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Abstract
With the development of network infrastructure, a large volume of data will be exchanged with increased bandwidth. Many

applications are connecting people to the rest of the world through the public network. Thus, privacy and security have

become a concern. Under this circumstance, it becomes a trend that the enterprises tend to host their data and services on

private clouds dedicated to their own use, rather than the public cloud services. However, in contrary to the well-

investigated total cost of ownership (TCO) for public clouds, the analytic research on the cost of purchase and operation for

private clouds is still a blank. In this work, we first review the state-of-the-art TCO literature to summarize the models,

tools, and cost optimization techniques for public clouds. Based on our survey, we envision the TCO modeling and

optimization for private clouds by comparing the differences of features between public and private clouds. Finally, we

propose a heuristic algorithm, conflict-aware first-fit to optimize the total cost of ownership of private cloud by minimizing

the number of racks when deploying servers.
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1 Introduction

Nowadays, cloud computing has been widely adopted by

startups and well-established enterprises, thanks to its

prominent elastic and on-demand features. The flexibility

of on-demand usage reduces development, service

deployment, and maintenance costs. Huge data

computation, backup, and recovery tasks have become

easier with the cloud. The cloud computing market is

expanding. Many enterprises will choose to invest in cloud

services [1] to enjoy cloud computing benefits, but risks

often accompany the investment. For a company that

provides cloud services or uses cloud services, maintaining

development and revenue is also important. On the one

hand, operating an enterprise with cloud-based IT infras-

tructure can improve the enterprise’s stability and bring

intuitive benefits. Several cloud computing business mod-

els, such as the VE model [2] and cloud business model

framework (CBMF) [3] have been reported in the financial

and business domain. More discussions and studies about

business models can be found at [4–10]. On the other hand,

analyzing Return On Investment (ROI) can also increase

investment value. ROI analysis methods in cloud com-

puting have been discussed in [11–13]. Cost analysis and

optimization modelling can effectively help decision-

making and increase profit under the premise of guaran-

teeing service quality [14].

From the users’ perspective, the cost efficiency is always

a key metric when considering cloudization. On the other

hand, cloud providers also need to evaluate their cloud

business profits. Hence, the total cost of ownership (TCO),
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a standard approach in analyzing the cost of purchase and

operation of an asset, is a critical topic for both parties. By

definition, the TCO involves all direct and indirect costs,

such as the cost of cloud service providers purchasing,

deploying, operating, maintaining assets, and the cost of

cloud users renting cloud resources. Due to the importance

of TCO, the analysis and optimization methods for public

cloud and hybrid cloud have been well investigated.

However, few works have been devoted to the cost analysis

associated with private clouds. In addition, many cost

optimization problems wildly exist in the real industry. In

this work, we compare and contrast the similarities and

differences between public and private clouds from a TCO

perspective and demonstrate a server rack deployment

problem. We further propose a heuristic algorithm to

minimize the number of racks used.

The main contribution of our work is highlighted in the

following:

1. We investigate the TCO analysis and optimization

methods. By comparing and contrasting the similarities

and differences between public and private clouds, we

demonstrate a TCO evaluation method for the private

cloud.

2. We tackle the novel and practical problem of rank

minimization in private data center. To the best of our

knowledge, it is the first work to minimize the total

cost by minimizing the number of racks used in private

cloud.

3. We present a novel heuristic scheme, conflict-aware

first-fit (CAFF), to find a near optimal solution for the

rack minimization problem. Extensive simulation

experiments reveal that our method can find a feasible

solution in a polynomial execution time.

The remainder of the paper is organized as follows. We

present an overall review of existing works on TCO in

Sect. 2. Afterwards, we compare the public and private

cloud from TCO optimization perspective in Sect. 3. In

Sects.4 and 5, we show a cost evaluation model and

illustrate the optimization we want to solve. A heuristic

method is proposed in Sect. 6. Finally, 8 concludes the

work and envision the TCO research for private clouds.

2 Literature review

To draw a light on how to evaluate and optimize the TCO

of private cloud for readers, we first survey the literature on

public cloud TCO analysis methods and the optimization

solutions that minimize the TCO of a cloud service.

TCO was first being studied in the business domain by

Ellram in 1993 [15]. She claimed that TCO modeling is

constructive for business parchment decision making,

ongoing supplier management, and understanding of indi-

rect costs. However, she also pointed out that the quan-

tification and measurement of TCO is complex [16]. In

1999, Milligan suggested that accurate total cost mea-

surement is elusive due to the lack of analysis methods

[17]. Thus, one of the leading research directions in TCO is

to find an accurate modeling and measurement method.

Later, Degraeve and Roodhooft illustrated the application

of TCO in the supply chain domain. They split purchasing

activities into three levels corresponding to three different

expenses. Then, they built a mathematical model to opti-

mally select suppliers such that the total cost of ownership

is minimized [18]. As the IT industry rising in 2004, few

scholars began to study TCO in the information technology

domain. They have worked on topics such as revenue

analysis in IT by taking advantage of TCO [11], how to

utilize TCO to decide whether to adopt open-source soft-

ware in IT companies [19, 20], and optimization models to

decrease the cost of IT infrastructure [21]. After cloud

computing entered the market, some researchers analyzed

the business value of cloud computing and mentioned that

cloud providers should pay attention to the cost [22], while

few studies took the modeling of TCO in cloud computing

into consideration. Although Patel and Shah presented a

cost model to calculate the cost of building a data center,

they did not take indirect costs such as maintenance cost,

operation cost, and labor cost into consideration [23]. TCO

in cloud computing was finally studied by Li et al. in 2009.

A cloud cost amortization model is built to make it possible

to calculate the direct and indirect costs of cloud comput-

ing infrastructures. Their model can be divided into eight

parts: server cost, software cost, network cost, support and

maintenance cost, power cost, cooling cost, facilities cost,

and real-estate cost. They also implemented an interactive

tool for cloud providers to calculate cloud TCO [24].

Scholars begin to pay much more attention to models and

tools to analyze TCO in cloud computing and the opti-

mization to reduce TCO.

2.1 TCO from cloud service provider’s
perspective

The cost has been known as one of the most important

factors for cloud providers, especially there is significant

capital consumption, such as cloud data center construc-

tion, service software development and maintenance costs.

So, cost evaluation will be helpful for revenue estimation,

investment risk analysis and decision making.

The primary purpose of cloud total cost of ownership

breakdown research is to provide cloud providers with a

measurement of cost. It focuses on the modeling approa-

ches of server cost, software cost, network cost, support
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and maintenance cost, power cost, cooling cost, facilities

cost, and real-estate cost.

In 2009, Li et al., as the pioneers, first solved the

problem that the lack of a method to measure TCO. They

proposed a cloud cost amortization model to calculate the

total cost, and further use the model to find VM utilization

cost given the number of running VMs [24]. Later,

researchers studied cloud TCO breakdown under different

business models. In 2015, Filiopoulou et al. applied the

system of system (SoS) method to reorganize each part of

the total cost. They regraded each type of cost as a sub-

system of cloud computing and illustrated a cost modeling

framework for each subsystem [25]. In 2016, Simonet et al.

demonstrated a TCO breakdown modeling method for

distributed cloud computing (DCC). Besides, they catego-

rized DCC actors into five levels and presented related cost

models [26]. It provides a detailed reference for cloud

providers who intend to invest distributed could

computing.

Through the above studies, researchers showed an

overview of cloud TCO breakdown. However, they either

overlooked some detailed cost measurements for some

terms in the formulation or overlooked the cost calculation

under some specific business scenarios. In real business,

the cost can be significantly altered by different business

scenarios and other dynamic factors such as application

migration, timely changed resource utilization rate, and

satisfactory network dependability and availability. In

2013, Sun and Li illustrated a labor cost model to calculate

labor efforts in a service migration scenario. They quanti-

fied the skill level of employees and built a probabilistic

model to estimate the number of persons needed per day to

finish migration [27]. Omana et al. proposed an analyzing

method for cloud providers to determine whether to replace

aged assets. By measuring the cost of power, cooling,

physical space, asset attachments, and IT support, they

utilized statistical methods to examine the relationship

between asset cost and resource capacities, such as the

number of CPU cores and memory. They finally mined

some useful results to help decision making and device

management [1]. Thanakornworakij et al. did a cloud TCO

research on the premise of ensuring system availability and

satisfying service-level agreement (SLA), and quality of

service (QoS). They modeled the cost of servers, network,

software, power, cooling, facilities, maintenance, and

availability. Then, they obtained the relationship between

the number of devices needed and revenue under 99%

system availability, which is beneficial for cloud providers

to define the right size of the data center [28]. Sousa et al.

built a detailed maintenance cost model and derived a

Stochastic Model Generator for Cloud Infrastructure

Planning (SMG4CIP) which concerned both dependability

and cost requirements [29, 30].

Furthermore, some studies presented modeling methods

for dynamic factors in cloud TCO such as resource uti-

lization cost. Although [24] tried to use the ratio of running

VMs to model utilization cost at a given time point, they

can only get a rough result because the cost of running

VMs depends on other frequently changed variables like

CPU rate. As a follow-up study of [24], in 2013, Vrček and

Brumec pointed out that many cloud TCO related studies

ignored some hidden variables to build cost models, such

as CPU utilization rate, data transmission rate, system load.

They utilized CPU rate per hour to build a cost model and

analyzed how the CPU rate affects the total cost in cloud

computing [31]. Their study offered some vital insight into

cloud computing TCO. Since time dimension can be added

into the cost model, cloud providers can generate flexible

strategy by analyzing per hour cost. Molka and Byrne had a

similar idea that an accurate prediction model of resource

utilization rate can derive an accurate utilization cost cal-

culation. They demonstrated a prediction model using an

online nonlinear autoregressive method and then formu-

lated a model to calculate the real-time cost using CPU

utilization data [32]. In 2017, Singh et al. also took account

of the resource utilization rate to calculate utilization cost.

They captured the effect of the relinquishment of cost and

revenue [33].

With the development of cloud computing and its con-

venience, the energy and electricity power consumed by

cloud data center per year increased dramatically [34],

which leads to a higher expense to operate a data center.

An investigation indicated that energy cost account for

42% of all expenditure per month in data center until 2011

[35]. Thus, energy cost, as part of the total cost of own-

ership, gradually becomes a focus of cloud providers’

concern. In 2010, Yu and Bhatti thought [24] ignored

approaches to gain specific values in the energy cost for-

mulas. They pointed out there is a lack of an information

model that collects energy usage and resource usage data

for devices for cloud providers to manage assets. They

proposed a Scalable Energy Monitor (SEM) architecture to

measure energy consumption and further to calculate

energy cost [36]. Later in 2012, Uchechukwu et al. studied

a detailed energy cost modeling method. They divided

energy into static and non-static parts where energy con-

sumed by storage, computation, and communication is

modeled. By analyzing cost using their measurement, they

found it is possible to save energy costs [37]. In the same

year, Chen et al. had a similar idea. They built a model

with a static part and a dynamic part, and further developed

an analytic tool to measure and summarize energy con-

sumed by different tasks [38]. Some researchers focus on

establishing more advanced models. In 2018, Jawad et al.

illustrated a smart Power Management Model (PMM) to

schedule power by adapting a Nonlinear Autoregressive
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Network with Exogenous Inputs and Neural Network based

forecasting algorithm (NARX-NN) [39]. Recently, in 2021,

Hu et al. considered a two-stage online algorithm with

Bernstein approximation to minimize the energy cost [40].

2.2 TCO from the cloud users’ perspective

In general, cloud users are small companies or startups who

rent cloud services from cloud providers to operate their

businesses. There are three types of service in cloud

computing: Infrastructure as a Service (IaaS) that provides

computation power and data storage, Platform as a Service

(PaaS) that provides developers platforms and Software as

a Service (SaaS) that allows users access software service

by light-weight clients [6]. Besides, there are different

cloud providers in the market with different pricing models

[41], such as Amazon EC2, Microsoft Azure, Google

Compute Platform. It is not trivial for cloud users to choose

the optimal leasing solution from the intricate market.

Several representative papers are selected to illustrate

methods and tools to analyze TCO from the perspective of

cloud users.

In 2009, Kondo et al. first found monthly cost can be

decreased drastically by deploying tasks on cloud servers

instead of on Volunteer Computing (VC) platform [42].

Later in 2011, Han introduced the concept of cloud TCO

from the perspective of cloud users. He presented a

detailed analysis of TCO by comparing cloud service with

local storage and servers [43]. Inspired by [42, 43], in

2012, Martens et al. first contributed the TCO measurement

for cloud users. They summarized cost variables to be

considered by cloud users when renting cloud services, and

proposed cost models for IaaS, PaaS and SaaS [14].In

2013, Martens and his team continued their research on

TCO models. They demonstrated a deployment planning

strategy for cloud users and presented more detailed cost

models for IaaS, PaaS and SaaS [44].

Additionally, some researchers focused on developing

tools and methods that compare different cloud providers

and estimate resources acquired by users’ services or

applications to further provide an optimal leasing plan .

Liew and Su proposed a tool called CouldGuide which can

predict the cloud computing resources required, and helps

users select the most suitable leasing scheme from multiple

cloud service products with different pricing modes

according to user policy, such as maximizing performance

or minimizing cost [45]. Aniceto et al. gave a more detailed

deployment strategy for small IT companies as cloud users.

They abstracted the resource into the number of instances,

and built a statistical model using historical data to predict

the number of instances demanded at the moment.

According to the pricing model, the authors further cate-

gorized cloud products into reserved instances and on-

demand instances. They finally reduced 32% cost com-

pared with only adapting on-demand deployment by for-

mulating a mixed deployment strategy [46]. In 2018, Ghule

and Gopal further proposed a comparison framework for

cloud users to analyze the difference between IaaS cloud

providers by defining suggestive comparison parameters,

such as reliability, performance, serviceability [47].

2.3 Cost optimization

In the above sections, we reviewed modeling methods and

tools to measure TCO. It may not be enough for providers

or users to make an optimal decision. In order to sustain a

thriving business in an enterprise, it is an effective way to

maximize profit by optimizing and reducing the total cost

of ownership. In cloud computing, many papers studied

cost optimization from a different aspect. We survey and

summarize several representative papers from the aspect of

task scheduling, resource scheduling, and heterogeneous

computing.

As cloud providers, all users’ operation requests will be

executed in the provider backend. Effectively scheduling

tasks requested by users can improve service quality,

reduce system latency, and reduce costs. We select several

typical studies. They adopted different optimization

methods in different application scenarios and finally

achieved certain results. Pandey et al. optimized the gen-

eral task scheduling problem in cloud computing and

solved the Task-Resource Scheduling Problem using the

Particle Swarm Optimization (PSO)-based Heuristic opti-

mization method. They minimized the cost of task execu-

tion to reduce the operating costs of the TCO. The

proposed PSO method can achieve lower cost than BRS

(best resource selection) algorithm, and the PSO can con-

verge faster than the GA (Genetic Algorithm) [48]. Zhang

et al. further considered the scheduling strategy when tasks

can be executed in parallel. They proposed the DeCloud

architecture responsible for scheduling users’ data requests

from a centralized data storage center. They presented

Generic Searching Algorithm (GSA) and Heures Searching

Algorithm (HSA) to schedule parallel and non-parallel

tasks, respectively. Finally, their method is better than

greedy search, and random search [49]. In 2020, Ye et al.

proposed a profiling-based consolidation scheduling

scheme to reduce the resource cost. Their method can

perform on large scale VMs with low latency [50].

As a typical resource scheduling problem in cloud

computing, elastic computing has always been a concern of

cloud providers. Over-provisioning will lead to lower

resource utilization, thus increasing cloud computing

operating costs. Under-provisioning will result in unmet

user requirements and reduction of service quality. Each

research team has different focuses and directions on this
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issue. Wu et al. demonstrated an optimization model to

schedule resources in SaaS. They minimized the cost by

minimizing resources allocated to VMs while meeting SLA

and QoS requirements. Their proposed algorithm can

reduce the cost by 50% compared to the base algorithm,

ProfminVio [51]. Mao et al. viewed VM (Virtual Machine)

as the unit of recourse. They considered several factors,

including the type of VM, the startup latency of the VM,

and the deadline of the task to construct an auto-scaling

schedule strategy. They performed different types of tasks

by scheduling different kinds of VMs and finally got a

lower cost compared with using fixed VM type under the

condition of satisfactory performance, and deadline [52].

Companies may encounter business situations that

require a mix of local computing resources and exogenous

public cloud computing resources, which is common in

hybrid clouds. Some studies have found that it is possible

to optimize the cost of reducing the amount of investment

required by the enterprise by optimally allocating the

workload or task quota for local and heterogeneous

resources. In 2010, Trummer et al. utilized the COP

(Constraint optimization problem) method to minimize the

rental cost of external cloud services such that the cost of

the enterprise is minimized [53]. However, their research

did not analyze the cost of local resources. Thus, it cannot

give a global optimal cost solution. Bittencourt and

Madeira proposed HCOC (Hybrid Cloud Optimized Cost)

scheduling algorithm. It enables computing tasks in a

hybrid cloud to be dynamically assigned to local resources

(private clouds) or external sources (public clouds). Their

method can effectively improve the efficiency of task

completion, and reduce the cost compared to greedy

schedule algorithm [54]. In 2015, Laatikainen et al. focused

on the optimization of the storage costs of hybrid clouds.

They first formulated the measurement of hybrid cloud

storage costs and then analyzed the impact of refining the

reassessment interval on the cost savings attainable by

using hybrid cloud storage. Finally, they obtained that

shortening reassessment interval and the acquisition of

public cloud storage capacity allows the volume variability

to be reduced, yielding a reduction of the overall costs [55].

3 Comparison between public and private
cloud

Many cloud service providers start to deliver the entire data

center as a whole cloud computing solution to customers,

such as Alibaba Cloud Apsara Stack [56], Dell EMC [57],

HPE Helion Open-Stack [58], Microsoft Azure Stack [59],

which deploys public cloud software in a smaller private

cloud, providing customers with customized, secure, low-

latency private cloud services.

Most of the research works are related to cost modeling

and optimization methods in public or hybrid clouds, while

private cloud is seldomly mentioned. In this section, we

hope that by briefly comparing and contrasting the public

and private cloud environment, readers can draw a better

understanding of the differences and similarities between

public and private cloud, thus better understand the total

cost of owning a private cloud and possible ways that can

be attempted to optimize the cost. Table 1 gives a brief

comparison of the characteristic of public and private

cloud. As shown in Table 1, both public and private clouds

can provide IaaS, PaaS, and SaaS services, but they have

significant differences in the other nine areas. The private

cloud services users are large organizations, communities,

and enterprises, such as government departments, while

public cloud orients to general public users, small com-

panies, and startups. In general, private cloud users need to

pay more in the initial stage because they need to purchase

a complete cloud computing infrastructure. In contrast,

public cloud users only pay for the rental service in the on-

demand price. For private cloud users, high costs usually

are accompanied by stable cloud service quality and high

data security. Since the private cloud is deployed in the

user’s data center, the user can have an isolated network

built within an intranet domain to run the service stably.

Meanwhile, data security is guaranteed because of the

network isolation and autonomous data management. In

contrast, since the public cloud is deployed in the data

center of the service provider, the public cloud user needs

to access the cloud service through the public network

(Internet), and the quality of service often depends on the

network quality between the user side and the public cloud

data center. Since public cloud users don’t know where

their data is physically stored, there is a hidden risk of data

leakage. Although many data protection techniques have

been wildly discussed for the public cloud, data may still

suffer from potential attacks [60–62]. In terms of pro-

curement, since private cloud users may need to carry some

personalized services, their infrastructure will also need to

be customized. Servers in the private cloud can be highly

customized where users can select the model specification

according to the business requirement, while the public

cloud server has a low degree of customization. Generally,

public providers purchase servers suitable for the multi-

tenant technology.

3.1 Cloud evaluation

For public cloud users and private cloud users, due to the

different charging standards of different providers, the

choice of cloud service providers directly affects the cost of

their investment. For public cloud users, there are some

tools to help them choose the service provider and rental
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solution that best suits their requirements, such as

[45, 47, 63]. However, there are no tools to provide users

with a comparison of private cloud providers. This is not a

trivial problem because private cloud users need to com-

pare private cloud service offerings in terms of investment

costs, business value benefits, security and stability, and IT

cost savings. On the other hand, cloud users need to esti-

mate the amount of computing and storage resources

consumed by their own business before adopting cloud

computing solutions. Public cloud and private cloud users

can control their costs by evaluating and predicting the

resource requirements. Rodrigo N. Calheiros et al. pro-

posed EMUSIM that can help users evaluate and predict

the resources consumed by their own business after

migrating to cloud [64].

4 TCO evaluation in private cloud

Inspired by [24], we formulated a mathematical equation to

describe the total cost of ownership of a typical private

cloud.

Let arp(t) represent the amortization rate, and let cm
denote the cost of machine type m, nm denote the number

of machine type m, the cost of server procurement can be

formulated as:

S ¼
X

m

cm � nm � arpðtÞ ð1Þ

Different types of cloud services are charged differently.

Some cloud services could be charged according to the

number of CPU cores, while others could be charged

according to the number of the node that the cloud service

actually manages. We use Si to denote types of cloud

services toward this end, and the cost of software is for-

mulated as follows:

SW ¼
X

Si

cSi � nSi � arpðtÞ ð2Þ

Cost of network devices are:

N ¼
X

n

cn � nn � arpðtÞ þ ccable; ð3Þ

where cn and nn is the cost and quantity of a network

switch, respectively

Data center facility is another factor that affects the cost

of owning a private cloud. Servers and network devices

need to be installed on racks, supporting facilities such as

power distributed unit(PDU) and uninterruptible power

system(UPS) also need to be taken into consideration.

Thus, Thus, with cfrack be the cost of a rack with PDU and

UPS, R be the number of racks needed, we formulate the

cost of the facility as:

F ¼
X

f

cfrack � R � arpðtÞ ð4Þ

Cost of real-estate is related to the size of facilities, with

consideration that for a data center may be shared among

small private clouds.

E ¼ R

Nrack
� cidc ð5Þ

where Nrack is the total number of rack a data center could

hold.

Power and cooling are two main contributors of opera-

tional costs of a data center. Because power consumption

per rack of devices can usually be measure individually, we

further formulate them in terms of R, with wrack denotes as

the power consumption per rack, ckw denotes the cost per

kilowatt, and t denotes the time.

P ¼ ckw � t �
XR

i

wracki ð6Þ

wracki can be further split into two components: static part

Estatic and dynamic part Edynamic. The static part is

Table 1 Comparison of

characteristics between public

cloud and private cloud

Characteristics Private cloud Public cloud

Service type IaaS, PaaS, SaaS IaaS, PaaS, SaaS

Service users Large organizations General public or Small startups

Device ownership Users Cloud service providers

Deployment location User’s data center Cloud provider’s data center

Quality of service Stable Unstable

Data security High Low

Use cost High Low

Scalability Scale-out only Elastic computation

Maintenance Technician/service provider Public cloud service

Procurement High customization Low customization
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composed with the power consumption of devices in idle

state. The dynamic part is related to resource utilization

rate. It is composed of power consumption when devices

are reading/writing data, network communication, and

computing. Then wracki can be formulated as:

wracki ¼
X

j2Di

Estaticj þ Edynamicj ð7Þ

Assume the cooling coefficient is x, the corresponding

cooling cost is

C ¼ x � P ð8Þ

To summarize, the total cost ownership described is
X

Sþ SW þ N þ F þ E þ Pþ C ð9Þ

5 Problem formulation

In this section, we discuss how an optimal number of server

racks leads to an optimal cloud TCO. Then, we introduce

the server rack deployment problem and provide a formal

definition of the problem. Finally, we present the opti-

mization model.

5.1 Minimize cloud TCO with minimum racks

To build a data center, server racks are essential. In Sect. 4,

from the Eqs. 4, 5, and 6, the number of server rack is

closely related to the cost of data center facility, real-estate,

and consumed power. There is a large potential benefit if

the data center system is rightsized to the actual require-

ment over time. As reported in [65], it may offer the

potential of reducing the cost of infrastructure by up to

60%. Therefore, cloud providers can further minimize their

cloud TCO by minimizing the number of deployed server

racks.

5.2 Racks deployment problem in real industry

We consider a cloud platform providing different cloud

services to support different cloud products. Each cloud

service runs on a virtual machine (VM), and multiple VMs

are deployed on a server called a physical machine (PM).

Multiple servers are deployed on a server rack in a data

center where the rack provides the servers’ power supply.

In the next level, multiple server racks are connected to an

access switch (ASW), where network data can be switched

and transmitted. The relationship of servers, racks, and

ASW is illustrated in Fig. 1, where a server is deployed on

a rack, and a rack is connected to an ASW. For

simplification, if one rack is connected to an ASW and one

server is deployed on the rack, we call it connected to the

ASW.

In real industry, the server racks deployment problem

aims to find optimal number of racks to minimize the cloud

TCO. The number of required racks for constructing the

data center is determined by the organization of servers.

Arbitrary deployment of servers may bring risk by over-

loading power because each server may consume certain

energy and there is a power limitation on the rack. Addi-

tionally, the capacity of bandwidth on the ASW is limited.

If too many communication intensive servers on the same

rack are connected to one ASW, it may lower the quality of

service (QoS) and user experience. Furthermore, there may

be complex relationship between servers, dependency and

conflict. On the one hand, one cloud product may consist of

several cloud services that may require more than one

servers to support a cloud product. Thus, some servers are

considered dependent on each other, which means they

have to be deployed on the same rack or connected to the

same ASW. On the other hand, due to the different busi-

ness requirements and functionality of cloud products, two

servers may be in conflict with each other, which means

they have to be deployed on different racks or connected to

different ASWs.

In our problem, we consider the dependency and conflict

relationship among servers exist on both rack level and

ASW level. An example is also illustrated in Fig. 1. In the

figure, server 1 and server 2 colored in yellow are depen-

dent on each other on rack level, server 4 and server 5

colored in red conflict with each other on rack level, server

3 and server 6 colored in blue are dependent on each other

on ASW level, and server 7 and server 9 colored in green

conflict with each other on ASW level. We also consider

each server consumes different energy and bandwidth

usage. In addition, there are different rack types available

when deploy servers, where different racks types refers to

different power capacities of racks.

5.3 Optimization model

Next, we formally define our problem and present the

optimization model.

Consider a cloud data center to be built. It is given a set

of servers S ¼ fs1; . . .; sng with size n where server si
consumes energy ei and bandwidth usage bi. There are

unlimited number of ASWs with maximum bandwidth

capacity, B, and racks with m types which refer to different

maximum power capacity, p1; . . .; pm accordingly. The data

center is also given four relationship graphs: Rack-level

dependency graph GRðS;ER
GÞ, Rack-level conflict graph

�G
RðS; �ER

GÞ, ASW-level dependency graph GWðS;EW
G Þ, and
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ASW-level conflict graph �G
WðS; �EW

G Þ. We further define

AR; �A
R
;AW ; �A

W 2 f0; 1gn�n
to be the adjacency matrix of

the four relationship graphs, where if there is correspond-

ing relationship between two servers, the entry would be 1.

The primary goal of the problem is to find an optimal

server racks deployment which uses minimum racks and

satisfies all relationship constraints and resource capacity

constraints.

Then, we formulate the optimization model as

MinimizeR ¼
X

i

ri; ð10Þ

s:t: ð11Þ

Oij þ Okj � 1; 8j; 8ði; kÞ 2 �E
R
G

ð12Þ

Oij � Okj ¼ 0; 8j; 8ði; kÞ 2 ER
G ð13Þ

Wij þWkj � 1; 8j; 8ði; kÞ 2 �E
W
G ð14Þ

Wij �Wkj ¼ 0; 8j; 8ði; kÞ 2 �E
W
G ð15Þ

Xn

j¼1

Oij ¼ 1;
Xn

j¼1

Wij ¼ 1; 8i ð16Þ

Xn

j¼1

Dij � 1;
Xn

j¼1

Dij � ri ¼ 0; 8i ð17Þ

Xm

j¼1

Tij � 1;
Xm

j¼1

Tij � ri ¼ 0; 8i ð18Þ

Xn

j¼1

DjkOij �Wik ¼ 0; 8i; k ð19Þ

Xn

i¼1

Oijei �
Xm

k¼1

Tjkpk;
Xn

i¼1

Wijbi �B; 8j; 8k ð20Þ

Xn

i¼1

Oij �Mð1� yjÞ; 8j ð21Þ

1�
Xn

i¼1

Oij �Myj; 8j ð22Þ

ri þ yi ¼ 1; 8i ð23Þ

where O;W ;D 2 f0; 1gn�n
, T 2 f0; 1gn�m

, Oij represent

server i is deployed on rack j; Wij represent server i is

deployed on ASW j; Dij represent rack i is connected on

rack j, and Tij represent rack i is in type j. In the opti-

mization model, we intent to minimize the number of used

racks, R. Eq. 10 describes the objective of the model. In a

worst case, only one server is deployed on each rack so that

we need at most n racks. Thus, r 2 f0; 1gn is a size n vector
where ri indicate whether the i-th rack is used. In the

constraints part, Eq. 12–Eq. 15 describe the relationship of

rack-level conflict, rack-level dependency, ASW-level

conflict, and ASW-level dependency, respectively. Eq. 16–

Eq. 19 describe the pigeonhole principles in this model.

Eq. 16 show that one server can only be deployed on one

rack and ASW, respectively. Eq. 17 show that one rack can

only connect to one ASW and if and only if the i-th rack is

deployed, the i-th entry in r would be 1. Similarly, Eq. 18

describe one rack can only have one type. Eq. 19 show that

if and only if the i-th server is deployed on the k-th ASW,

the i-th server must be deployed on one rack that is con-

nected to the k-th ASW. Eq. 20 describe the constraints that

the total power and bandwidth consumption of the

deployed servers should not exceed the capacity of rack

and ASW, respectively. Eq. 21–Eq. 23 show that if and

only if there are non-zero entries in the j-th column of O,

the j-th entry of r should be 1, in which a helper vector

y 2 f0; 1g has the inverse value of r.

Since the formulation is a mixed integer programming

(MIP) whose solution is in NP-Complete [66], we propose

Fig. 1 Cloud data center architecture
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a heuristic methods to find a feasible solution in the next

section.

6 Proposed algorithm

This section will illustrate the proposed algorithm, conflict-

aware first-fit (CAFF). Our problem has some similar

characteristics with the existing bin packing problem with

conflict graph (BPPC), also known as an NP-Complete

problem [67]. However, our problem has more constraints

in two aspects: (1) there is not only the conflicted rela-

tionship but also the dependent relationship; (2) the rela-

tionships exist on both rack and ASW level in the data

center hierarchy. We present a pre-processing method to

simplify the dependent relationship to counter these.

Finally, we propose a greedy algorithm to solve the server

racks deployment problem.

6.1 Pre-processing

To address the problems listed above, we introduce a

simple graph based pre-processing method. As introduced

in Sec. 5.3, we consider the format of input data is graph. In

order to make our problem close to the BPPC problem, we

will try to eliminate the dependent relationship before we

solve the problem.

Observation 1 For servers, A, B, and C, if A is dependent

on B and B is dependent on C, then A is dependent on C.

Based on the observation 1 above, we can induct that in

a server dependency graph, each connected component can

be considered as a fully connected sub-graph. We can then

consider one connected component as a whole part so that

the dependent relationship is eliminated in a higher level.

In this problem, we define such connected component as a

hyper-server in Definition 1. Furthermore, since the server-

dependent relationship exists on both rack and ASW levels,

we need to eliminate the dependent relationship on both

levels.

Definition 1 Given a dependency graph G(V, E) where

each vertex represents a server, a hyper-server of G is a

connected component in the graph. Let S be the set of

hyper-server of G. Then, S is the set of the connected

components. The number of hyper-servers, |S| is the num-

ber of connected components in G. Let Si be the i-th hyper-

server in G. Then, Si contains all servers that belong to the

corresponding connected component.

6.1.1 Rack-level pre-processing

Given the input rack-level dependency graph GRðS;ER
GÞ,

we can have the set of rack-level hyper-servers, SR, by

Definition 1. If we take one rack-level hyper-serer as a

whole, then there is no rack-level dependency relation

anymore. After constructing the rack-level hyper-servers,

the dependency and conflict relationship between two rack-

level hyper servers can be inferred by Observation 2.

Observation 2 For two rack-level hyper-servers, A and B,

if any sever in A has a conflict or dependency relationship

with any server in B on rack level, then rack-level hyper-

server A conflicts have conflict or dependency relationship

with B on rack-level, respectively.

Then, we can merge the relationship and construct the

rack-level conflict graph of rack-level hyper-servers,

�K
RðSR; �ER

KÞ, and the rack-level dependency graph of rack-

level hyper-servers, KRðSR;ER
KÞ. By the similar observa-

tion, we can further construct the ASW-level conflict graph

of rack-level hyper-servers, �K
WðSR; �EW

K Þ, and the ASW-

level dependency graph of rack-level hyper-servers,

KWðSR;EW
K Þ. For example, the dependency relationships

represented by a black dashed line between servers are

merged and become the dependency relationship between

rack-level hyper-servers.

6.1.2 ASW-level pre-processing

Moreover, we can construct a higher level hyper-server set,

ASW-level hyper-server set SW , using Definition 1 and the

ASW-level dependency graph of rack-level hyper-servers

KW . The dependency relationship between rack-level

hyper-servers will also be eliminated if we regard each

ASW-level hyper-server as a whole part. Similar to the

rack-level pre-processing in Sect. 6.1.1, we can merge the

conflicted relationship between rack-level hyper-servers

into ASW level. Then, we construct the ASW-level conflict

graph of ASW-level hyper-servers, �L
WðSW ; �EW

L Þ.

6.2 Conflict-aware first-fit (CAFF)

After performing the pre-processing in Sect. 6.1, there only

remains the conflicted relationship between hyper-servers.

Then, we solve BPPC problems on both rack and ASW

level using a modified first-fit method. The number of bins

used in the ASW level refers to the number of used ASW

when building the data center. Accordingly, the number of
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bins used in rack-level refers to the number of the used rack

when deploying the servers. In our scheme, we first orga-

nize the rank deployment problem into several sub-prob-

lems. After pre-processing at rack-level and ASW-level,

the dependency relationships are eliminated. We then

consider the sub-problem as BPPC problem. By solving the

sub-problems in a top-down hierarchical way, we can find

our solution. The detailed procedure is illustrated in

Algorithm 1. In CAFF, Line 3 follows the pre-processing

introduced in Sect. 6.1, where it returns four corresponding

merged relationship graphs. In-Line 7 and Line 15, it

solves the sub-problems on ASW level and rack level

respectively using Bin Packing with Conflict Graph First

Fit (BPCGFF) function. The idea of BPCGFF is simple. As

described in Algorithm 2, it considers the items are placed

by a sequence. When a new item comes, it always checks

whether the new item can be placed in the used bin.

Otherwise, a new empty bin is used to place the new item.

This process is used in Line 8 to 10 in Algorithm 2.

Moreover, BPCGFF returns the number of used bins and

the server deployments. In-Line 11, Segment_Graph

detailed in Algorithm 3 returns a sub-graph containing the

required vertices to efficiently solve sub-problems.
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7 Numerical Evaluation

7.1 Simulation Setup

In this section, we demonstrate how we generate the sim-

ulated data. We simulate a cloud data center with n servers

and m types of racks to be built. Typically, we assume that

the power consumption of each server is generated uni-

formly at random from the range [25, 50], and we consider

m ¼ 4. Hence, we can set p1 ¼ 200; p2 ¼ 250; p3 ¼
300; p4 ¼ 350 which refers that we can select 8U, 10U,

12U, and 14U rack. So, the maximum power capacity

P ¼ 350. The cooling power of the rack is neglected for

simplicity. In order to simulate different network require-

ment, the ASW bandwidth capacity B is set to 30, and the

network bandwidth requirement of each server is randomly

generated in the range [1, 3]. The dependency and conflict

relationships are simulated level by level. In real industry,

the dependency relationship tends to be sparser than the

conflict relationship. So, we assume each rack-level hyper-

server is with size up to 4 and each ASW-level hyper-

server is with size up to 3. We randomly group 1 to 4

servers together to form a rack-level hyper-server, and

randomly group 1 to 3 rack-level hyper-servers to form an

ASW-level hyper-server. In the meantime, we ensure the

power and bandwidth requirements of each hyper-server do

not exceed the capacities. For the conflict relationship, we

generate it based on a Conflict Complexity Factor,

a 2 f0; 1g. At each level, suppose there are en hyper-ser-

vers, then each hyper-server conflicts with other a � en
hyper-servers.

To evaluate the performance of the proposed algorithms,

we directly use the number of used racks as the metric. We

will evaluate the performance with varying conflict com-

plexity and resources capacity in Sect. 7.2. The programs

for all algorithms are coded in Python language. A com-

plexity analysis in shown in Sect. 7.3.

7.2 Performance evaluation of CAFF

We explore the performance of the CAFF algorithm with

varying conflict complexity in this section. We repeat each

experiment with the same setting 500 times in case of the

randomly generated conflicted relationship. The result is

illustrated in Fig. 2 where the error bar is drawn with 95%

confidence. In the results, the number of racks used does

not have a strictly linear relationship with the number of

servers because the number of conflict relationship does

grow linearly as the number of servers increase rather that

the number of rack-level servers. We statically generate the

same dependency relationship for all repeat runs. So, the

number of rack-level servers is fixed for certain points in

the result. Overall, the simulation results reveal that as the

number of servers increasing, the number of racks used

also increases.

We further explore the impact of different resource

capacity setting on the performance of CAFF. We consider

four resource capacity settings: high power high band-

width, high power low bandwidth, low power high band-

width, and low power low bandwidth, where high power

refers to P ¼ 550, low power refers to P ¼ 350, high

bandwidth refers to B ¼ 80, and low bandwidth refers to

B ¼ 30. Similar to above, each experiment is repeated 500

times with the conflicted complexity a ¼ 0:1. The result is

illustrated in Fig. 3. In the figure, we see that poor resource

condition results in more racks required, and vice versa.

Additionally, it seems the number of racks used is more

sensitive to bandwidth capacity in our setting.

Fig. 2 Avg. number of racks used as server number increase
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7.3 Computational complexity

The proposed scheme can be executed in a polynomial

time. Through the pre-processing, the proposed heuristics

can be decomposed into many in packing sub-problems

with conflicts. In a worse case, the BPCGFF has com-

plexity Oðn2Þ [67]. In Algorithm 1, since the total number

elements to be processed in line 8 with for loop is O(n), the

computational complexity of CAFF is also Oðn2Þ.

8 Conclusion

In this paper, we first study current researches related to the

total cost of ownership (TCO) in cloud computing and

compare the public and private cloud in the view of TCO.

Then, we demonstrate a TCO evaluation model for Alibaba

Dedicated Cloud and further describe a server rack

deployment problem to optimize the facility, real estate,

and power cost. Finally, we propose a heuristic algorithm,

conflict-aware first-fit, to solve the problem. Our simulation

results show that the CAFF method can find a feasible

solution under different experiment settings.
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