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Abstract—As the game industry matures, processing complex
game logics in a timely manner is no longer an insurmount-
able problem. Many researchers are now trying to find ways
to optimize the gaming system regarding the network usage,
local resource utilization, and energy consumption. However,
current cloud-based mobile gaming solutions are limited by
their relatively high requirements on Internet resources. Also,
they typically do not consider the geographical locations of
nearby mobile users and thus ignore the potential cooperation
among users. Therefore, inspired by existing cloud computing
techniques and the concept of ad-hoc cloudlet computing, in this
paper, we propose an ad-hoc cloudlet based gaming architecture.
Two modules of the architecture are introduced: 1) progressive
game resources download, by which mobile users can adaptively
download gaming resources from cloud servers or nearby mobile
users according to the gaming progress, and 2) ad-hoc cloudlet-
based cooperative task allocation, by which gaming components
can be executed dynamically over local devices, nearby devices, or
cloud servers. We also formulate the mechanism for both modules
as an optimization problem and propose several algorithms for
both modules, which are later used for evaluation purposes. We
carry out simulations based on real mobility traces, and the
results show that our system’s performance depends highly on the
ad-hoc network environment (the more concurrent and balanced
connections within the ad-hoc network, the lower the energy
costs). Also, regardless of the network environment, our system
has lower energy costs while utilizing resources of nearby devices,
compared to the cloud-based gaming architecture.

Index Terms—Cloud-let, Cooperative, Ad-hoc, Mobile Gaming.
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I. INTRODUCTION

1 With Internet connectivity, mobile games can be played

virtually anywhere anytime, which provides a fresh user

experience to game players. However, hardware constraints

imposed by mobile devices such as limited processing capa-

bilities, storage capacities, and relatively short battery lives

compromise the Quality of Experience (QoE) of the mo-

bile gamers. To overcome these limitations, researchers have

started to consider building game applications upon the con-

cept of Mobile Cloud Computing (MCC) [1]. This new

gaming architecture, called Mobile Cloud Gaming (MCG)

inherits both the advantages and the challenges of MCC, e.g.,

unreliable network connectivity, limited network bandwidth,

and unpredictable network latency [2]. More specifically,

1This work is supported by a University of British Columbia Four Year
Doctoral Fellowship and by funding from the Natural Sciences and Engineer-
ing Research Council under Grant STPGP 447524.

as indicated in [3], video-based cloud gaming uses a thin-

client approach which offloads computation-intensive tasks to

the cloud and thus addresses the aforementioned hardware

constraints of mobile devices. However, computation-intensive

tasks, combined with the need to render, encode and transmit

the game scene in near real-time to the currently connected

players make both server and Internet availability the most

crucial aspects in the design of this type of system.

Aside from video-based cloud gaming architecture, designs

based on workload offloading are proposed. For instance,

companies such as Kalydo2, Approxy3 and SpawnApps4 con-

sider a new business model, called file-based cloud gaming.

In this newly developed model, segmented game resources,

including game data (e.g., textures, geometry, objects, and non-

player character (NPC) metadata) and game logic (e.g., game

rules, scripts, rendering, and network access), are progressively

downloaded onto mobile devices. Games are then executed

on-device with only a fraction of the total game resources

downloaded (e.g., less than 5% of the game). Without the

necessity to transmit video frames in real-time, less network

bandwidth is consumed compared with the conventional cloud

gaming architecture. However, the QoE is still limited by

mobile devices’ resource constraints. Considering the diversity

of the execution and application environments, a component-

based cloud gaming architecture [4] is proposed. It has been

said that computer games are essentially constructed by a set

of components, which are inter-dependent functions or objects

that facilitate the logics of the games, and these components

can migrate to mobile devices or cloud in response to different

network and execution environments. This architecture parti-

tions game application dynamically so that resources of both

the mobile devices and the cloud are utilized. However, it still

relies heavily on network connectivity and the performance

depends on the network latency.

Both approaches do not consider the potential cooperation

among nearby mobile devices. More specifically, enabling

resources of nearby mobile devices, namely, their processing

as well as storage capacities, to be pooled together to form

an ad-hoc cloudlet, computation tasks could be offloaded to

the ad-hoc cloudlet instead of the cloud. This mechanism,

called ad-hoc cloudlet computing [2] [5] [6], provides an

2www.kalydo.com
3www.approxy.com
4www.spawnapps.com
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advantage of having less network latency and lower energy

costs (i.e., less energy consumed by mobile devices for data

transmissions and device discovery) as compared to cloud

computing since mobile devices could communicate with each

other via device-to-device (D2D) connections [7]. However,

it has been identified in [5] that the task success rate and

execution speed of ad-hoc cloudlet computing depend on the

cloudlet access probability. Thus, the question is could we use
ad-hoc cloudlet computing in the cloud gaming architecture?
Ideally, the answer is yes: as measured in [11], game players

tend to stay in the same place, e.g., public facilities, public

transportation, and residential areas, for an extended period

of time while playing games, the probability of a game player

needing to access a new ad-hoc cloudlet during a game session

is low. Thus, we assume that in the local level there is a

stable D2D connectivity that allows the local cloudlet to be

established.

Thus, in this paper, we target the above-mentioned con-

straints by considering an ad-hoc cloudlet based gaming archi-

tecture, interpolating both the file-based and component-based

cloud gaming architectures. Our contribution is a system that

allows users to share downloaded game data with each other

and enables computation tasks to be dynamically distributed

amongst users while taking different game progression into

account. Moreover, our system enables users to offload tasks

to the cloud when the ad-hoc cloudlet lacks the processing

power for all the computation tasks. The main benefits of

our approach are the reduced data transmissions between the

users and the cloud due to ad-hoc cloudlet collaborations,

the minimized redundant downloading, the minimized overall

energy costs, and the maximized ad-hoc cloudlet resource

utilization.

The rest of the paper is organized as follows. We first

study some related works in Section II. Sections III and IV,

respectively, introduce details of our proposed architecture,

formulate both progressive and task allocation process as

optimization problems, and propose several approximation

algorithms such as the greedy algorithm, which have low

complexity and near-optimal performance. Section V shows

the simulation results and Section VI concludes the paper.

II. RELATED WORK

Applications developed using the component-based pro-

gramming model are composed of independent modules (com-

ponents) which can be dealt with separately by multiple cloud

services. In [8], an adaptation approach is proposed for multi-

cloud applications, which allows dynamic changing of services

for each component during run time without user intervention.

Similarly, a cognitive platform has been designed [9] for

modularized gaming applications, which enables computation

task migration and dynamic task allocation between the cloud

and mobile devices. Both works show that the component-

based programming model is feasible and promising for the

cloud computing paradigm. However, they suffer from the

limitation that they have yet to take into consideration both

the costs of data and task migration, and the unpredictable

response latency when deciding to migrate from one service

to another.

With the increasing processing capacity of modern mobile

devices, cloudlet computing is an emerging topic that is at-

tracting growing attention in the research community. Previous

research works [10] have explored the possibility of deploying

cloudlet-assisted multiplayer cloud gaming, especially to uti-

lize cloudlet cooperative sharing mechanisms to optimize the

system. While the system benefits from the reduced overall

bandwidth consumption, it introduces additional latency due

to the real-time encoding, sharing, and decoding mechanism. A

gaming platform is proposed in [11], which enables interactive

multi-player gaming with distributed game operations amongst

users. In this platform, data packets are overheard by all

participants, which result in unnecessary expenditure of battery

energy of the recipients. The architecture proposed in [12]

allows mobile game users to offload computation-intensive

tasks to a system component called proxy client, which resides

in the cloud and is responsible for decoupling the creation of

rendering instructions from their execution and transmitting

only the rendering instruction to mobile devices. Although the

network bandwidth usage is reduced, the system performance

depends highly on the cellular network connectivity, which

may be intermittent and costly. Actually, such limitations

can be reduced if the applications are deployed over an ad-

hoc network, since direct connections using Wi-Fi within an

ad-hoc network has much better network connectivity than

external connections [13].

Various applications have been proposed for taking ad-

vantage of the mobile ad-hoc networks (MANET), e.g., ad-

hoc streaming [14], which allows mobile users to download

video collaboratively. Other applications such as cooperative

downloading [15] and ad-hoc caching [16] all use similar

ideas, i.e., to distribute computational tasks to members of

a MANET. Also, cloudlet computing over ad-hoc network

has become popular in the computing industry. In the de-

centralized Mobile Cloud Computing Server architecture [17]

for ad-hoc networks, each mobile device acts as a server to

support cloud computing services. In [18], a real-time face

recognition application using mobile-cloudlet-cloud architec-

ture is introduced; it is shown that the network response time

can be minimized with the assistance of an ad-hoc cloudlet.

III. FRAMEWORK DETAILS

A. Architecture

In the proposed architecture, we consider the situation where

a group of users would like to play the same game together

within the same ad-hoc network. Together they form an ad-hoc

cloudlet and all of the them simultaneously connect to both

the cloud and the ad-hoc cloudlet. This application scenario is

illustrated in Fig. 1, where the ad-hoc cloudlet is formed by

seven users, each of whom performs two actions simultane-

ously: progressive downloading of segmented game resources

and collaborative task allocation. In progressive downloading,

users are assumed to hold some initial states of the game, and

all game data as well as game components are progressively
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Fig. 1. Cooperative Ad-hoc Gaming

downloaded onto their mobile devices. As only a small number

of game resources are required for users to start playing the

game, the rest of the resources can be acquired from either

the cloud or the neighbourhood ad-hoc cloudlet depending on

the progress of the game. In the example, only users named

David, Frank and Alice are getting game resources from the

cloud and other users are all getting resources from their

neighbours. Also, our system prioritizes the ad-hoc cloudlet

when offloading the computation tasks, and only offloads to

the cloud when the ad-hoc cloudlet does not have the required

capability. Upon receiving the task allocation requests, users

could decide to either accept or reject the requests based

on their current processing status. In the example, four task

allocation cases are included: 1) Alice does not have a local

task so she can process the task for Candy; 2) Grace has a

task that cannot be handled by the ad-hoc cloudlet and hence

offloads her task to the cloud; 3) Frank is processing both

his local task and the task offloaded by Bob; 4) Elaine’s

request to offload her task to David is rejected since David

is busy processing his own task; thus Elaine offloads her task

to the cloud. Also, game states and user generated data are

synchronized between users and back to the cloud.

We focus on progressive downloading and task allocation

processes since they are the determining factors for our system

performance. Given that these two processes depend on the

speed of users’ game progresses, a global knowledge of users’

game statuses should be maintained by each user and updated

in real-time. To achieve this, each user is required to periodi-

cally send a beacon so that all users are aware of their one hop

neighbours and also their game statuses. In these models, we

consider two transmission schemes: 1) transmissions between

users and the cloud over a cellular (3G/4G) network; 2)

transmissions within the ad-hoc cloudlet via D2D connectivity.

Each scheme has its own characteristics in terms of energy

costs. For instance, the ramp and tail energy are results of

the Radio Resource Control (RRC) protocol in 3G networks,

which are not present with Wi-Fi. Similarly, Wi-Fi has a

high association cost and device discovery cost. In this paper,

we focus on their common component, which is the energy

cost for data transmissions. This energy cost is proportional

to the size of transmitted packets and the transmission time.

It is measured and modeled in [19] which shows that data

transmissions via D2D links consume less energy. Moreover,

to determine the energy costs for offloading to the ad-hoc

cloudlet, each time the beacon message is received, energy

costs between its transmitter and receiver are estimated using

the received signal strength (for a poor signal strength, higher

energy is consumed) [20]. Therefore, aiming at reducing

energy costs, it is critical for the system to determine to whom

to map downloading requests and computation tasks to. Also,

for simplicity, we allow only unicast transmissions within the

ad-hoc cloudlet since offloading to the cloud uses one-to-one

transmissions.

We will formulate the downloading and task-resource map-

ping mechanism as an optimization problem in the next

section. Hereby we define an N by N neighbourhood matrix,
X , where each element represents relationship between two

users, to model users in an ad-hoc cloudlet. Xi j = 1 indicates

that there exists a direct communication between user ui and

u j and they will be able to collaborate. Also, to enable tasks

to be handled locally, Xii should always be 1.

B. Progressive Downloading of Gaming Resource

In this module, we denote game resources downloaded

directly from the cloud as d3G/4G
i (t), and game resources

acquired from the ad-hoc cloudlet as dD2D
i (t). At time t, each

user ui will have its cellular link speed si(t) in MB/s, current

downloaded resources di(t), gaming process speed gi(t) and

current game progress Gi(t). Then, the overall downloading

can be formulated as:

N

∑
i=1

t=Ti

∑
t=0

d3G/4G
i (t)+dD2D

i (t) (1)

Our main purpose is to minimize the downloaded contents

via cellular link, which can be formulated as:

Minimize:
N

∑
i=1

t=Ti

∑
t=0

d3G/4G
i (t) (2)

C. Cooperative Task Allocation for Ad-hoc Cloudlet Gaming

We define two types of energy costs for computation

tasks, each type represents the energy costs for one of the

aforementioned transmission schemes. We denote costi j(t)
as the costs for transmitting the task via Wi-Fi (offload to

the cloudlet), and costic(t) as the costs for transmitting the

task via 3G/4G (offload to the cloud). Generally, we have

costi j(t)≤ costic(t); thus, to reduce the overall costs, we want

to map as many tasks to the ad-hoc cloudlet as possible. The

task allocation mechanism could be considered as a multiple

knapsack problem, where the mobile device is considered as

a knapsack with a capacity determined by its CPU processing

power and storage capacity. The goal of this knapsack problem

is to select N disjoint subsets of tasks based on the network

topology, as it can only be mapped to its initiator’s direct
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neighbour, which minimizes the total costs for the selected

tasks. Each subset of tasks can then be assigned to different

mobile devices (where the assigned tasks were initiated by

the device’s neighbours) whose CPU and storage capacity is

no less than the total required CPU and storage capacity of

tasks in the subset. The availability of mobile devices should

be captured and maintained by real-time monitoring. At time

t, user ui has 1) a task ti(t), its storage consumption, si(t) and

CPU consumption, ci(t); 2) a computation potential, which

is associated with availability, Ai(t), available storage, Si(t)
and available CPU load, Ci(t). Since each computation task is

mapped to either the ad-hoc cloudlet or the cloud, the costs for

task allocation has two parts, which is the costs for offloading

to the cloudlet and the costs for offloading to the cloud.

We define the total costs for offloading to cloudlet COSTl
as:

COSTl =
N

∑
i=1

N

∑
j=1

Fi j(t)∗Xi j ∗Costi j ∗A j (3)

We define the total costs for offloading to cloud COSTc as:

COSTc =
N

∑
i=1

(1−
N

∑
j=1

Fi j(t))∗Costic (4)

where

Fi j(t) =

{
1, If user i’s task is mapped to user j

0, Otherwise
(5)

Then, we define the costs COST for task allocation as:

COST =COSTl +COSTc (6)

To minimize the overall costs, in general, we have:

Minimize: COST

Subject to:
N

∑
i=1

Fi j(t)∗Xi j ∗A j(t)∗ s j(t)≤ S j(t),∀ j,

N

∑
i=1

Fi j(t)∗Xi j ∗A j(t)∗ c j(t)≤Cj(t),∀ j,

N

∑
j=1

Fi j(t)∗Xi j ∗A j(t)≤ 1,∀i,

Fi j(t) ∈ {0,1}

(7)

Four constraints are defined in the formulation. The first

and the second are used to indicate that the overall CPU and

storage consumption for the assigned tasks to each user is no

more than the CPU and storage available for such user. The

third constraint is to assign no more than one task to each user,

and the last indicates that for Fi j(t) we only accept solutions

as 0 or 1 as defined earlier.

IV. ALGORITHMS

In this section, we propose several approximation algo-

rithms for finding optimal solutions. Since computer games are

delay-sensitive applications, finding the exact optimal solution

may not be feasible as it may take too long. Also, the

allocation process for each task and the downloading request

for each user can be considered as a sub-problem to a global

optimization problem. Thus, for each sub-problem, we can

iterate through the feasible solutions and apply a heuristic to

determine a near-optimal solution, where the optimal solution

is defined by having the minimal processing time. In the

following section, heuristics algorithms for both modules are

presented, which could be applied under different network

environment to gain better system performance.

A. Progressive Download of Gaming Resource

For this module, we consider two heuristic algorithms. The

first one is called greedy local, which allows users to acquire

game resources from a neighbour with the minimal transmis-

sion speed. This algorithm is summarized in Algorithm 1,

where a user ui needs a game resource that is owned by a user

u j, it will then estimate the time for the owner to transmit the

content. This time will be denoted as Ti j(t). Finally, it will

retrieve its gaming progress speed, gi(t), and decide whether

to receive the content through the server or its neighbour by

comparing Ti j(t) and gi(t) : if Ti j(t) < gi(t), the user should

be receiving the content through its neighbour; otherwise, the

content is downloaded from the cloud.

Algorithm 1 Algorithm: Greedy Local

1: U : Set of neighbours who has the required game piece

2: g := Local game progress speed

3: D := /0

4: while U �= /0 do
5: choose u ∈U : Tu being minimal and less than g;

6: if u �= Null then
7: G ← downloadFromNeighbour(u)
8: else
9: G ← DownloadFromCloud(G)

10: end if
11: D := D∪{G} ;

12: end while

Algorithm 2 Algorithm: Weighted K-Mean

1: D := /0

2: W := Set of weighted users

3: K := Set of user being center to each cluster

4: K ← KMeanClustering(W );
5: for i ← 0 to N do
6: if Wi ∈ K then
7: G ← downloadFromCloud(G);
8: else
9: G ← downloadFromNeighbour();

10: end if
11: D := D∪{G} ;

12: end for
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Then, a different strategy is used for which users are

organized into clusters and can only acquire game resources

from users within the same cluster. Each user ui is associated

with a weight, Gi, which is the current game progress for ui.

For each time interval, the K-Means algorithm for clustering

is applied to find the best K users who are responsible for

downloading via cellular links. Other users will primarily

receive the required content from these K users. For the

situation where user ui is no longer satisfied acquiring resource

from its peers, it can decide to download contents via a cellular

link on its own. This algorithm is shown in Algorithm 2.

Both algorithms have computational complexity of O(1),

assuming the K-Means clustering algorithm is running on the

cloud and therefore we ignore its associated complexity. These

algorithms have different advantages and disadvantages. The

first algorithm allows each user to select neighbours freely

and distributes the downloading requests evenly within the

ad-hoc cloudlet, whereas the second algorithm only allows

users to acquire data from system determined users, which is

not as fair as the first algorithm. However, the first algorithm

has a higher requirement in terms of user reliability since all

users are responsible for sharing their acquired data while the

second algorithm allows users to only acquire contents from

determined users. Also, the second algorithm works better

when some of the users have much faster game progress speed

as compared to the rest of the users since the users who are

responsible for downloading via cellular links are determined

according to their game speed.

B. Cooperative Task Allocation for Ad-hoc Gaming

The basic structure of the algorithm for this module is

presented in Algorithm 3. Assuming there is a mapping M,

which represents the task-resource mapping within the ad-

hoc cloudlet, and we have to specify a set of tasks initiated

by users within the ad-hoc cloudlet and decide to which

neighbour the task is allocated so that the energy costs are

minimized. We use several different strategies for choosing the

neighbour to offload the task, where they all have to meet one

constraint, which is for the chosen neighbour to have sufficient

computation potential for the task. For example, if user ui has

a task Ti and wants to map to its neighbour u j, then user u j
must have S j ≥ sTi and Cj ≥ cTi . If no valid neighbour is in

the cloudlet, the task is then offloaded to the cloud.

• Random Mapping: Task requests are mapped to ran-

domly chosen neighbours who have enough processing

and storage capabilities.

• Greedy Local: Each potential task-resource mapping has

its corresponding communication task. In the previous

section we used Costi j to refer to costs for offloading task

from user ui to u j. In this strategy, each task is assigned

to the available neighbour with minimum Costi,neighbour,

thus, the globally optimal solution can be achieved by

making locally optimal choices.

• Greedy Heuristic: In this strategy, each task is assigned

to user u j if it has the minimum additional Costi, j based

on its current mapping.

Algorithm 3 Algorithm Frame for Task Allocation

1: T := Set of Tasks

2: M := /0

3: for i ← 0 to N do
4: choose{u ∈ neighbourO f (initiator(Ti))};

5: if u �= Null then
6: M := M∪{Ti,u} ;

7: Cu :=Cu − cTi ;

8: Su := Su − sTi ;

9: else
10: O f f loadToCloud(t)
11: end if
12: end for

TABLE I
COMPLEXITY

Algorithm Computational Complexity Storage Complexity

Random Mapping O(1) O(1)

Greedy Local O(n) O(n)

Greedy Heuristic O(n) O(n2)

Greedy Cluster N/A N/A

• Greedy Cluster: Users are organized in groups, and tasks

are mapped to users within the group using any strategy

presented above.

The computational and storage complexity for the above

algorithms are listed in Table I. In our analysis, we consider

only the complexity for the neighbour selection process since

steps for maintenance are common for all algorithms.

V. EVALUATIONS

System performance is evaluated using a Java simulator,

which assigns random attributes to users and computation

tasks. Associated with each user, several parameters are de-

fined such as its game progress speed, storage availability,

CPU availability and cellular link speed, whereas for com-

putation tasks, parameters such as storage consumption, CPU

consumption, its costs for offloading to the cloud as well as the

costs for offloading to the ad-hoc cloudlet are defined. Each of

these parameters is randomly generated within a certain range,

which is specified using base cases and different factors. To

better test our system performance, the users’ CPU availability

has a range smaller than tasks’ CPU consumption, so that

some tasks will have CPU consumption greater than the ad-

hoc cloudlet’s processing capability and hence will have to

be offloaded to the cloud. Details of how each parameter is

generated are listed in Table II.

We then simulated our system using randomly generated

network topologies, which allows us to control its associated

density and skewness, and network topologies generated based

on real-world traces and users’ movement model. Simulation

results are shown in the following sections.

A. Randomly Generated Network Topology

1) Progressive Downloading: Each user downloads a game

resource depending on their game progress speed, which is the
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TABLE II
SETUP PARAMETERS

Target Parameter Minimum Maximum

Base Case
CPU 50 350

Storage 50 350

Users

Game Progress Speed 1 10

Storage Availability Factor 0.9 1

CPU Availability Factor 1 1

Cellular Link Speed 1 5

Tasks

Storage Consumption Factor 0.2 1.05

CPU Consumption Factor 0.7 1.15

Cost to cloud 1 10

Cost to local 4 40

Network Topology

Density 1 10

Skewness 1 10

Task Density 1 10

time slots interval between each download. An example of the

downloading progress for ten users is shown in Fig. 2. In this

example, game data are segmented into ten pieces and the

downloading process is implemented using Algorithm 1. The

experimental results in Fig. 2 show that users with faster game

progression speed finishes downloading before others.

As game resources can be acquired either from neighbours

within the ad-hoc cloudlet or the cloud, we differentiate the

downloaded game pieces via different network links. Fig. 3

shows the total downloaded game data for all users. Game

pieces downloaded directly from the cloud (via cellular links)

are coloured in blue whereas pieces acquired from cloudlet

(via D2D links) are colored in red. From the graph, we can see

that at the beginning of the game session, most of the game

data are downloaded from the cloud; however, as the game

progresses, more and more game data are acquired through

the ad-hoc cloudlet. Thus, total downloading traffic via cellular

link is significantly reduced.
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2) Task Allocation: We simulated and evaluated the per-

formance for a single time slot under different randomly

generated network environments. Several algorithms are used

to implement the task allocation process, including the solution

to the optimization problem formulation, which is produced

using optimization solver called Gurob, and their results are

compared side by side. We included only the CPU and storage

consumed by computation tasks and ignored the resources

used for carrying out each algorithm in the simulations.

• Density: Fig. 4 shows the overall energy costs incurred

by different allocation algorithms under different network

environments. The network topology is generated in re-

sponse to different degrees of network density, where a

topology with higher density indicates that there is more

D2D connectivity between users than a topology with

lower density. These experimental results show that the

energy costs decrease as the network density increases

for all the algorithms. This is because a higher degree

in density means users have more connected neighbours,

which implies that they have more external helpers so

that more computation tasks can be offloaded to the ad-

hoc cloudlet, and the costs to offload tasks to the ad-hoc

cloudlet are often smaller than the alternative. Fig. 8 and

6 shows the idle storage and CPU capacity in percentage

with various degree in density. From both figures, we see

that idle resources decrease as density increases, which

shows that our system gives better resource utilization.

Also, we observe that the greedy heuristic algorithm has

lower energy costs in the beginning but converges with

the greedy local algorithm as density level increases,

which indicates that in a more connected network, the

greedy local algorithm has lower energy costs.

• Skewness: In fact, to try to simulate the system and ana-

lyze the system performance in a real-world environment,

we need to obtain a more realistic network topology,

which follows the power law. Thus, we used an algorithm

proposed in [21] to generate such a network topology.

Then, we obtained the energy costs under various degrees

of skewness, where a high degree in skewness means

that the network is more unbalanced (i.e., only a small

number of users are connected to most other users while

others are connected to only a few) than low degree.

From the experimental results shown in Fig. 5, we can

see that with a higher degree in skewness, the overall

energy costs increases. This is because with unbalanced

network topology, most of the users have few connected

neighbours while only a small number of users have most

of the connections. Sometimes users with few neighbours

will have to offload their computation tasks to the cloud;

thus the energy costs are high. This indicates that with

a more balanced network topology, the system costs

are minimized. Also, our system has better resource

utilization when the skewness is minimal, as showed

in Fig. 9 and 7. We observe that the greedy heuristic

algorithm has higher energy costs in the beginning but

lower costs as skewness level increases as compared to

the greedy local algorithm, which indicates that in a more

balanced network, the greedy local algorithm has lower

energy costs.

• Density and Skewness: A more extensive experiment is

done for the allocation process, taking into account both

skewness and density when generating the network topol-

ogy. The experimental results are shown in Fig. 10, which

evidently prove that an unbalanced and unconnected (i.e.,

most users do not have connected neighbour) network

topology causes higher energy costs.
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B. Real-world Trace-based Network Topology

The system is simulated using an open-source network

topology generator called ONE5, which is based on real-world

traces and users’ movement model. In this section, two types

of movement patterns are used, namely, random walks, and

map based movements. In random walks, users’ locations

are randomly generated and users move in random patterns

regardless of their geographic locations, whereas in map-based

movements, users are located inside several blocks initially

and their movement patterns are according to the map of

each block. Examples of network topologies generated based

on different movement patterns are shown in Fig. 11 and 12

respectively.

Energy costs incurred by our task allocation module are

captured for different task density, which is the probability of

users having tasks to offload at each time slot. Experimental

5www.netlab.tkk.fi/tutkimus/dtn/theone
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Fig. 11. Network Topology with
Random Walk Movement Pattern

Fig. 12. Network Topology with
Map-Based Movement Pattern

results for random walk, and map based movement topology

are shown in Fig. 14, 13, 15 and 16 for both progressive

downloading and task allocation. From these figures, we can

see that as a game progresses, more and more game data

are acquired from the ad-hoc cloudlet and total traffic via

the cellular network is reduced. Also, energy costs incurred

by our proposed algorithms increase with task density but

much slower than energy costs incurred without our algorithm.

Among all the algorithms, the greedy local algorithm has lower

energy costs when the network has a more regular mobility

pattern.
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Fig. 13. Progressive Downloading
with Random Walk
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with Map-Based Movement

All experimental results presented above show that the sys-

tem performance depends highly on the network environment,

and more benefits are realized by the proposed scheme in

a balanced and connected network. However, regardless of

the network environment, the algorithms we have proposed
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are shown to be near-optimal and hence are cost-efficient.

More specifically, the greedy local algorithm performs better

when the network topology is more connected, balanced, and

has a more regular mobility pattern. In contrast, for less

dense and unbalanced network, the greedy heuristic algorithm

would be more cost-efficient. Also, random mapping could

be considered as a good alternative when computation and

storage capacity of mobile devices are limited, since it has

lower computational and storage complexity as indicated in

Table I.

VI. CONCLUSION

In this paper, we have proposed an ad-hoc cloudlet based

gaming architecture, which considers both progressive and

collaborative downloading of game resources as well as co-

operative task processing. Simulations of our framework have

been done using several proposed algorithms under different

network environment settings. The results show that our pro-

posed algorithms have lower energy costs compared to those

without our framework. Also, different algorithms could be

applied to obtain a better system performance; e.g., in a more

balanced, connected network environment, the greedy local

algorithm tends to minimize the energy costs.

Regarding future work, we are planning to investigate the

effects of task duration and users’ mobility patterns, as well as

the probability of packet loss. Moreover, the main overhead

for both modules are the beacon messages sent, as well as

the memory used to acquire and store the neighbours’ gaming

statuses. As they all happen within the local ad-hoc network,

their impact on performance is minimal. Thus we will ignore

this impact at the time and measure the overhead in the

future. The scalability of this system is acceptable, since both

progressive downloading and cooperative task processing are

decentralized decision-making processes. However, efficient

and decentralized service discovery, device discovery, and

membership management mechanisms should be carefully

designed to ensure the scalability of the system, which will

also be considered as future work.
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