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Abstract—As the game industry matures, processing complex game logics in a timelymanner is no longer an insurmountable problem.

However, current cloud-basedmobile gaming solutions are limited by their relatively high requirements on Internet resources. Also, they

typically do not consider the geographical locations of nearbymobile users and thus ignore the potential cooperation among them.

Therefore, inspired by existing cloud computing techniques, we propose an ad hocmobile-cloudlet-cloud based approach to implement

cooperative gaming architecture. In this paper, twomodules of the architecture are introduced: 1) progressive game resources download,

by whichmobile users can adaptively download gaming resources from cloud servers or nearbymobile users, 2) ad-hocmobile based

cooperative task allocation, by which gaming components can be executed dynamically on local devices, nearby devices, stationary

cloudlet(s), or cloud servers. Themechanisms of bothmodules are formulated as optimization problems and algorithms are proposed to

solve them. Simulations results based on real mobility traces show that our system’s performance depends highly on the ad-hoc network

environment. Our scheme has lower system resource usage while utilizing resources of nearby devices, compared to the cloud-based

gaming architecture; and performs better with short on-device task duration compared to code-offloading based architecture.

Index Terms—Cloud computing, cloudlet, cooperative, ad-hoc, mobile gaming
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1 INTRODUCTION

WITH Internet connectivity, mobile games can be
played virtually anywhere anytime, which provides

a fresh user experience to game players. However, hard-
ware constraints imposed by mobile devices such as limited
processing capabilities, storage capacities, and relatively
short battery lives compromise the Quality of Experience
(QoE) of the mobile gamers. To overcome these limitations,
researchers have started to consider building game applica-
tions upon the concept of Mobile Cloud Computing (MCC)
[1]. This new gaming architecture, called Mobile Cloud
Gaming (MCG) inherits both the advantages and the
challenges of MCC, e.g., unreliable network connectivity,
limited network bandwidth, and unpredictable network
latency [2]. More specifically, as indicated in [3], video-
based cloud gaming uses a thin-client approach which
offloads computation-intensive tasks to the cloud and thus
addresses the aforementioned hardware constraints of
mobile devices. However, computation-intensive tasks,
combined with the need to render, encode and transmit the
game scene in near real-time to the currently connected
players make the availability of both cloud services and the
Internet the most crucial aspects in the design of this type of
system. Also, current cloud-based solutions have several
drawbacks: 1) current mobile networking solutions are

often not energy-efficient [4] and has poor resource utiliza-
tion; 2) by enabling worldwide players to request services
from the distant cloud anytime and anywhere, cloud gam-
ing services put a burden on cellular networks as it likely to
be overloaded. To alleviate this, researchers have started to
seek new mobile networking solutions, i.e., tiered network-
ing solutions which allow potential cooperation among
nearby users [5]; context-aware networked applications
with converged heterogeneous wireless network access [6];
composite-radio infrastructure, which allows cellular and
wireless local area network (LAN) to co-operate within a
system to provide efficient wireless networking solutions,
in terms of cost and Quality of Services (QoS) [7].

Inspired by these works, we consider providing mobility
and context-aware cooperative cloud gaming services using
tiered (ad hoc mobile cloud-cloudlet-cloud) network architec-
ture. As mentioned in [8], resources of nearby mobile devi-
ces, namely, their processing as well as storage capacities,
could be pooled together over an ad hoc network to form an
ad hoc mobile cloud. Then, users could play games in a
cooperative manner, where computation tasks are proc-
essed collaboratively on all neighboring mobile devices
instead of solely on the centralized cloud. In addition, tradi-
tional cloud gaming architecture does not consider the pos-
sibility to deploy stationary cloudlet(s) [2] (i.e., a standalone
processing unit that is deployed close to users) at places
where users most likely to play games. Indeed, since people
often play games together in coffee shops, and social gather-
ing, the idea of embedding cloudlet(s) at places such as Wi-
Fi Access Points (APs) and routers to assist mobile users
seems promising. With this tiered networking architecture,
we jointly optimize the utilization of resources from the ad
hoc mobile cloud, the cloudlet(s), and the cloud under
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several QoS constraints, i.e., energy consumption, band-
width consumption, and interactive latency, under the con-
dition that heterogeneous user demands exists. In fact,
many researchers have been investigating resource alloca-
tion problem for cloud-based services, with respect to QoS
optimization [9], [10]. Yet, different from these works, our
architecture provides two types of cooperation in addition to
the ability to offloads tasks to the cloud: ad hoc mobile cloud
based cooperation with and without the assistance from
the cloudlet(s), which is defined by the way in which mobile
devices are connected to and interact with the cloud. To be
more specific, our system provides progressive download-
ing, which allows users to share downloaded game resour-
ces with each other while taking different game progression
into account. In addition, our system enables cooperative
task allocation, which allows computation tasks to be 1)
dynamically distributed amongst users within the ad hoc
mobile cloud and the cloudlet(s); 2) offloaded to the central-
ized cloud when the ad hoc mobile cloud and the cloudlet(s)
lacks the processing power for all the computation tasks.

The intention of enabling user-level cooperation is to pro-
vide a new gameplay experience with optimized QoS, in
terms of reduced device-cloud bandwidth consumption,
energy consumption of mobile devices, and the interactive
latency. As a matter of fact, these three optimization objec-
tives are rather conflicting, meaning that they could not be
achieved individually without degrading the others. Thus,
the system considers trade-offs when optimizing the perfor-
mance: instead of simultaneously optimizing each objective,
a set of weight factors is incorporated to reflect the relative
importance of each objective. For each hosted games, the
weight factors are initially assigned (by the system) to a
default number, which is determined by several attributes
of the game. Then, these factors could be altered by users
to better suit their preferred gameplay experience. For
instance, some users may care more about the interactive
latency than the energy consumption. In this case, they
could set the weight factors for the interactive latency
higher than the energy consumption accordingly. The ulti-
mate goal of the system is to provide a customized game-
play experience. From the system’s perspective, the benefit
gained from user-level cooperation is the reduced overall
device-cloud data transmission and the optimized QoS. On
the other side, from user’s perspective, the benefit gained
from user-level cooperation is the opportunity to access
pooled resources by acting as a contributor and consumer
at the same time, while having self-controlled and custom-
ized performance.

The rest of the paper is organized as follows.Wefirst study
some related works in Section 2. Sections 3, 4, and 5, respec-
tively, introduce the details of our proposed architecture,
formulate both progressive and task allocation process as
optimization problems, and propose several approximation
algorithms such as the greedy algorithm, which have low
complexity and near-optimal performance. Section 6 shows
the simulation results and Section 7 concludes the paper.

2 RELATED WORK AND PRELIMINARY

The ad hoc mobile cloud-cloudlet-cloud based architecture
has many practical challenges. For instance, it has been

identified in [11] that the task success rate and execution
speed of cloudlet computing depend on the cloudlet access
probability. Also, in ad hoc mobile cloud based computing,
both the connection probability, which is the probability for
users to connect as peers in the ad hoc mobile cloud; as well
as the contact duration, which is the time duration they
spend being neighbors, are key dimensions for the compu-
tation success rate. Thus, users’ behavior and their mobility
patterns need to be taken into consideration in such archi-
tecture. Then, the question is could we apply the ad hoc mobile
cloud-cloudlet-cloud architecture in the cloud gaming paradigm?
Ideally, the answer is yes: 1) as measured in [12], game play-
ers tend to stay in the same place, e.g., public facilities, pub-
lic transportation, and residential areas, for an extended
period of time while playing games. Thus, with stationary
cloudlet(s) deployed in such places, it is safe for us to
assume that in the local level there is a stable device-cloulet
connectivity; 2) as indicated in [13], social relationships
between users could be used as a predictor to users’ mobil-
ity pattern. Thus, we believe that by considering closeness
in the task offloading process, the computation success rate
could be ensured.

As mentioned and studied in [2], [14], and [15], with the
assistance from the stationary cloudlet(s), reduced interac-
tive latency and communication costs could be achieved.
Current studies suggest that cloudlet could be integrated
with Wi-Fi Access Point, which could be considered as a
physical integration of Wi-Fi AP and cloudlet. The most
well studied method used to deploy cloudlet is hardware
virtual machine technology [16], which has considerably
low hardware and maintenance costs. The purpose/benefit
of bring it into the hierarchy is to provide low-latency
computation and rich computational resources. It is closer
to users, has powerful computation potential, and well-
connected to the mobile devices via a high-speed local area
network. As conventional mobile cloud computing often
comes with high latency, which degrades the QoS and QoE
of latency-sensitive, interactive applications. The use of
cloudlet is a strong need in MCC paradigm. Several applica-
tions are proposed using this architecture. The architecture
proposed in [17] allows mobile game users to offload
computation-intensive tasks to a system component called
proxy client, which resides in the cloud and is responsible
for decoupling the creation of rendering instructions from
their execution and transmitting only the rendering instruc-
tions to mobile devices. Although the network bandwidth
usage is reduced, the system performance depends highly
on the cellular network connectivity, which may be inter-
mittent and costly. Also, a two-tire (local and public clouds)
networking approach has been used in [18] to enhance the
QoS and scalability of mobile applications. In this work, the
mobile application is modeled as a workflow of tasks, with
the design goal of optimally decompose the set of tasks to
execute on the mobile client and 2-tier cloud architecture.

With the increasing processing capacity of modern
mobile devices, peer-assisted computing is an emerging
topic that is attracting growing attention in the research
community. This paradigm regards users in vicinity as an
ad hoc mobile cloud, where neighboring mobile devices
are able to utilize and share resources. Such mechanism pro-
vides an advantage of having less offload latency and
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bandwidth consumption as compared to cloud computing,
since mobile devices could communicate with each other
via device-to-device (D2D) connections [19]. Various appli-
cations have been proposed for taking consideration of user
cooperation over the mobile ad hoc networks (MANET).
For example, ad-hoc streaming [20], [21], peer-to-peer
media provisioning [22] and cooperative downloading [23]
allow mobile users to download video collaboratively. Fol-
lowing the idea of distributing computational tasks to mem-
bers of a MANET, previous research work [24] has explored
the possibility of deploying peer-assisted multiplayer cloud
gaming, especially to utilize cooperative sharing mecha-
nisms to optimize the system. While the system benefits
from the reduced overall bandwidth consumption, it intro-
duces additional latency due to the real-time encoding,
sharing, and decoding mechanism. Similarly, a gaming plat-
form is proposed in [12], which enables interactive multi-
player gaming with distributed game operations amongst
users. In this platform, data packets are overheard by all
participants, which result in unnecessary expenditure of
battery energy of the recipients.

Users’ mobility is an important influencer when running
decomposed applications in cooperative manner [25]. As
identified in [26], [27], and [13], researchers have realized
that users’ mobility pattern is influenced by their social rela-
tionships. In these works, social closeness between users,
which is determined based on the amount of time and the
frequency of communication, is identified as the best indica-
tor of social tie, which in turn indicates the connection proba-
bility and contact duration between them. Several research
works are proposed considering the social relationships
between users. For instance, in [26], a mobility model is pro-
posed to be built upon social network theory. This model
puts mobile devices into groups based on the social relation-
ships between users. These groups are then mapped to topo-
graphic spaces, with movement influenced by the strength
of social tie. The evaluation shows that this model provides
good approximation of realmovements in terms of the distri-
bution of contact duration, which fulfilled the design goal of
such mobility model. Similarly, in [28], a social closeness
method is proposed to detect clone attacks. In this work, a
newmetric, called community betweenness, is defined based
on the social closeness between users. The authors claim that
this metric changes in value when the clone attack is taken
place, so that it could be used for clone attack detection.

Our proposed architecture targets component-based
game model with game data separated from game code-
base, and game logic divided into self-contained, as well as
remote executable and reusable software components. In
component-based game design, every object in the game
(e.g., vehicles, bullets, etc.) is defined as an game entity, and
every entity consists of one or more components which
define its behaviour or functionality. This model provides
increased system parallelism since it groups together rele-
vant attributes and decouples the functionality which oper-
ates on them. Computation task, in this design pattern, is
defined as an individual function call for certain compo-
nent. As the component itself is stateless, it is the task/func-
tion parameters that go into the component which makes
the task different from others. Several research works have
studied the possibility of providing component-based cloud

gaming services. For example, architecture proposed in [29]
enables dynamic partitions of game applications so that
resources of both the mobile devices and the cloud are
utilized. Similarly, a cognitive platform has been designed
[30] for modularized gaming applications, which enables
computation task migration and dynamic task allocation
between the cloud andmobile devices. Bothworks show that
the component-based programming model is feasible and
promising for the cloud computing paradigm. However,
they suffer from the limitation that they have yet to take into
consideration both the costs of data and task migration, and
the unpredictable response latency when deciding tomigrate
from one service to another.

Therefore, in order to provide workload offloading with
reduced data and task migration, we categorize game com-
ponents into allocatable game logic components (i.e., the
task for executing such components could be dynamically
distributed among users, often has high computational
complexity) and non-allocatable game logic components
(i.e., the task for executing such component could be exe-
cuted by local device only, generally have lower require-
ment in computation resources and manage critical user-
specific data). In this component-based game model, the
components could be removed or added to the entity in the
runtime, thus changes the behaviour of the entity during
the gameplay. Then, our progressive downloading process
acts as a continuous process, yet works on demand: only
the components needed for the current game progress are
downloaded as a starting point for execution, while the rest
is downloaded as requested (e.g., when reaching the new
progress level in mobile games), with the components being
added to the entities in the runtime. Both the cloudlet(s)
and devices in ad hoc mobile cloud are considered to be
complementary downloading sources depending on their
game progresses and resources owned. Similarly, since all
users in the network download game resources progres-
sively, computation tasks could only be distributed to users
(and the cloudlet(s)) who already have the associated game
components downloaded for execution.

While each computation task is considered as an inde-
pendent unit of computation thus could be remotely exe-
cuted in parallel, the bottleneck for distributing tasks to
various devices for execution is the inter-components
dependencies the latency/bandwidth incurred by data
transmission when sending the task over network, espe-
cially for adjacent tasks with interactive dependency (data
sharing among tasks) and real-time dependencies (compu-
tation of such tasks need to be finished in timely manner,
for example, tasks which respond to gun firing). Hence, to
ensure the performance of distributed task processing over
ad-hoc mobile network, it is inevitable for us to consider
task dependencies in the task allocation process. However,
in this paper, our task allocation scheme does not consider
the task dependencies. Thus, for current stage, our system
is more appropriate to be used in games with high computa-
tion complexity, yet low delay requirement and less real-
time user interaction. One example of such game could be
strategic role-playing games (SRPG, also known as tactical
role-playing games), where each game player employs a
number of avatars on the battlefield and the combat takes
place on the battlefield without screen changes. In SRPGs,
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game players take turns to attack each other depending on
the avatars’ statistics, capabilities, and current positions.
Such game has high computation complexity since 1) it
incorporates strategic gameplay, i.e., tactical movement on
an isometric grid and usually has complex game scene ren-
dering; 2) it has low requirement on players’ responsiveness
therefore less latency-sensitive, since it does not have real-
time user interactions; 3) it does not have screen changes
hence less real-time rendering tasks. Therefore, it would be
a good candidate for our targeting game type. For similar
reasons, other strategy games such as multiplayer on-line
chess would also be our targeting game type, with the bene-
fit of enabling multiplayer gameplay. On the contrary, the
feasibility to run other games that is latency-sensitive and
has real-time user interaction (i.e., First Person Shooting
Games, i.e., Counter-Strike) with our system is yet to be
investigated at this time (without consideration of task
dependencies), since delays imposed by task dependency
might not be beneficial towards the gameplay experience.
As the ability for such game to be decomposed and run in
distributed manner remains unexplored, we consider
enabling integration of such game to our system as future
work, with respect of task dependency.

As previously mentioned, the proposing system could be
used in scenarios where people need to spend an extended
period of time in a crowded environment (i.e., while spend-
ing time in coffee shop or taking public transit), for which a
temporary mobile ad hoc network could be formed. This
concept, defined as crowd gaming, has been studied in
recent researches: authors in [12] and [31] investigated the
possibilities and probabilities for people playing games in
public transport. They carried out measurement studies to
show that the average time people spend on one-way trans-
portation is fairly long, and most of them are willing to play
multiplayer mobile games with random people in vicinity
to kill time. Inspired by those studies, we believe that with
the idea of crowd gaming, combining with the targeting
game type, the proposing system provides a promising way
for mobile gamers to paly cooperative games with mini-
mized cellular gaming traffic generated. Such application
scenario would be descripted as: a group of people is taking
a subway and decide to play multiplayer online chess
together using the proposing system. Then, game tasks
could be distributed among themselves instead of solely off-
loading to the cloud. The benefits of using proposing system
are twofold: 1) the device-cloud network connectivity could
be intermittent when people riding fast moving under-
ground subways. The proposing system minimizes the data
transmission through the intermittent device-cloud network
links thus ensures the communication and cooperativeness
between gamers, while having the cloud as a backup proc-
essing unit; 2) the proposing system uses ad hoc mobile
cloud to reduce cellular traffic generated while ensuring the
overall system performance, which is considered a promis-
ing way to alleviate the likely to be overloaded cellular traf-
fic, as indicated by authors in [32] and [33].

3 ARCHITECTURE OVERVIEW

The basic idea of the proposed architecture is to enable
nearby users who are in possession of mobile devices to

play games in a cooperative manner, including progressive
and collaborative game resources downloading, and coop-
erative task allocation. In addition to obtain services from
the distant cloud, stationary cloudlet is considered as a sup-
plementary alternative to request services from. Further-
more, instead of connecting to the cloud (over either a 3G/
4G cellular connection or wireless network) and the cloud-
let, nearby users are able to utilize and share resources,
including processing and storage, over an ad-hoc mobile
cloud. Then, two types of cooperation are provided: 1) for
users who are out of the wireless range of the cloudlet, they
will play games over ad-hoc mobile cloud based coopera-
tion; 2) Along with the cooperation between peers within
the ad-hoc network, users who are within the wireless range
of the cloudlet will get assistance from the cloudlet.

Users whom are out of the wireless range of the cloudlet
connect to the cloud over cellular connection. Thus, in ad
hoc mobile cloud based cooperation, two transmission
schemes are being considered: 1) transmissions within the
ad hoc mobile cloud via D2D connectivity; 2) transmissions
between users and the cloud over cellular network. This
application scenario is illustrated in Fig. 1a, where the ad-
hoc mobile cloud is formed by seven users, each of whom
performs two actions simultaneously: progressive down-
loading of segmented game resources and collaborative
task allocation. In progressive downloading, users are
assumed to hold some initial states of the game, and all
game data as well as game components are progressively

Fig. 1. Application scenario.
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downloaded onto their mobile devices. As only a small
number of game resources are required for users to start
playing the game, the rest of the resources can be acquired
from either the cloud or the neighborhood ad-hoc mobile
cloud depending on the progress of the game. In the exam-
ple, only users named David, Frank, and Alice are getting
game resources from the cloud and other users are all
getting resources from their neighbors. Also, our system
prioritizes the ad-hoc mobile cloud when offloading the
computation tasks, and only offloads to the cloud when the
ad-hoc mobile cloud does not have the required capability.
Upon receiving the task allocation requests, users could
decide to either accept or reject the requests based on their
current processing status.

On the contrary, users whom are within the wireless
range of the cloudlet connect to the cloud through the
cloudlet. Thus, in ad hoc mobile cloud based cooperation
with cloudlet, three transmission schemes are being consid-
ered: 1) transmissions within the ad hoc mobile cloud via
D2D connectivity; 2) transmissions between users and the
cloudlet over LAN network; 3) transmissions between the
cloudlet and the cloud overWide Area Network (WAN) net-
work. This application scenario is illustrated in Fig. 1b. In
addition to the ability for users to utilize and share resources
over the ad hoc mobile cloud, in this approach, the cloudlet
acts as a direct neighbor to users within its wireless range.
As progressively downloaded games resources from the
cloud go through the cloudlet, these game resources are
cached in the cloudlet. Then, the cloudlet could be consid-
ered as a great alternative to acquire the resources from.
Moreover, if both the cloudlet and the ad-hoc mobile cloud
do not have the required resources, users could request for
services from the cloud through the cloudlet.

We focus on progressive downloading and task alloca-
tion processes since they are the determining factors for
our system performance. For simplicity, we allow only
unicast transmissions within the ad-hoc mobile cloud
since offloading to the cloud and the cloudlet uses one-to-
one transmissions. Since each transmission scheme has its
own characteristics in terms of energy costs, bandwidth
consumption, and interactive latency, aiming at optimiz-
ing the system performance, it is critical for the system to
determine to whom to map downloading requests and
computation tasks to.

4 SYSTEM MODELING

In this section, we formulate both the progressive down-
loading and task allocation mechanisms as optimization
problems, where discrete time is assumed for both mecha-
nisms. In the formulation, users’ tasks offloaded to the
cloud are considered the same as offloaded to the cloudlet
since 1) communication between users and the cloud is car-
ried out by the cloudlet; 2) the cloudlet connects to the cloud
over WAN network, we assume the latency in WAN net-
work to be small and the bandwidth to be large enough,
thus its associated bandwidth consumption and interactive
latency could be ignored; 3) we also ignore the energy costs
incurred by the cloudlet since it is a stationary device.
Then, the formulations for two types of the cooperation
are the same: 1) in ad hoc mobile cloud based cooperation

with cloudlet, users offloads their tasks to either the
cloudlet or their ad-hoc neighbors; 2) in ad hoc mobile
cloud based cooperation, users offloads their tasks to
either the cloud or their ad-hoc neighbors. Thus, in this
section, only the formulation for ad hoc mobile cloud
based cooperation is presented.

4.1 Progressive Downloading of Gaming Resources

For each user, we denote game resources downloaded from
the cloud as d

3G=4G
i ðtÞ, and game resources acquired from

the ad-hoc mobile cloud as dD2D
i ðtÞ. Then, the overall down-

loading for a period of T time slots can be formulated as:

XN
i¼1

Xt¼T

t¼0

d
3G=4G
i ðtÞ þ dD2D

i ðtÞ: (1)

To achieve the maximized cooperation among users, we
need to minimize the number of downloaded contents from
the cloud, which can be formulated as:

Minimize :
XN
i¼1

Xt¼T

t¼0

d
3G=4G
i ðtÞ: (2)

The intention for this optimization problem is to map
as much downloading requests to ad hoc mobile cloud as
possible. The benefit is twofold: 1) reduce the duplicated
downloading from the cloud; 2) minimize the device-cloud
bandwidth consumption.

4.2 Cooperative Task Allocation for Gaming Tasks

Our task allocation process could be considered as a multi-
ple knapsack problem, where the mobile device is consid-
ered as a knapsack with a capacity determined by its CPU
processing power and storage capacity. The goal of this
knapsack problem is to select N disjoint subsets of tasks
based on the network topology, as it can only be mapped to
its initiator’s direct neighbours. Each subset of tasks can
then be assigned to different mobile devices (where the
assigned tasks were initiated by the device’s neighbours)
whose CPU and storage capacity is no less than the total
required CPU and storage capacity of tasks in the subset. In
this process, both the devices reside in the network and the
computation tasks play important roles. We assume that the
network is constituted by a set of users (devices) v. In gen-
eral, at time t, each user mi 2 v could be uniquely identified
using the following attributes: 1) Storage Availability: ki,
which is the memory space available; 2) CPU Availability:
zi, which is the cpu resources available; 3) Energy Avail-
ability: bi, which is current battery Level; 4) Availability:
Ai, which is the availability to participate in the cooperation
process; 5) Energy Consumption/unit time: ei; At time t,
user mi generates a computation task ni, which is assumed
to be independent in terms of execution sequence. Then,
each task ni could be uniquely identified using the follow-
ing attributes: 1) Storage Consumption: si, which is the
memory space required in order to compute the task; 2)
CPU Consumption: ci, which is the cpu resources required
in order to compute the task; 3) Task Duration/deadline: di,
which is the maximum time interval allowed for the task to
be computed; 4) Size of data sent: xi, which is the size of
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the task parameters, including associated user inputs trans-
mitted when offloading the task; 5) Size of data received: ri,
which is the size of the computation results received by the
task owner after the task is successfully computed; 6) Execu-
tion Time: qij, which is the duration spent by device mj in

computing task ni; 7) Bandwidth Consumption: vij, which
is the bandwidth consumed by transmitting the task over
the Network; and 8) Network Link Delay: lij. To model
users in the ad hoc mobile cloud, we define an N by N
neighbourhood matrix, X, where each element represents
relationship between two users. X i; j½ � ¼ 1 indicates that
there exists a direct communication between user ui and uj
and they will be able to collaborate. Also, to enable tasks to
be handled locally,X i; i½ � should always be 1.

4.2.1 System Resource Usage

The design goal of the task allocation process is to minimize
the expected system resource usage, which can be character-
ized by threemain parameters: the overall energy costs, band-
width consumption, and the interactive latency. These three
parameters impact differently toward the user-perceived
game-play experience, thus, we consider and formulate each
of them individually. Again, the ultimate goal is to map as
many tasks to resources in ad hoc mobile cloud as possible in
order to reduce the device-cloud bandwidth consumption.

The energy costs for the task allocation process include
both the energy used for task processing and the energy
costs incurred by data transmission across the network. To
be more specific, for each task offloaded to device mj, we
define three components in terms of energy costs, including
the energy costs for executing task ni on device mj, the

energy costs for transmitting task parameters to the device
mj, and the energy costs for receiving computed results

from the device mj. Terms used to represent each compo-

nent are summarized in Table 1. Combining these compo-
nents together, the usage factor of energy costs for
offloading task ni to device mj is defined as:

Ueij ¼ ejðtÞqijðtÞ þ hijðtÞ þ gijðtÞ: (3)

Similarly, the usage factor of energy costs for offloading
task ni to the centralized cloud c is defined as:

Uec
i
¼ ecðtÞqci ðtÞ þ hc

iðtÞ þ gciðtÞ: (4)

Then, the overall energy costs for the task allocation pro-
cess fe could be defined as:

fe ¼
XN
i¼1

XN
j¼1

FijðtÞXijðtÞAjðtÞUeij

þ
XN
i¼1

1�
XN
j¼1

FijðtÞXijðtÞAjðtÞ
 !

Uec
i
;

(5)

where

FijðtÞ ¼ 1; If user i0s task is mapped to user j
0; Otherwise:

�
(6)

Following the same pattern, we denote vij and vci as the
bandwidth consumption for the tasks offloaded to the ad
hoc mobile cloud and the cloud respectively. The usage fac-
tor of bandwidth consumption for offloading task ni to
device mj is defined as:

Ubij ¼ vijðtÞ: (7)

Similarly, the usage factor of bandwidth consumption for
offloading task ni to the centralized cloud c is defined as:

Ubc
i
¼ vciðtÞ: (8)

Then, the bandwidth consumption for the task allocation
process fb could be defined as:

fb ¼
XN
i¼1

XN
j¼1

FijðtÞXijðtÞAjðtÞUbij

þ
XN
i¼1

1�
XN
j¼1

FijðtÞXijðtÞAjðtÞ
 !

Ubc
i
:

(9)

Lastly, the interactive delay is not just the task process-
ing time but also includes the time it takes for data transfer
across the network, which is determined by the bandwidth
available in the network. Thus, we define three components
for interactive latency, including the transmission latency
for sending the task parameter to mj, the transmission
latency for receiving the computed results from mj; as well

as the execution time. The usage factor of interactive latency
for offloading task ni to device mj is defined as:

Ulij ¼ xiðtÞ
�
vijðtÞ þ lijðtÞ þ riðtÞ

�
vijðtÞ þ lijðtÞ þ qijðtÞ: (10)

Similarly, the usage factor of interactive latency for off-
loading task ni to the centralized cloud c is defined as:

Ulc
i
¼ xiðtÞ

�
vciðtÞ þ lciðtÞ þ riðtÞ

�
vciðtÞ þ lciðtÞ þ qci ðtÞ: (11)

Then, the interactive latency for task allocation fl could
be defined as:

fl ¼
XN
i¼1

XN
j¼1

FijðtÞXijðtÞAjðtÞUlij

þ
XN
i¼1

1�
XN
j¼1

FijðtÞXijðtÞAjðtÞ
 !

Ulc
i
:

(12)

Targeting at the minimized system resource usage,
we want the energy costs, bandwidth consumption, and

TABLE 1
System Usage Parameters

Usage Parameters Components Device-To-

Device

Device-To-

Cloud

Energy Costs

Task Execution ejqij ecqci
Task Data Transmission hij hc

i

Task Results

Transmission

gij gci

Bandwidth Consumption Bandwidth vij vci

Interactive Latency

Execution latency qij qci
Task Data Transmission xi=vij xi=v

c
i

Task Results Transmission ri=vij ri=v
c
i

Link Latency (One-way

Transmission)

lij lci
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interactive latency to be minimized. Then, the system
resource usage function could be considered as multi-
objective optimization which involves minimizing all three
usage parameters

Minimize : fe; fb; flð Þ (13)

Subject to :
XN
i¼1

FijðtÞ �Xij �AjðtÞ � sjðtÞ � kjðtÞ; 8j; (14a)

XN
i¼1

FijðtÞ �Xij �AjðtÞ � cjðtÞ � zjðtÞ; 8j; (14b)

XN
j¼1

FijðtÞ �Xij �AjðtÞ � 1; 8i; (14c)

FijðtÞ 2 0; 1f g: (14d)

Before we introduce the constraints in the formulation, it
is important for us to study the relationships between the
objective functions in the multi-objective optimization prob-
lem. After evaluating the value of each objective function
using a fixed set of parameters (with parameters randomly
generated) for users and tasks, as well as the fixed (ran-
domly generated) network topology, we find that three
objective functions are conflicting. They depend on and
restrict each other mutually. To be more specific, as shown
in Figs. 2 and 3, the interactive latency increases as energy
costs increases, yet decreases as the bandwidth increases. In
this case, instead of a single solution that simultaneously
optimizes each objective, there exists a set of Pareto optimal
solutions (Pareto front), which is shown in Fig. 4. Since
all Pareto optimal solutions are considered equally good,
trade-offs need to be considered in order to solve such
multi-objective optimization problem.

To qualify the trade-offs, we incorporate a set of weight
factors: a;b; df g, where aþ bþ d ¼ 1, to reflect the relative
importance of the energy costs, bandwidth consumption,
and interactive latency respectively. These weight factors
are pre-set by the system to default numbers (could be
future adjusted by users to suit their own needs, with the
constraint remaining aþ bþ d ¼ 1), which are adaptively
determined according to the computation complexity of the

game application, game data volume, as well as its interac-
tive frequency (Computation, Data, and Interaction, where
Computation 2 0; 1½ �, Data 2 0; 1½ �, and Interaction 2 0; 1½ �).
Indeed, some games are interaction-intensive, while others
being either data-intensive or computation-intensive. For
instance, as shown in Table 2, games like Chess has high
value on computation complexity, less of the interaction
frequency and very little on game data volume; the famous
Massive Multi-player On-line Game (MMOG) called
Diablo3 has higher value on game data volume than the
interaction and the computation complexity (note that the
Computation, Data, and Interaction value given in the exam-
ples are user-perceived, it does not have scientific mean-
ings). Thus, for interaction-intensive game applications, it is
reasonable to set the importance factor of the interactive
latency d higher than the energy costs and the bandwidth
consumption; on the contrary, for computation-intensive
game applications, the importance factor of the energy costs
a should be higher among the three of the factors; similarly,
for data-intensive game applications, we need to set the
importance factor of the bandwidth consumption b higher
than the others as it needs more data exchanges. Then, the
system resource usage could be modeled as a single objec-
tive optimization problem, shown as below:

Minimize :
XN
i¼1

XN
j¼1

FijðtÞXijðtÞAjðtÞ
�
aUeij þ bUbij þ dUlij

�
þ
XN
i¼1

1�
XN
j¼1

FijðtÞXijðtÞAjðtÞ
 !

�
aUec

i
þ bUbc

i
þ dUlc

i

�
Subject to : ð14aÞ;ð14bÞ;ð14cÞ;ð14dÞ:

(15)

Fig. 2. Interactive latency versus energy costs.

Fig. 3. Interactive latency versus bandwidth consumption.

Fig. 4. Pareto front: a set of pareto optimal solutions to the system
resource usage problem.

TABLE 2
Examples of Game Classification

Game Application Computation Data Interaction Classification

Chess 0.9 0.1 0.4 Computation-Intensive

Diablo3 0.5 0.9 0.7 Data-Intensive

LoL 0.4 0.6 0.9 Interaction-Intensive
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Four constraints are defined in the formulation. The
first (14a) and the second (14b) are used to indicate that
the overall CPU and storage consumption for the
assigned tasks to each user is no more than the CPU and
storage available for such user. The third constraint (14c)
is to assign no more than one task to each user, and the
last (14d) indicates that for FijðtÞ we only accept solutions
as 0 or 1 as defined earlier.

4.2.2 Mobile Social Closeness

In the previous section, we introduced a model which maps
each computation task to the candidate with minimal sys-
tem resource usage. However, tasks offloaded to neighbors
may not be successfully computed and returned before the
task deadline due to the mobility of users. These tasks,
regarded as failed, negatively impacts the Quality of Service
since they need to be re-allocated. To improve the QoS, we
consider the probability of failure, Rij, for the process of off-
loading task ni to device mj , which is proposed to measure

the closeness between the users: high degree in closeness,
low probability of failure. Then, while constraints are
remained the same, the task offloading process considering
the probability of failure could be modeled as:

Minimize :
XN
i¼1

XN
j¼1

FijðtÞXijðtÞRijðtÞAjðtÞ
�
aUeij þ bUbij þ dUlij

�
þ
XN
i¼1

1�
XN
j¼1

FijðtÞXijðtÞAjðtÞ
 !

�
aUec

i
þ bUbc

i
þ dUlc

i

�
Subject to : ð14aÞ;ð14bÞ;ð14cÞ;ð14dÞ:

(16)

5 ALGORITHMS

In this section, we propose several approximation algo-
rithms for finding optimal solutions. Since computer games
are delay-sensitive applications, finding the exact optimal
solution may not be feasible as it may take too long. Also,
the allocation process for each task and the downloading
request for each user can be considered as a sub-problem to
a global optimization problem. Thus, for each sub-problem,
we can iterate through the feasible solutions and apply a
heuristic algorithm to determine a near-optimal solution,
where the optimal solution is defined by having the mini-
mal processing time. In the following section, heuristics
algorithms for both modules are presented, which could be

applied under different network environment to gain better
system performance. Again, similar to the system formula-
tion, only algorithms used for ad hoc mobile cloud based
cooperation is presented in this section.

5.1 Progressive Download of Gaming Resource

For this module, we consider two heuristic algorithms. The
first one is called greedy local, which allows users to acquire
game resources from a neighbor with the minimal transmis-
sion speed. This algorithm is summarized in Fig. 5, where a
user mi needs a game resource that is owned by a user mi,
it will then estimate the time for the owner to transmit
the content. This time will be denoted as TijðtÞ. Finally, it
will retrieve its gaming progress speed, PiðtÞ, and decide
whether to receive the content through the server or its
neighbor by comparing TijðtÞ and PiðtÞ: if TijðtÞ < PiðtÞ, the
user should be receiving the content through its neighbor;
otherwise, the content is downloaded from the cloud.

Then, a different strategy is used for which users are orga-
nized into clusters and can only acquire game resources
from users within the same cluster. Each usermi is associated
with a weight, Pi, which is the current game progress for mi.
For each time interval, the K-Means algorithm for clustering
is applied to find the best K users who are responsible for
downloading via cellular links. Other users will primarily
receive the required content from theseK users. For the situa-
tion where user mi is no longer satisfied acquiring resource
from its peers, it can decide to download contents via a cellu-
lar link on its own. This algorithm is shown in Fig. 6.

Both algorithms have computational complexity of O(1),
assuming the K-Means clustering algorithm is running on
the cloud and therefore we ignore its associated complexity.
These algorithms have different advantages and disadvan-
tages. The first algorithm allows each user to select neigh-
bours freely and distributes the downloading requests
evenly within the ad-hoc mobile cloud, whereas the second
algorithm only allows users to acquire data from system
determined users, which is not as fair as the first algorithm.
However, the first algorithm has a higher requirement in
terms of user reliability since all users are responsible for
sharing their acquired data while the second algorithm
allows users to only acquire contents from determined
users. Also, the second algorithm works better when some
of the users have much faster game progress speed as com-
pared to the rest of the users since the users who are respon-
sible for downloading via cellular links are determined
according to their game speed.

Fig. 5. Algorithm for progressive downloading: greedy local. Fig. 6. Algorithm for progressive downloading: weighted k-mean.

632 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 18,2020 at 02:48:48 UTC from IEEE Xplore.  Restrictions apply. 



5.2 Cooperative Task Allocation for Ad-Hoc
Mobile Gaming

The basic structure of the algorithm for this module is pre-
sented in Fig. 7. Assuming there is a mapping M, which rep-
resents the task-resource mapping within the ad-hoc mobile
cloud, and we have to specify a set of tasks initiated by
users within the ad-hoc mobile cloud and decide to which
neighbor the task is allocated so that the system resource
usage could be minimized. We use several different strate-
gies for choosing the neighbor to offload the task, where
they all have to meet one constraint, which is for the chosen
neighbor to have sufficient computation potential for the
task. For example, if user mi has a task ni and wants to map
to its neighbor mj, then user mj must have kj � sni and

zj � cni . If no valid neighbor is in the ad hoc mobile cloud,

the task is then offloaded to the cloud.

� Random mapping: Task requests are mapped to ran-
domly chosen neighbors who have enough process-
ing and storage capabilities.

� Greedy local: Each potential task-resource mapping
has its corresponding system resource usage. We use
Costij to refer to the system resource usage for off-
loading task from user mi to mj. In this strategy, each

task is assigned to the available neighbor with mini-
mum Costi;neighbor, thus, the globally optimal solution
can be achieved by making locally optimal choices.

� Greedy Heuristic: In this strategy, each task is assig-
ned to user mj if it has the minimum additional
Costi;j based on its current mapping.

The computational and storage complexity for the above
algorithms are listed in Table 3. In our analysis, we consider
only the complexity for the neighbor selection process since
steps for maintenance are common for all algorithms.

6 EVALUATIONS

System performance is evaluated by using a Java simulator,
which assigns randomattributes to the users, the computation
tasks, and the offloading process. Each of these parameters

is randomly generated within a certain range, which is
specified using base cases and different factors. To better
test our system performance, the users’ CPU availability
has a range smaller than tasks’ CPU consumption, so that
some tasks will have CPU consumption greater than the
ad-hoc mobile cloud’s processing capability and hence will
have to be offloaded to the cloud. Details of how each
parameter is generated are listed in Table 4. We then simu-
lated our system using randomly generated network topol-
ogies, which allows us to control its associated density and
skewness, and network topologies generated based on
real-world traces and users’ movement model. Simulation
results are shown in the following sections.

6.1 Randomly Generated Network Topology

6.1.1 Progressive Downloading

Each user downloads a game resource depending on their
game progress speed, which is the time slots interval
between each download. An example of the downloading

Fig. 7. Algorithm frame for task allocation.

TABLE 3
Complexity

Algorithm Computational Complexity Storage Complexity

RandomMapping O(1) O(1)

Greedy Local O(n) O(n)

Greedy Heuristic O(n) O(n2)

TABLE 4
Setup Parameters

Target Parameter Minimum Maximum

Base Case Device(s), Cloud, and

Cloudlet(s)

50 350

Task(s) Factors

Storage Consumption 0.9 1.05

CPU Consumption 0.9 1.05

Task Duration (Deadline) 0.5 0.5

Amount Of Data Sent 5 5

Bandwidth Consumption 1 1

Amount Of Data Received 5 5

User(s) / Device(s) Factors

Storage Availability 1 1

CPU Availability 1 1

Energy Availability 0.5 0.5

Energy Consumption

(/ unit time)

0.5 0.5

Game Progress Speed 1 10

Cloudlet(s) Factors

Storage Availability 20 20

CPU Availability 20 20

Energy Availability 1 1

Energy Consumption

(/unit time)

0.1 0.1

Local Level Offloading

Short On-Device Execution

Time

0.5 0.5

Long On-Device Execution

Time

5 5

Device-Device Data

Transmission Costs

10 10

Device-Cloudlet Data

Transmission Costs

20 20

Link Delay 1 2

Device-Cloud Offloading

Task Execution Time 0.1 0.1

Device-Cloud Data

Transmission Costs

30 30

Link Delay 10 20

Network Topology

Density 1 10

Skewness 1 10

Task Density 1 10

Weight Factors

Energy Costs 0 1

Bandwidth Consumption 0 1

Interactive Latency 0 1
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progress for ten users is shown in Fig. 8a. In this example,
game data are segmented into ten pieces and the download-
ing process is implemented using Greedy Local. The experi-
mental results in Fig. 8a show that users with faster game
progression speed finishes downloading before others.

For ad hoc mobile cloud based cooperation, game resour-
ces can be acquired from either ad-hoc neighbors or the
cloud. Thus, we differentiate the downloaded game pieces
via different network links. Fig. 8b shows the total down-
loaded game data for all users. Game pieces downloaded
directly from the cloud (via cellular links) are colored in
blue whereas pieces acquired from the ad hoc mobile cloud
(via D2D links) are colored in red. From the graph, we can
see that at the beginning of the game session, most of the
game data are downloaded from the cloud; however, as the
game progresses, more and more game data are acquired
through the ad hoc mobile cloud. Thus, total downloading
traffic via cellular link is significantly reduced.

The total downloading for ad hoc mobile cloud based
cooperation with the assistance from the cloudlet(s) is
shown in Fig. 8c. Again game pieces downloaded directly
from the cloud are colored in blue whereas pieces acquired
form the ad hoc mobile cloud are colored in red. Here we
have an additional downloading source, which is the cloud-
let(s), and game pieces downloaded from the cloudlet(s) are
colored in yellow. From the graph, we can see that as the
game progresses, most of the game resources are acquired
from the cloudlet(s). This is because that all game pieces
downloaded from the cloud are cached in the cloudlet(s), so
that most of the users could acquire game pieces from the
cloudlet(s) instead of their ad-hoc neighbors. This indicates
that by adding the cloudlet(s), the downloading perfor-
mance is improved significantly.

Actually, bring along the cloudlet into our architecture
has multiple advantages. For example, without the assistant
from the cloudlet, users may only acquire game resources

from either their direct neighbors or the cloud. It ignores the
possible content sharing between multi-hop neighbors,
which limits the efficiency of the content sharing. Alterna-
tively, if the downloaded resources are cached in the cloud-
let, content sharing between multi-hop neighbors could be
carried out by the cloudlet, without multi-hop data trans-
mission. Also, as the ad hoc mobile cloud is actually an
opportunistic network, the probability for which content
sharing in ad hoc mobile cloud based cooperation occurs
depends on the time and users’ physical locations. On the
contrary, the cloudlet is considered to be a stable device as
compared to mobile devices. It provides potential content
sharing for users who have the same routine, but not reside
in the same ad hoc mobile cloud.

6.1.2 Task Allocation for Ad Hoc Mobile Cloud Based

Cooperation

We first evaluated the performance for the ad hoc mobile
cloud based cooperation under different randomly generated
network environments. Our Proposed algorithms are used to
implement the task allocation process, including the solution
to the optimization problem formulation (optimal solutions),
which is produced using optimization solver called Gurobi,
and their results are compared side by side. We included
only the CPU and storage consumed by computation tasks
and ignored the resources used for carrying out each algo-
rithm in the simulations. Also, for the simulation results
shown below, we does not include the task re-assignment
and assume that each task offloaded could be successfully
computed and returned before its associated deadline.

Density. Fig. 9a shows the overall energy costs incurred
by different allocation algorithms under different network
environments. The network topology is generated in
response to different degrees of network density, where a
topology with higher density indicates that there is more

Fig. 8. Progressive download.

Fig. 9. System performance for various density.

634 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2018

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 18,2020 at 02:48:48 UTC from IEEE Xplore.  Restrictions apply. 



D2D connectivity between users than a topology with lower
density. These experimental results show that the energy
costs decrease as the network density increases. This is
because a higher degree in density means users have more
connected neighbors, so that more tasks can be offloaded to
the ad hoc mobile cloud, and the costs to offload tasks to the
ad hoc mobile cloud are often smaller than the alternative.
Figs. 9b and 9c shows the idle storage and CPU capacity in
percentage with various degree in density. From both fig-
ures, we see that idle resources decrease as density increa-
ses, which shows that our system gives better resource
utilization. Also, we observe that the greedy heuristic algo-
rithm has lower energy costs in the beginning but converges
with the greedy local algorithm as density level increases,
which indicates that in a more connected network, the
greedy local algorithm has lower energy costs.

Skewness. In fact, to try to simulate the system and ana-
lyze the system performance in a real-world environment,
we need to obtain a more realistic network topology, which
follows the power law. Then, we obtained the energy costs
under various degrees of skewness, where a high degree in
skewness means that the network is more unbalanced (i.e.,
only a small number of users are connected to most other
users while others are connected to only a few) than low
degree. From the experimental results shown in Fig. 10a, we
can see that with a higher degree in skewness, the overall
energy costs increases. This is because with unbalanced net-
work topology, most of the users have few connected neigh-
bors while only a small number of users have most of
the connections. Sometimes users with few neighbors will
have to offload their computation tasks to the cloud; thus
the energy costs are high. This indicates that with a more
balanced network topology, the energy costs are minimized.
Also, our system has better ad hoc mobile cloud utilization
when the skewness is minimal, as showed in Figs. 10b and
10c. We observe that the greedy heuristic algorithm has
higher energy costs in the beginning but lower costs as
skewness level increases as compared to the greedy local
algorithm, which indicates that in a more balanced network,
the greedy local algorithm has lower energy costs.

All experimental results presented above show that the
system performance depends highly on the network envi-
ronment, and more benefits are realized by the proposed
scheme in a balanced and connected network. However,
regardless of the network environment, the algorithms we
have proposed are shown to be near-optimal and hence are
cost-efficient. More specifically, the greedy local algorithm

performs better when the network topology is more
connected and balanced. In contrast, for less dense and
unbalanced network, the greedy heuristic algorithm
would be more cost-efficient. Also, random mapping
could be considered as a good alternative when computa-
tion and storage capacity of mobile devices are limited,
since it has lower computational and storage complexity
as indicated in Table 3.

6.1.3 Task Allocation for Ad Hoc Mobile Cloud Based

Cooperation with the Assistance from the

Cloudlet(s)

We then evaluated the performance for ad hoc mobile cloud
based cooperation with the assistance from the cloudlet.
The optimal solutions obtained for both types of network
topology, as shown in Figs. 9d and 10d, are compared side
by side. From the figures, we can see that with the assistance
from the cloudlet, the system resource usage decreases as
the network density increases, yet increases as the network
skewness increases, which is the same as in the ad hoc
mobile cloud based cooperation. However, the system
resource usage with the cloudlet is much lower than with-
out the cloudlet, which indicates that by adding the cloudlet
into our architecture, the system performance is improved.

6.2 Real-World Trace-Based Network Topology

To evaluate the effect of user’s mobility on our system per-
formance, we simulated the the ad hoc mobile cloud based
cooperation using a trace-driven network topology genera-
tor called ONE. Map based movement patterns is used,
where users are located inside several street blocks initially
and their movement patterns are according to the map of
each block.

6.2.1 Progressive Downloading

Experimental Result for progressive downloading under
map-based movement topology is shown in Fig. 8d respec-
tively. From these figures, we can see that as a game pro-
gresses, more and more game data are acquired from the ad
hoc mobile cloud and total traffic via the cellular network is
reduced.

6.2.2 Task Allocation without Closeness

In this section, the effect of different on-device task duration
on the system performance is evaluated. We consider

Fig. 10. System performance for various skewness (in the legend: greedy-l stands for greedy local; random stands for random mapping; greedy-h
stands for greedy heuristic; optimal stands for optimal.
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task-reassignment, where each task that is allocated to ad-
hoc neighbors yet failed to return computation results
before the task deadline are re-assigned. We then simulate
the task allocation process with both short on-device task
duration and long on-device task duration for different task
density (the probability of users having tasks to offload at
each time slot). The results for system resource usage,
energy costs, bandwidth consumption, interactive latency
per task are compared with 1) the conventional cloud based
architecture, where all computation tasks are offloaded to
the cloud; 2) the mobile code offloading based architecture
(ThinkAir) proposed in [34], where computation tasks are
offloaded to the cloud according to its task offloading pol-
icy: computation tasks are offloaded to the cloud only if
both the task execution time and the energy consumed to
carry out the computation will improve (reduce).

The experimental results for short on-device task dura-
tion are shown in Figs. 11a, 11b, 11c, and 11d, respectively.
From the figures we can see that the system resource usage,
the energy costs, the bandwidth consumption, and the inter-
active latency incurred by our proposed algorithms increase
as the task density increase yet at a decreasing rate. This is
because: 1) at a higher task density, more task in percentage
are offloaded to the cloud thus no task re-assignment is
taken place; 2) at a lower task density, more task in percent-
age are offloaded to the ad hoc mobile cloud, thus will have
higher task re-assignment probability (the probability for
which the communication link between neighbors are bro-
ken before the computation results could be successfully
returned) and therefore higher system resource usage, the
energy costs, the bandwidth consumption, and the interac-
tive latency. Also, we observe that our task allocationmecha-
nism has lower system resource usage, energy costs and
interactively latency than both the conventional cloud based
architecture and the ThinkAir. In our mechanism, we con-
sider two types of bandwidth consumption, both device-

device (for tasks offloaded to the ad hoc mobile cloud) and
device-cloud (for tasks offloaded to the cloud). From the
result, we see that our mechanism has higher overall band-
width consumption than the ThinkAir, yet lower device-
cloud bandwidth consumption. This is because that in our
mechanism, tasks are distributed within the ad hoc mobile
cloud, which eaten up the device-device network band-
width. However, as the available device-device bandwidth
are considered to be large and much cheaper than as in the
cellular networks, this result is acceptable.

Then, the experimental results for long on-device task
duration are shown in Figs. 12a, 12b, 12c, and 12d. From the
figures, we can see that our mechanism has 1) lower interac-
tive latency than both the conventional cloud based archi-
tecture and the ThinkAir; 2) higher system resource usage
and energy costs. This is because in this scenario, the Thin-
kAir offload more tasks to the cloud, whereas our mecha-
nism prioritizes the ad hoc mobile cloud in the offloading
process, therefore higher energy costs are incurred by our
mechanism with longer on-device task duration. Also,
although the overall bandwidth consumption is higher than
the ThinkAir, our mechanism has lower device-cloud band-
width consumption due to ad hoc mobile cloud collabora-
tion. As the design goal of our architecture is to utilize the
resources of the ad hoc mobile cloud and the cloudlet(s) to
achieve reduced data transmission between end users and
the distant cloud, it is safe for as to say that the design goal
is met. Also, from the results shown above, we observe that
our proposed scheme performs better in the scenario with
short on-device task duration.

6.2.3 Task Allocation with Closeness

To show the effect of closeness in the task offloading pro-
cess, the success rate for the task allocation process with
and without the consideration of the closeness are evalu-
ated. Here we define the closeness between users as the total

Fig. 11. Task allocation with map-based movement: short on-device task duration.

Fig. 12. Task allocation with map-based movement: long on-device task duration.
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contact time/simulation time and the closeness distribution
for map-based movement are shown in Fig. 13a. In the sim-
ulation, we compare the solutions to the problem formula-
tion introduced in (15) and (16) for task allocation with and
without the closeness respectively. The probability of failure
Rij in (16) is defined as a number inversely proportional to
the closeness between user mi and mj. Experimental results

are shown in Figs. 13a and 13b, respectively. In the evalua-
tion, we regard each task that is assigned to ad-hoc neigh-
bors, yet failed to return the computation results within the
task duration as failed. From the results, we observe that by
considering closeness in the task offloading process, the suc-
cess rate is improved, which indicates that by considering
the closeness the system performance will be improved.

6.3 Overhead and Benefit

Although the proposing tiered architecture are shown to be
beneficial in terms of reducing device-cloud cellular data
transmission, enabling cloudlet and ad hoc mobile cloud
offloading brings additional system usage, i.e., additional
device-to-device bandwidth and energy consumed for data
transmission. Then, in order to give a comprehensive analy-
sis of the system performance, it is important to show
that the benefit realized by users outweigh this additional
overhead. Fig. 14 shows the overall system resource usage
per unit task measured in the cooperative task allocation
process. The experimental results show that the usage/task
increases as the task density increases yet at a decreasing

rate. To further understand the underlying reason for such
phenomenon, we measure and show the system resource
usage for the device-device and device-cloud transmission
separately, as well as the task in percentage that is offloaded
to the cloud and the ad hoc mobile cloud. The results
are also shown in Figs. 14 and 15, respectively. From Fig. 14,
we see that the usage/task for device-cloud transmission
increases at a decreasing rate, while the usage/task for
device-device transmission decreases at a decreasing rate.
Thismeans that as task density increases, the tasks in percent-
age being offloaded to the cloud also increases and the tasks
in percentage being offloaded to the ad hoc mobile cloud
decreases, which indicates that the resources of ad hocmobile
cloud are being efficiently utilized (This conclusion is also
demonstrated in Fig. 14. However, the increasing/decreasing
system resource usage for device-cloud/device-device trans-
mission converges, which indicates that the resources in ad
hoc mobile cloud are becoming fully utilized as the task den-
sity increases. The benefit of the system is the notably reduced
system resource usage incurred by the device-cloud transmis-
sion as compared to the conventional cloud gaming,while the
system overhead being the additional usage incurred by the
device-device transmission. Considering the system has a
decreasing device-device usage as the task density increases,
and the usage incurred by the device-device transmission is
relatively small, along with the fact that the device-to-device
transmission is often considered being fast and cheap [19], it
is reasonable for us to conclude that this overhead is the
acceptable performance tradeoff.

Fig. 13. Evaluation for mobile social closeness with map-based move-
ment and system overhead.

Fig. 14. Success rate with/without closeness for map based movement.

Fig. 15. Success rate with/without closeness for map based movement.
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7 CONCLUSION

In this paper, we have proposed an ad hoc mobile cloud-
cloudlet-cloud based gaming architecture, which considers
both progressive and collaborative downloading of game
resources as well as cooperative task processing. Simula-
tions of our framework have been done using several pro-
posed algorithms under different network environment
settings. The results show that our proposed algorithms
have lower system resource usage with short on-device task
duration as compared to those without our framework.
Also, different algorithms could be applied to obtain a bet-
ter system performance, e.g., in a more balanced, connected
network environment, the greedy local algorithm tends to
minimize the system resource usage. In a word, our pro-
posed scheme minimizes the data transmissions between
the cloud and the users, and optimizes the local coopera-
tions between the users in a best effort manner. The scalabil-
ity of this system is acceptable, since both progressive
downloading and cooperative task processing are decentral-
ized decision-making processes. Efficient and decentralized
service discovery, device discovery, and membership man-
agement mechanisms should be carefully designed to
ensure the scalability of the system, which will be consid-
ered as future work.
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