LSTM-based RNN network RNNm

12 for each episode do
13 for t ← 0 to T do
14 atm = TrainStep(At−1

m , rm,q)
15 update RNNm push this triple to HQm

16 end
17 end
18 initiate a knowledge sharing request and upload

RNNm and HQm through Request Matching
Interface

2) Task Evaluation for Workers: Other participants i per-
form as workers (i.e., worker i) to evaluate the published task.
In this section, we describe the task evaluation protocol for the
worker i with i ∈ {1, . . . ,m− 1,m+ 1, . . . ,M}.

Each worker i evaluates how confident it is to help the
requestor improve its reasoning model with its local knowl-
edge graph with the handover queries of published tasks.
Let CIi denote worker i’s confidence indicator with CI =
[CIi]

M
i=1,i̸=m.

The Iverson bracket of a statement is the indicator function
of the set of values for which the statement is true. For entity
ei,n ∈ Ei in worker i’s knowledge graph and ehq ∈ Ehq in
HQm, the statement of Iverson bracket [ei,n = ehq] is

[ei,n = ehq] =

{
1, ei,n = ehq

0, otherwise.
(10)

Define the number of equal entities in Ei and Ehq as

C(ehq, i) =

|Ei|∑
n=1

[ei,n = ehq] (11)
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where |Ei| represents the number of entities in Ei.
The path-based reasoning algorithm can be regarded as a

path-searching problem based on a path ranking algorithm
(PRA). In this context, knowledge graphs are analyzed as
graphs utilizing graph topology algorithms, where subjects and
objects are treated as vertices, and predicates represent the
paths linking these vertices. PRA facilitates a random walk
on the graph, collecting paths starting from the head entity
h and concluding at the specific entity t within predefined
lengths. During collaborative training, it is imperative to locate
the handover entity ehq within the worker’s local knowledge
base. Failure to do so leaves the reasoning agent stuck in a
state where no next vertex can be found, resulting in no earned
reward. To mitigate this, it is crucial for the requestor to select
a worker with more overlapping entities, allowing the worker
to identify additional handover entities ehq in its knowledge
base. This approach enables the worker to construct a path by
connecting more links across knowledge bases. Essentially,
the reasoning agent’s training goal is to ascertain whether the
end entity em,q2 can be found while traversing paths within the
knowledge graph. In the realm of graph search methods, depth-
first search and breadth-first search are well-known techniques.
Unlike other path-searching methods, such as the Dijkstra
shortest path algorithm, A* algorithm, or Yen’s algorithm,
which prioritize finding the shortest path, the depth-first search
and breadth-first search methods are particularly suited for
our scenario. Therefore, in this study, we incorporate these
methods into the task evaluation framework for workers.

Defined as the depth-first search, the confidence indicator
of worker i is

CIi =
C(ehq, i)

|HQm|
. (12)

By contrast, a breadth-first search ensures that new knowl-
edge is learned first. For the breadth-first search, the confi-
dence indicator of worker i is

CIi = 1− C(ehq, i)

|HQm|
. (13)

During training, the requestor compiles handover queries
and distributes them to other participants for task evaluation.
Subsequently, the requestor selects a participant as the worker
for the next round of training based on confidence indicators.
Once chosen, the participant initiates training the reasoning
model using the distributed reasoning algorithm. Because all
workers utilize the identical set of handover queries, there is no
requirement for them to reassess the queries after each round.
This uniformity in the training process enhances efficiency
and consistency across evaluations. The overall algorithm is
summarized in Algorithm 2. The time complexity of the
function CalculateConfidentIndicator is O(n), where n is the
number of handover triples. Similarly, the time complexity
of the training process is O(n), where n is the number of
episodes set for the experiment. In this work, we assume
all workers are honorable and that they evaluate truly with
their local knowledge graph and submit the result without any
manipulation.

Algorithm 2: Participant i evaluates the task and train
the model if selected as worker

1 Function
CalculateConfidentIndicator(HQ):

2 initialize C(ehq, i)
3 initialize local KBi

4 for each ehq in HQ do
5 if ehq in KBi then
6 C(ehq, i)++
7 end
8 end
9 if DFS then

10 CIi = C(ehq,i)
|HQm|

11 end
12 if BFS then
13 CIi = 1− C(ehq,i)

|HQm|
14 end
15 share CIi through the Request Matching Interface
16 Function TrainStep(At−1

i , rm,q):
17 At

i = LSTM(At−1
i , rm,q)

18 dti = softmax(At
i(Wi2ReLU(Wi1[h

t
i;O

t
i ; rm,q])))

19 return ati ∼ Categorical(dti)
20 Function Train(HQ, RNN):
21 sample a batch of triples from KBi

22 initialize At−1
i from batch

23 initialize RNNi with RNN
24 for each episode do
25 for t ← 0 to T do
26 ati = TrainStep(At−1

i , rm,q)
27 update RNNi

28 end
29 end
30 upload RNNi through Request Matching Interface
31 Function DecentralizedTraining():
32 browse Request Matching Interface for new

requests;
33 retrieve HQ of the request from Request Matching

Interface;
34 CalculateConfidentIndicator(HQ)
35 if selected as the worker of the task, retrieve

RNN from Request Matching Interface
36 Train(HQ, RNN)

3) Proposal Evaluation for Requestor: After a requestor
trains its reasoning model with its local knowledge graph, it
will initiate a new collaborative training if it is not satisfied
with the initial training result. To obtain a reasoning model that
has higher overall accuracy with less training effort, a rational
requestor will choose the worker with the best evaluation
result first. Then, if the requestor still wants to see if other
participants could help improve its reasoning model further, it
will choose the worker with the second-best evaluation result.
That is, the requestor will choose the worker with a greedy
approach according to their evaluation results. Let

PO = {PO1, PO2, ..., POm} (14)
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be the set of proposals received from workers. Let POs(n) be
the nth order statistics of the proposals,

POs(n) = max
{
POs1, POs2, ..., POsn}, (15)

where PO(s1) is the proposal with the highest confident
indicator, POk

(s2) is the proposal with the second highest
confident indicator, and PO(sn) is the proposal with the lowest
confident indicator. Then, for a new round k, the requestor will
choose the worker with the proposal POs(k).

The proposed BDKI methodology utilizes a task evaluation
function for participants to evaluate their possible contribu-
tions to the knowledge inference task. Then, the requestor
will choose a participant as the worker to initiate a round
of training according to their evaluation results. In such a
manner, participants are aligned with the ability to contribute
to the knowledge inference task and could join the iterative
training process in a specific order. Furthermore, the iterative
training process stops as the requestor is satisfied with the
training result or all participants have trained the requestor’s
model, which mimics the behavior of the real world. Thus, the
proposed methodology is rational.

IV. EVALUATIONS

In this section, we describe our evaluations of the proposed
mechanism. First, we use a fault knowledge graph constructed
from the TE process [19] dataset to show that the proposed
mechanism is feasible for IIoT systems. Then, we use large
open-source datasets, namely FB15K-2371 and WN18RR2, to
show that the proposed method is feasible with large-scale
datasets. The results indicate that compared to the conventional
distributed knowledge inference methodology with random
training sequences proposed in [8], the proposed BDKI mech-
anism allows participants to join the collaborative training
in a specific order that delivers satisfactory training results.
Furthermore, we use the open-source dataset WN18RR to
show that the proposed mechanism can produce a reasoning
model with higher overall accuracy and less training effort;
hence, it is beneficial and adoptable for participants in IIoT
systems.

A. Datasets

The TE process describes a real industrial process that
includes five processing units: a reactor, a condenser, a recycle
compressor, a vapor/liquid separator, and a product stripper.
Eight chemical components, A–H, undergo a chemical process
dominated by the processing unit. Further, 20 fault types and
54 system properties (12 manipulated input variables and 42
measured output variables) of the process are measured using
IoT devices; e.g., flow rates, pressure, temperatures, and levels.
The TE process dataset is widely used as a benchmark for
evaluating process diagnosis methods [20]. In this work, we
use the fault knowledge graph constructed from the TE process
dataset in [8] to demonstrate the feasibility of the proposed
mechanism for IIoT systems.

1https://developers.google.com/freebase
2https://wordnet.princeton.edu/

Furthermore, two well-known open-source knowledge
graphs are used in our evaluation: FB15K-237, a subset of
Freebase introduced in [15]; WN18RR, a subset of WordNet
introduced in [21]. Table I summarizes the number of triples,
relations, and entities of each dataset.

TABLE I
DATASETS

Dataset # Triple # Entity # Relation
TE process 1095 112 32
FB15K-237 544230 14541 474
WN18RR 173670 40559 22

B. Experiment Setup

We used Python3 to implement the functionalities of the
requestor, worker, and request matching interface in the
requestor, worker, and request matching interface objects,
respectively. Also, we implemented our distributed reasoner
for the requestor and worker using Tensorflow4. Specifically,
we implemented the reasoner using the policy network model
illustrated in Fig. 3, which is adapted from [8]. The imple-
mented models and functionalities are deployed on a cloud
instance that has 16 core CPU and 32G memory. During
each experiment, a requestor, several workers, and a request
matching interface were run separately and independently to
realize the decentralization of Web 3.0 applications. Then, we
evaluated our BDKI methodology using the TE process fault
knowledge graph and the open-source datasets FB15K-237
and WN18RR. The datasets were split into sub-KBs for each
participant. Then, we closely followed the experimental setup
in [8] and set the training parameter T , i.e., the number of steps
in which the correct answer is reached, to 3. We presented the
accuracy of the reasoning model trained by our BDKI with
HITS@1, 3, 5, 10, 20, and mean reciprocal rank (MRR), the
performance metrics used in knowledge inference tasks, as
well as in [8]. Specifically, Hit@N measures the fraction of
correct answers that rank in the top N of the returned possible
responses to queries. MRR evaluates the multiplicative inverse
of the rank of the first correct answer to queries. Furthermore,
we assumed all participants are collaborative participants and
they will evaluate their ability to contribute to the decentralized
training truthfully.

Fig. 3. Network structure. Adapted from [8]

3https://www.python.org/
4https://www.tensorflow.org/
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C. Numerical Evaluations on TE Process Dataset

The proposed decentralized reasoning methodology allows
participants to join the iterative reasoning process in a training
sequence that delivers favorable training results. To show that
the proposed methodology is feasible for IIoT systems, in
this section, we use the TE process fault knowledge graph to
demonstrate that the reasoning model trained by the proposed
decentralized methodology can achieve higher accuracy that
is interpreted with different performance metrics. Specifically,
we split the dataset TE Process into four sub-KBs; the numbers
of triples and entities involved in each sub-KB are summa-
rized in Table II. We assume that there are four participants
(Participant A, B, C, D) in the IIoT system and assign each
participant a sub-KB. Then, assuming that all the participants
are collaborative participants, we let Participant A initiate the
training processes and compare the accuracy of the reasoning
model obtained from the training sequence generated by the
proposed decentralized reasoning methodology with that of the
reasoning models obtained from random training sequences.

TABLE II
DATASET OF EACH PARTICIPANT FOR TE PROCESS DATASET

Dataset # Triple # Entity # Relation
Participant A 271 80 10
Participant B 271 65 2
Participant C 271 79 10
Participant D 271 77 10

Fig. 4 shows the result of Participant A’s full iterative train-
ing process with Participant B, C, and D trained in different
sequences. Specifically, with Participant A as the requestor,
Fig. 4 shows the change of different performance metrics as
the reasoning model is trained as more rounds of training go
on and more workers are involved. As the reasoning model
trained after each round of training is a complete model to
be used by Participant A in fault diagnosis, we accept the
model with the best result as the final trained model of the
proposed decentralized reasoning mechanism to show that
our mechanism outperforms conventional distributed reasoning
methods with random training sequences. Specifically, the best
Hit@1 and Hit@3 achieved by the depth-first and breadth-first
search sequences are higher than those achieved by training se-
quences from other combinations of Participant B, C, and D, as
shown in Fig. 4(a) and Fig. 4(b). The best Hit@5 achieved by
the breadth-first search sequence is higher than that achieved
by the other training sequences. However, the best Hit@5
achieved by the depth-first search sequence is slightly lower
than that achieved by the training sequence ADCB, while it
is higher than that achieved by the other training sequences,
as shown in 4(c). For Hit@10 shown in 4(d), the result of
the depth-first search sequence is higher than that achieved
by the other training sequences. Meanwhile, the result of the
breadth-first search sequence is equivalent to the result of the
training sequence ADCB and higher than that of the other
training sequences. For Hit@20 shown in 4(e), the result of the
depth-first search sequence is equivalent to that of the training
sequence of ADCB but higher than that of the other training
sequences. Finally, for MRR shown in 4(f), the result of the

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Comparison of the reasoning models with different performance
metrics: (a) Hit@1; (b) Hit@3; (c) Hit@5; (d) Hit@10; (e) Hit@20; (f) MRR

breadth-first search sequence is higher than that of the other
training sequences, while the result of the depth-first search
sequence is equivalent to that of the training sequence ADCB
and higher than that of the other training sequences. For the TE
process dataset, the reasoning model obtained by the proposed
decentralized reasoning mechanism outperforms the models
obtained by the conventional distributed reasoning method
with a random training sequence. In addition, the breadth-first
search sequence outperforms the depth-first search sequence
for the TE process dataset.

D. Numerical Evaluations on Open-Source Datasets

To show that the proposed methodology is feasible for large-
scale knowledge graphs, we use the open-source knowledge
graphs FB15K-237 and WN18RR to demonstrate that the
proposed BDKI methodology delivers a reasoning model with
high overall accuracy compared to most reasoning models
trained by conventional distributed knowledge inference meth-
ods with random training sequences. Here, we split the open-
source knowledge graphs into eight sub-KBs; the numbers of
triples and entities involved in each sub-KB are summarized
in Table III and Table IV. The FB15K-237 dataset contains
a total of 14541 entities, as shown in Table I. The smallest
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sub-KB of the FB15K-237 dataset contains 9079 entities, i.e.,
62.4% of the total number of entities in this dataset. The
remaining sub-KBs of the FB15K-237 dataset contain entities
that account for 80% to 89.6% of the total number of entities
in this dataset. Thus, the number of intersections of the entities
among the sub-KBs may be large. Meanwhile, the WN18RR
dataset has more entities but fewer relations. The WN18RR
dataset contains a total of 40559 entities, as shown in Table
I. The smallest sub-KB of the WN18RR dataset contains
12029 entities, i.e., 29.7% of the total number of entities in
this dataset. The remaining sub-KBs of the WN18RR dataset
contain entities that account for 54% to 71% of the total
number of entities in this dataset. Hence, the number of
intersections of the entities among the sub-KBs may be small.

TABLE III
DATASET OF EACH PARTICIPANT FOR FB15K-237

Dataset # Triple # Entity # Relation
Participant A 27024 9079 470
Participant B 62028 11777 474
Participant C 83429 12639 474
Participant D 101209 13035 474
Participant E 101610 13016 474
Participant F 83031 12684 474
Participant G 60501 11789 474
Participant H 25393 8880 474

FB15K-237 The MRR evaluates the multiplicative inverse
of the rank of the first correct answer to the queries. As
it is critical for a fault diagnosis system to produce the
most relevant fault diagnosis knowledge (e.g., the fault root
causes), we evaluate the performance of our BDKI using
MRR as the overall accuracy measure in this section. Fig. 5
compares the MRR of reasoning models trained by the depth-
first search sequence and the breadth-first search sequence
with those of reasoning models trained by 20 random training
sequences for the FB15K-237 dataset. The result shows that
the breadth-first search sequence outperforms the depth-first
search sequence on the FB15K-237 dataset. Furthermore, the
breadth-first search sequence outperforms most of the random
training sequences. Specifically, for Participant A, the MRR
of the reasoning model trained by the breadth-first search
sequence is higher than the MRR of 18 models,i.e., 90% of
the reasoning models trained by random training sequences.
The MRR of the reasoning model trained by the depth-first
search sequence is higher than the MRR of 4 models, i.e.,
20% of the reasoning models trained by random training
sequences. Among the 18 reasoning models, the MRR of the
reasoning model trained by the breadth-first search sequence
is 8% to 10% higher than that of 4 (22.2%) reasoning models
trained by random training sequences, and 4% to 5% higher
than that of 10 (55.6%) reasoning models trained by random
training sequences. For Participants B and C, the MRR of the
reasoning model trained by the breadth-first search sequence
is higher than that of 12 and 13 models, respectively, i.e.,
60% and 65% of the reasoning models trained by random
training sequences. For Participants D and E, 17 models,
i.e., 85% of the reasoning models trained by random training
sequences, are outperformed by the reasoning model trained

by the breadth-first search sequence. The MRR of 6 (35.3%)
reasoning models trained by random training sequences are
exceeded by the MRR of the reasoning model trained by
the breadth-first search sequence by around 5% to 7% for
Participant D, where 7 (41.2%) of those reasoning models are
outperformed by around 3% to 5% for Agent E. Furthermore,
the results of the breadth-first search sequence for Participants
F, G, and H follow a similar trend. All 20, i.e., 100% of the
reasoning models, trained by random training sequences are
outperformed by the model trained by the breadth-first search
sequence. The proportion exceeded varies from 2% to 5%.
In summary, the breadth-first search of the proposed BDKI
mechanism achieves favorable training results compared to the
generalized distributed knowledge inference mechanism with
random training sequences for the FB15K-237 dataset. It is as
expected since the number of overlapping entities among the
sub-KBs is large.

TABLE IV
DATASET OF EACH PARTICIPANT FOR WN18RR

Dataset # Triple # Entity # Relation
Participant A 8368 12029 11
Participant B 19344 21875 11
Participant C 26226 26015 11
Participant D 32189 29033 11
Participant E 32520 29127 22
Participant F 26879 26412 11
Participant G 19878 22074 11
Participant H 8260 11979 11

WN18RR The depth-first search should be more effective
for the proposed BDKI mechanism for the WN18RR dataset
since the number of overlapping entities among the sub-KBs
is small. Fig. 6 compares the MRR of the reasoning models
trained by the depth-first search sequence and the breadth-first
search sequence with those of 20 reasoning models trained
by random training sequences for the WN18RR dataset. The
result shows that the depth-first search performs better on the
WN18RR dataset compared to the FB15K-237 dataset, as ex-
pected. Specifically, the reasoning model trained by the depth-
first search sequence outperforms 19 models, i.e., 95% of the
reasoning models trained by random training sequences, for
Participant A. Furthermore, 1 (5.26%) of the reasoning models
trained by random training sequences is outperformed by the
reasoning model trained by the depth-first search sequence
by 35%. In addition, 6 (31.58%) of the reasoning models
trained by random training sequences are outperformed by the
reasoning model trained by the depth-first search sequence by
10% to 30%. Meanwhile, for Participant A, the MRR of the
reasoning model trained by the breadth-first search sequence
exceeds that of only 10 models, i.e., 50% of the reasoning
models trained by random training sequences. The reasoning
models trained by the breadth-first search sequence and the
depth-first search sequence perform better on Participant B’s
sub-KB compared to Participant A’s sub-KB. The MRR of the
reasoning models trained by the depth-first search sequence
and the breadth-first search sequence is higher than the MRR
of 17 models, i.e., 85% of the reasoning models trained by
random training sequences. Nevertheless, the reasoning model
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Fig. 5. Comparison of MRR between the proposed mechanism and random training sequences of FB15K-237 dataset

trained by the depth-first search sequence outperforms the
reasoning model trained by the breadth-first search sequence
in terms of the MRR. The MRR of the reasoning model
trained by the depth-first search sequence exceeds that of 13
models, i.e., 65% of the reasoning models trained by random
training sequences, for Participants C and D. For Participant
E, the MRR of the reasoning model trained by the depth-
first search sequence exceeds the MRR of all 20 models, i.e.,
100% of the reasoning models trained by random training
sequences. In addition, for Participant G, 19 and 18 models,
i.e., 95% and 90% of the reasoning models trained by random
training sequences, are outperformed by the reasoning model
trained by the depth-first search sequence and the breadth-
first search sequence, respectively. Finally, for Participant H,
19 models, i.e., 95% of the reasoning models trained by
random training sequences, are outperformed by the model
trained by the depth-first search sequence. By contrast, only 12
models, i.e., 60% of the reasoning models trained by random
training sequences, are outperformed by the model trained by
the breadth-first search sequence, by 1% to 10%. In general,

the evaluation result confirms that the proposed mechanism
delivers reasoning models with favorable overall accuracy.
Moreover, the depth-first search sequence outperforms the
breadth-first search sequence on knowledge graphs with fewer
overlapping entities such as the WN18RR dataset.

E. Performance Evaluation of Proposed BDKI Mechanism

Once the requestor receives a satisfactory reasoning model,
it can stop initiating a new round of training with a new worker
and end the iterative training process, which reduces the cost
of training. Thus, an efficient mechanism should be able to
produce a reasoning model that has high overall accuracy and
fewer workers and less training involved. In this section, we
use the dataset WN18RR to further demonstrate the efficiency
of the proposed mechanism. We use the same experimental
setup and the same set of sub-KBs described in Table IV.
According to our findings, the depth-first search of the pro-
posed BDKI mechanism is more suitable for dataset WN18RR.
Therefore, in this section, we use the depth-first search method
to show that the requestor can obtain a reasoning model with a
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Fig. 6. Comparison of MRR between the proposed mechanism and random training sequences of WN18RR dataset

favorable overall accuracy with less training effort, compared
to the general distributed knowledge inference methodology
with random training sequences.

For simplicity, we choose Participant A, the participant with
the smallest sub-KB, Participant E, the participant with the
largest sub-KB, and Participant G, the participant with a mid-
sized sub-KB in our evaluation. The result is evaluated using
MRR and described as the overall accuracy. The changes in
the overall accuracy of the reasoning models as more rounds
of training go on and more workers are involved is shown in
Fig. 7, where the red dot illustrates the MRR of the reasoning
models trained with the proposed BDKI methodology and
the blue shallow illustrates the distribution of the MRR of
the reasoning models trained with the conventional distributed
knowledge inference methodology. Specifically, for Partici-
pant A, the best reasoning model with the highest overall
accuracy using the proposed BDKI methodology is achieved
after one worker has trained. With the same training effort,
the reasoning model obtained from the first worker selected
using the proposed BDKI is better than 95% of the reasoning

models obtained from the first worker of 20 random training
sequences. However, the overall accuracy of the model trained
by the proposed BDKI methodology decreases after the first
worker’s training. Thus, a rational requestor should keep the
model trained from the first worker. In other words, using
the proposed BDKI methodology, the requestor can receive
a model with higher overall accuracy than that of 99.2% of
the models trained by the conventional distributed knowledge
inference methodology with 20 random training sequences, if
the iterative training process ends after all the participants have
helped on the training and 140 reasoning models have been
trained.

For Participant E, the best reasoning model with the highest
overall accuracy using the proposed BDKI methodology is
achieved after the fifth worker has trained, which is better
than all of the 100 models obtained from the first five workers
of 20 random training sequences. If the requestor is satisfied
with the reasoning model in the early rounds and stops the
iterative training process early, it can receive a model with an
overall accuracy that is higher than that of 95%, 48.3%, 35%,
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Fig. 7. Performance of the proposed mechanism with dataset WN18RR

and 25% of the models obtained from the fourth, third, the
second and first worker of random training sequences, respec-
tively. Similarly, for Participant G, the best reasoning model
with the highest overall accuracy using the proposed BDKI
methodology is obtained from the fourth worker. Furthermore,
the reasoning model obtained from the fourth worker selected
using the proposed mechanism is better than all of the 80
reasoning models obtained from the first four workers of 20
random training sequences. If the requestor allows the iterative
training process to continue after all the participants have
helped with the training, the reasoning model obtained from
the fourth worker selected using the proposed mechanism is
better than 99%, 99.2%, and 98.6% models obtained from the
fifth, sixth, and the last worker of random training sequences,
respectively. In addition, if the requestor stops the training
process early, it can receive a model with an overall accuracy
that is higher than that of 98.3%, 95%, and 75% of the
models obtained from the third, second, and first worker of
random training sequences, respectively. Fig. 8 summarizes
the discussion above. The proposed mechanism can produce a
reasoning model that has high overall accuracy and less train-
ing effort since the proposed mechanism allows the requestor
to choose a worker in a specific order and fewer models need
to be trained by random combinations. Thus, it is beneficial
and adoptable by the participants for knowledge sharing of
intelligent fault diagnosis in IIoT systems. Additionally, from
the observation, we find that the proposed mechanism benefits
the participants with smaller KB more since a better reasoning

model is obtained from early rounds of training with the
proposed mechanism.

Fig. 8. Efficiency of the proposed mechanism with dataset WN18RR

V. LIMITATIONS AND OPPORTUNITIES

The proposed mechanism incorporates a blockchain-
powered request matching interface, established as a smart
contract, to facilitate requestors and workers in publishing,
browsing, and matching knowledge requests [22]. Recognizing
that the request matching interface merely requires decentral-
ization and transparency among participants, we advocate its
deployment on a consortium blockchain employing a Practical
Byzantine Fault Tolerance (PBFT) consensus model. This
strategic choice eradicates the gas fees and latency overhead
inherent in public blockchains [23]. In addition, since the
requestor chooses workers based on the confidence indicator
self-evaluated by workers with no verification methods, the
truthfulness of the worker is the key to the success of the
proposed mechanism.

VI. CONCLUSION

We have proposed a BDKI mechanism over Web 3.0 for
intelligent knowledge-based intelligent fault diagnosis in IIoT
systems. To the best of our knowledge, this is the first
attempt to introduce a BDKI mechanism for knowledge-based
intelligent fault diagnosis using knowledge graphs into IIoT
systems. The proposed mechanism allows collaborative work-
ers to self-evaluate their ability to contribute in completing
the requestor’s reasoning model with their local knowledge
graphs with a task evaluation function. Upon receiving the
evaluation results, the requestor will choose a worker with
the best evaluation results, thereby offering a more practical
decentralized knowledge inference for modern IIoT systems.
We have experimentally evaluated the proposed mechanism
with the TE process, FB15K-237, and WN18RR datasets.
The results show that the proposed mechanism can deliver
a reasoning model with higher overall accuracy and less
training effort compared to conventional distributed knowledge
inference with random training sequences. Moreover, we have
experimentally verified that for sparse knowledge graphs, the
depth-first search method should be used, whereas the breadth-
first search method should be used when there is a large
overlap of the entities in each local knowledge graph.
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[20] H. Chen, P. Tiňo, and X. Yao, “Cognitive fault diagnosis in tennessee
eastman process using learning in the model space,” Computers &
Chemical Engineering, vol. 67, pp. 33–42, Aug. 2014.

[21] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional
2d knowledge graph embeddings,” in Proc. of the AAAI Conference on
Artificial Intelligence, pp. 1811–1818, Apr. 2018.

[22] X. Wang, X. Ren, C. Qiu, Z. Xiong, H. Yao, and V. C. M. Leung,
“Integrating edge intelligence and blockchain: What, why, and how,”

IEEE Communications Surveys Tutorials, vol. 24, no. 4, pp. 2193–2229,
2022.

[23] S. Fan, H. Zhang, Y. Zeng, and W. Cai, “Hybrid blockchain-based
resource trading system for federated learning in edge computing,” IEEE
Internet of Things Journal, vol. 8, no. 4, pp. 2252–2264, 2021.

Yuanfang Chi (Student Member, IEEE) received
her B.A.Sc. and M.A.Sc. degree from the University
of British Columbia (UBC), Vancouver, Canada,
in 2012 and 2015, respectively. She is currently
a Ph.D. student in the Department of Electrical
and Computer Engineering at UBC, and a visiting
Ph.D. student in the College of Computer Science
and Software Engineering at Shenzhen University,
China. Her current research interests include dis-
tributed machine learning, knowledge graphs, fault
diagnosis, and industrial Internet of Things.

Haihan Duan (Member, IEEE) received his B.Eng.
degree in Computer Science and Technology from
East China Normal University, Shanghai, China, in
2017, and his M.Eng. degree in Software Engineer-
ing from Sichuan University, Chengdu, China, in
2020, and his Ph.D. degree in Computer and Infor-
mation Engineering from The Chinese University of
Hong Kong, Shenzhen, China in 2023. His research
interests include multimedia, Web3, metaverse, user-
generated content, and human-centered computing.
He has served as special session chair for IEEE

MMSP’22, and TPC member for top conferences including ACM MM,
NOSSDAV, and IEEE ICME.

Wei Cai (Senior Member, IEEE) received a B.Eng.
degree in Software Engineering from Xiamen Uni-
versity, China in 2008, an M.S. degree in Electri-
cal Engineering and Computer Science from Seoul
National University, Korea, in 2011, and a Ph.D.
degree in Electrical and Computer Engineering from
The University of British Columbia (UBC), Van-
couver, Canada, in 2016. From 2016 to 2018, he
was a Postdoctoral Research Fellow at UBC. He
is currently an Assistant Professor of Computer
Engineering with the School of Science and Engi-

neering at The Chinese University of Hong Kong, Shenzhen. He is serving
as the director of the Human-Crypto Society Laboratory, as well as the
director of the CUHK(SZ)-White Matrix Joint Metaverse Laboratory. He
has co-authored more than 100 journal and conference papers in the areas
of distributed/decentralized systems and interactive multimedia. His recent
research interests are mainly in the topic of human-centered computing for
metaverse, including blockchain, Web3, digital games, social computing,
human-computer interaction, and computational art. He is now serving as
an associate editor for IEEE Transactions on Computational Social Systems
(IEEE TCSS), IEEE Transactions on Cloud Computing (IEEE TCC), ACM
Transactions on Multimedia Computing, Communications and Applications
(ACM TOMM). He was program co-chair for ACM NOSSDAV’23, open-
source software competition chair for ACM MM’23 and reproducibility chair
for ACM MMSys’23. He was a recipient of 6 Best Paper Awards. He is a
senior member of the IEEE and a member of the ACM.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3344516

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 23,2023 at 04:57:50 UTC from IEEE Xplore.  Restrictions apply. 



14

Z. Jane Wang (Fellow, IEEE) received the B.Sc.
degree from Tsinghua University in 1996 and the
M.Sc. and Ph.D. degrees from the University of
Connecticut in 2000 and 2002, respectively, all
in electrical engineering. She has been Research
Associate at the University of Maryland, College
Park from 2002 to 2004. Since Aug. 2004, she
has been with the ECE dept. at the University
of British Columbia (UBC), Canada, and she is
currently Professor. She is an IEEE Fellow, a Fellow
of the Canadian Academy of Engineering (FCAE).

Her research interests are in the broad areas of statistical signal processing
and machine learning.

Victor C. M. Leung (Life Fellow, IEEE) is a Dis-
tinguished Professor of Computer Science and Soft-
ware Engineering at Shenzhen University, China. He
is also an Emeritus Professor of Electrical and Com-
puter Engineering and Director of the Laboratory
for Wireless Networks and Mobile Systems at the
University of British Columbia (UBC), Canada. His
research is in the broad areas of wireless networks
and mobile systems, and he has published widely
in these areas. Dr. Leung is serving on the editorial
boards of the IEEE Transactions on Green Commu-

nications and Networking, IEEE Transactions on Cloud Computing, IEEE
Transactions on Computational Social Systems, IEEE Access, and several
other journals. He received the 1977 APEBC Gold Medal, 1977-1981 NSERC
Postgraduate Scholarships, IEEE Vancouver Section Centennial Award, 2011
UBC Killam Research Prize, 2017 Canadian Award for Telecommunications
Research, 2018 IEEE TCGCC Distinguished Technical Achievement Recog-
nition Award, and 2018 ACM MSWiM Reginald Fessenden Award. He co-
authored papers that won the 2017 IEEE ComSoc Fred W. Ellersick Prize,
2017 IEEE Systems Journal Best Paper Award, 2018 IEEE CSIM Best Journal
Paper Award, and 2019 IEEE TCGCC Best Journal Paper Award. He is a Life
Fellow of IEEE, and a Fellow of the Royal Society of Canada (Academy of
Science), Canadian Academy of Engineering, and Engineering Institute of
Canada. He is named in the current Clarivate Analytics list of “Highly Cited
Researchers”.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3344516

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 23,2023 at 04:57:50 UTC from IEEE Xplore.  Restrictions apply. 


