
A Privacy and Price-Aware Inter-cloud System

Yuanfang Chi1, Wei Cai1, Zhen Hong1, Henry C.B. Chan2 and Victor C.M. Leung1
1Department of Electrical and Computer Engineering, The University of British Columbia, Canada

2 Department of Computing, The Hong Kong Polytechnic University, Hong Kong
1 {yuanchi, weicai, vleung}@ece.ubc.ca, 1 hongz.ubc@gmail.com, 2 cshchan@comp.polyu.edu.hk

Abstract—Cloud service selection and financial expense are two
main concerns of users considering adoption of cloud computing
services. In this paper, we propose a novel cloud federation that is
cognitive to the dynamic prices. The cloud federation system first
determines on which cloud services should the user applications
be deployed. Then, when a cloud provider is charging too high
for a VM, the proposed system automatically migrates user
tasks to a cloud system that is charging at a lower rate. We
discuss the architectural framework and platform design, provide
a mathematic formulation and investigate a total service fee
minimization approach with privacy constraints. Preliminary
simulation results demonstrate the proposed system can lower
the cost of cloud services by exploiting the advantages of different
price policies provided by multiple cloud providers.

Index Terms—Inter-Cloud; Privacy; Pricing; Cognitive; Cloud
Computing

I. INTRODUCTION

The computing industry has started to realize that cloud

computing is becoming the next modality of computing in-

frastructures. With the ease of summon and expand comput-

ing power, the cloud computing has also become a decent

solution for parallel computing. However, in contrary to local

computing model, there are arising concerns on hosting ap-

plications on the clouds. One of the obstacles that prevents

the adoption of cloud services [1] is the service availability

and business continuity. Since the cloud is the best effort

service, many organizations are affraid to rely on a third-

party service provider to ensure the organizations’ service

availability and business continuity. Another concern relates

to data security, confidentiality and auditability. Crackers and

hackers have never stopped their efforts on attacking infor-

mation systems to steal users’ virtual properties. Since the

access is public, cloud exposes their systems to more public

attacks than conventional data centers. On the other hand,

users cannot easily extract their data and programs from one

cloud service to another. When a cloud data center crushes,

users can hardly move their data to another data center on

time. Plenty of research works are devoted to investigate

secured and robust cloud service infrastructures. All of these

obstacles can be removed by using services from a cloud

federation or inter-cloud [2] system that supports distributed

cloud services where one cloud could use the computational,

storage or network resources of other clouds [3] to complete

a task together [4]. Similar to cloud-RAID [5], better privacy

protection can be achieved if users were able to control on

which clouds the highly sensitive software classes or objects

are hosted and distribute the rest of system function codes

on other clouds. This way, no public cloud provider could

acquire all the program pieces. Also, to select the best mix

of service offering from an abundance of possibilities, users

must consider complex dependencies and heterogeneous sets

of criteria. Even professional technicians will be confused by

the variety of service providers, service utility levels, pricing

models, geographical distance and so on. Some researchers

have investigated decision support techniques for automating

cloud service selection [6]. However, this static supporting

tool cannot adapt the users’ need in varying pricing scenarios

and it cannot exploit all advantages among multiple clouds

simultaneously. With programs and data scattered among and

backed-up by different data centers maintained by different

cloud providers, also with the automated service choosing and

program/data sets migration ability, the cloud service are more

reliable and convincible for users to adopt.

In this paper, we propose an inter-cloud based price-aware

system intended to provide a tool for users to automatically

choose and migrate their applications to a cloud provider that

is charging at a lower rate. Further, we take the advantage

of program decomposition techniques, where a large parallel

computing program can be breaked down into system function-

s as smaller classes or objects and data entities1. Our inter-

cloud system allows users to configure the privacy constraints

of their program by defining the number of program or data

sets that could be hold in one cloud service concurrently. The

system looks up current prices a cloud provider charges for

their VM at a pre-defined time interval. Then, each of the

program and data sets can be assigned to a cloud service

charging at the lowest rate according to the privacy constraints.

The cost of running the program or data set at the destination

serive, along with the cost of migrating the program or

data sets to the destimation service are considered before

the migration decision is made. As a price-aware cognitive

system, the proposed platform collects pricing information

from multiple clouds and dynamically adapts its execution

modality on purpose of minimizing total cost. This dynamic

adaption seeks optimal assignment of codes and data sets of

user decomposed application, which is a procedure that uses

the update-to-date prices to predict future trend of cost and

eventually lead to a lower priced solution. Hence, it is also

a user-oriented system that benefits its customers financially.

The rest of this paper is organized as follows. First, we study

some related studies in Section II. Then in Section III, we

1https://en.wikipedia.org/wiki/Decomposition

2015 IEEE 7th International Conference on Cloud Computing Technology and Science

978-1-4673-9560-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CloudCom.2015.50

298

provide an overview of our proposed system. A problem

formulation of the system is presented in Section IV. We

evaluate our proposal by computer simulations in Section V.

Section VI concludes this paper.

II. RELATED WORK

A. Inter-cloud Systems

The term of cloud federation, or inter-cloud, the cloud of

clouds, was first introduced by Kevin Kelly in 2007. The inter-

cloud is analogous in the way the Internet works. An Internet

service provider that has an endpoint attached to it will access

or deliver traffic from/to source/destination addresses outside

of its service area by using Internet routing protocols with

other Internet service providers with pre-arranged exchange

or peering relationships. The work [7] first proposed the inter-

cloud blueprint to describe the high level architecture of the

interoperating of multiple clouds. With the concept of inter-

cloud, distributed software systems [8] explored a new appli-

cation scenario. Federated cloud system helps to achieve better

QoS, reliability and flexibility [9]. Authors in [10] proposed

a cloud federation system that provides profit-aware solutions

in order to receive benefits from pricing policies provided by

multiple clouds. Some of the other cloud federation systems

are proposed for load balancing and distribution of elastic

applications among different cloud data centers to achieve

reasonable QoS levels [11].

B. Privacy Regulation Through Across-Clouds Distribution

Keeping computing tasks that involve sensitive data in a

private cloud and outsourcing the rest of computing tasks

that involve insensitive data to public clouds is a preliminary

solution for data security. However, as more data-intensive

computing tasks are required, this kind of hybird cloud con-

puting has became inappropriate. [12] proposed a Privacy-

Aware Data Intensive Computing on Hybird Clouds that

automatically splites data-intensive tasks according to security

levels of the data. They modified MapReduce’s distributed file

system to replicate data and send sanitized data to the public

cloud. Using multiple public clouds to ensure data security

is also a popular solution. Faults in software or hardware

in cloud computing are known as Byzantine faults. Many

research work has been done on Byzantine fault tolerance

[13]. DepSky virtual storage cloud system [14] leverages the

Byzantine quorum system protocols to ensure data security.

The DepSky system is consisted of n clouds, while the

DepSky system reads and write to each cloud seperatelly. With

intensive tests, experiences of working on a specific cloud and

extrodinary positive user reviews, a cloud provider might be

trustworthy. Besides, a series of cloud-RAID work [5] tackle

the problem by encrypting and encoding the original data

and later by distributing the fragments transparently across

multiple providers. This way, none of the storage vendors can

see the full picture of the client’s data.

C. Pricing Models

Appropriate pricing or charging models are the key to

success for businesses in any industry. Cloud providers are

devoted to optimize their pricing strategies to increase resource

utilization, in order to achieve higher revenues. Infrastructure

as a Service (IaaS) provides computing infrastructures such

as processing unit, storage and network to customers. Some

examples of IaaS are Amazon EC2 and Google Compute

Engine. Computing Pricing: there has been various pricing

policies in the market, regarding the combination of CPU and

memory usage: i) Reserved Instances: provides the option

for customers to subscript to a cloud service for a period

with a non-refundable one-time payment at a lower rate [15].

ii) Freemium and Usage-based: provides free but limited

amount of resources for a limited time period to encourage

potential cloud tenants to try-out their cloud services. iii) Spot
Instances: sets its spot prices through a market-driven auction

and publishes its spot price for the next time period online

so customers can run those instances as long as their bid

exceeds the current spot price. Spot Instance pricing allows

cloud providers to sell more of their unused resources at the

highest possible rate while preserving its control over the

spot price [16]. Networking Pricing: Despite various types of

pricing policies, almost all networking pricing models follow

a principle that charge users’ internet usage bidirectional

with different standards2. In general, ingress is cheaper than

egress. Storage Pricing: Storage pricings provided by various

cloud services are relatively lower compared to computing and

networking. Microsoft Azure 3 provides four types of storage,

including block blobs, page blobs and disks, tables and queues

and files (in preview stage). It also has four redundancy levels,

including locally redundant, zone redundant, geographically

redundant and read-access geographically redundant. In ad-

dition to basic storage price, Amazon S3 and Google Cloud

Storag also charge users for data operations (request, delete,

etc.) and data transfer. In this work, we simply use network

transmission to represent these additional cost applied to the

storages.

D. Cognitive Parallel Computing Software System

Parallel computing has already been widely adopted as

a solution in big data processing and complex computing

[17]. The key of parallel computing is the decomposed and

distributed storage and processing. For example, Hadoop

decomposes data into chunks and distributes them among

computer clusters. Then, based on the data each node contains,

the Hadoop MapReduce sends appropriate program module

to each node to process data in parallel 4. With decomposed

and distributed programs, cognitive optimization of resource

allocation is also an open issue. Intrinsically as a group

of dynamic partitioning problem, research on the dynamic

partitioning between cloud and users’ mobile terminal has

2https://cloud.google.com/products/compute-engine/
3https://azure.microsoft.com
4https://en.wikipedia.org/wiki/Apache Hadoop

299

been conducted from the perspectives of offline K-step ap-

proach [18] and flexible partitioning [19]. A similar idea

has been used in [20], which has designed and developed a

cognitive platform that enables task migration and dynamic

task allocation between the cloud server and the devices.

[21] proposed a decomposition algorithm that decompose a

sequential program into speculatively parallel threads that

can run on multi-processor chip, with considerations of data

dependency and load imbalance. In [22], authors proposed a

program decomposition framework that provides near-optimal

mappings of program segments to machines with minimum-

cost. Data elements needed for the program segments can be

transfered among machines. The cost of executing a program

segment depends on machine selections and associated data

transfer costs.

III. SYSTEM OVERVIEW

In this section, we provide a system overview for the

proposed inter-cloud based price-aware parallel computing

system.

A. Architecture

The architectural framework we consider for the inter-cloud

parallel computing system is shown in Fig. 1. The platform

concatenates multiple cloud services to provide a unified inter-

cloud environment for the parallel computing applications.

Essentially, it is a three-layer software system: application

layer (consists of the code layer and the data set layer),

platform layer and cloud infrastructure layer, from top to bot-

tom. As the middle-ware between the cloud infrastructure and

application layer, the inter-cloud platform monitors the real-

time pricing from different providers and cognitively adjust

the decomposed module of the parallel computing application

to minimize the overall price.

Fig. 1. Architectural Framework for Cognitive Inter-Cloud System

1) Code Definition: According to the decomposable nature

of parallel computing programs, we define c program codes in

set C and d data chunks in set D as illustrated as ovals and

rectangles in Fig. 1. We also define s cloud service providers

S. Note that some cloud server hosts both code and data set,

while some of the others only supports either code or data

set. Considering the code-data relationship between program

codes and data chunks, we define that a program code can

be associated with 0 to d data chunks, while a data chunk

can be accessed by 0 to c program codes. Furthermore, we

consider the code-data relationship as a directed graph G,

where the directed edges are the data flow from data chunks

to the program codes, the weights of the edges are the data

size to be transmitted. In general, a program code only require

a small proportion of data in the data chunk. In this paper, we

denote ω as the data access proportion. Note that if a program

code and its associated data chunk are located in different

cloud server, an inter-cloud data transmission is required.

2) Code Migration: One of the key features of our inter-

cloud system is the capability of program and data set mi-

grations among multiple cloud services on demand. With the

development of inter-cloud networking technologies [23] and

flexible dispatch of mobile agents [24], the inter-cloud code

migration is feasible in existing software systems. A mobile

agent is a composition of computer software and data, which

is able to migrate from one cloud to another autonomously

and continue its execution at the destination. In this particular

system, once a better assignment solution is adopted, desig-

nated program codes or data chunks can be encapsulated into

mobile agents and dispatched to the destination cloud.

3) Inter-Cloud Message Exchange: In order to facilitate

the work flow in a parallel computing system, the program

codes need to communicate with each other through messages,

including native context states, processed data, control signals,

etc. Since theprogram codes are executed in a distributed

manner among multiple clouds and a single code can be hosted

in different clouds under different circumstances, a message

exchanges between two codes can be either local invocations

(e.g., when the two codes are hosted in the same cloud) or

remote calls (e.g., when the two codes are executed in distinct

clouds). Hence, a dynamic message forwarding mechanism

that determines the destination of a message is needed in the

cognitive inter-cloud platform.

B. Platform Design

Fig. 2. Design of Decomposed Inter-Cloud Software Platform

The inter-cloud system introduces challenges including

300

decomposition granularity, response latency, synchronization

frequency and application programming interface design. In

order to facilitate the proposed architectural framework, we

design the cognitive inter-cloud platform with both security

and pricing awareness as shown in Fig. 2.

Similar to the concept of Master Node and Slave Node
implemented in the Hadoop5 system, the proposed platform

incorporates Cognitive Node and Element Node to facilitate

the cognitive feature. A Cognitive Node is the core of the

whole network, which is supposed to be hosted in a secured

cloud infrastructure, e.g., a private cloud. The Pricing-Aware
Cognitive Engine collects the pricing data from Element Nodes

in real-time and makes cognitive decisions to optimize the

whole inter-cloud system. Note that both Cognitive Node and

Element Node contain a Message Coordinator, which serves

as the router for inter-code message exchange. The Pricing-
Aware Cognitive Engine’s decision provides the reference for

message redirection, which is broadcasted by the Cognitive
Node to all Element Nodes, together with the routing informa-

tion of all nodes spreading in multiple clouds.

IV. PROBLEM FORMULATION

In this section, we mathematically formulate the inter-

cloud system. For a particular user application, we denote the

number of available cloud service providers as s, the number

of program codes as c, and the number of data chunks as d.

A. Program Feature

In this work, we model the code-data relationship as a 1−
n, {n = 0, 1, 2, 3.., d} pair, which means a program code can

access 0 to d data chunks distributed in various cloud servers.

We formulate the code-data relationship as c×d logical matrix

L, in which the numeric value of elements are defined to be

either 0 or 1. Hence, Lij = 1 indicates that the ith program

code requires data chunk j for its procedure. In addition, we

denote the message exchange between code as a c× c matrix

M , where Mij indicates the message data size between the

ith and jth program codes.

B. Dynamic Pricing

The motivation of cognitive selection in the proposed system

is to pursue overall lower costs. With the assumption that

each cloud service is charging with dynamic prices, hereby

we formulate instance prices for the s cloud service providers

as vectors α and β with length of s, where α represents the

unit computational resource prices and β represents the unit

data storage prices, respectively. In addition, we formulate the

network prices for the s cloud service providers as ρ and θ,

representing the unit input and output bandwidth prices.

C. Assignment of Codes and Data Sets

A key of system design is to determine the assignment of

program codes and data chunks. We formulate the assignment

of cloud codes over cloud service providers as a c× s matrix

A. It is defined as a logical matrix, where Aij = 1 represents

5http://hadoop.apache.org/

that the ith code is executed at the jth cloud service provider.

Similar to code assignment, we define a d×s logical matrix B
to formulate the assignment of data chunks over cloud service

providers. Bij = 1 indicates that the ith data chunk is stored

at the jth cloud service provider.

D. Assignment Constraints

1) Software Integrity: In order to guarantee the complete-

ness of the software system, every program code and data

set chunk is required to be assigned to either one or more

cloud service providers. In order to simplify our model,

we only consider the case that no duplicate exists in this

work. Therefore, the constraints on software integrity can be

described by the following equations:

n∑
j=1

Aij = 1, ∀i ∈ Aij (1)

n∑
j=1

Bij = 1, ∀i ∈ Bij (2)

2) Privacy Assurance: Privacy assurance involves a se-

ries of techniques and SLAs, which constrain the access of

sensitive data. With some strict security requirements, some

sensitive data even need to be stored in cloud servers within

certain geographical areas. For instance, some healthcare data

cannot be transferred outside the US territory, according to

specific laws and legislations. In this paper, we demonstrate the

security of a software system by a set of security levels Θ and

Φ, which represent the security restriction on the assignment

of program codes and data chunks, respectively. The value of

security level Theta is defined as the maximum quantity of

program codes that are allowed to be hosted in the same cloud.

Similarly, Φ constrains the coexistence of multiple data sets for

a specific cloud service. Accordingly, Θ ∈ [1, c] and Φ ∈ [1, d],
in which value of 1 represents that all program codes or data

chunks shall be distributed among different clouds, while the

values of c and d provide complete freedom for assigning the

program codes and data chunks. Thus, the smaller Θ and Φ
are, the higher security level is assured. With these definitions,

we derive the constraints of security assurance as follows:

n∑
i=1

Aij ≤ Θ, ∀j ∈ Aij (3)

n∑
i=1

Bij ≤ Φ, ∀j ∈ Bij (4)

Apparently, security and pricing represent a pair of trade-off

that the software users shall be aware of.

E. Price Calculation

1) Computing Price: According to above formulations, the

total computing price Pc is derived as follows:

Pc = ||(CT ·A)� αT ||1 (5)

301

2) Storage Price: According to above formulations, the

total storage price Pd is derived as follows:

Pd = ||(DT ·B)� βT ||1 (6)

3) Networking Price: We first derive the data networking

volume matrix N as following algorithm:

Algorithm 1 Data Networking Matrix Algorithm

1: Initiate a s× s all 0 matrix N
2: for each (i, j) in Lij == 1 do
3: for each (x, y) satisfies Aix == 1 and Bjy == 1 do
4: if x!=y then
5: Nyx ← ωDy

6: end if
7: end for
8: end for

According to the above formulations, the total inbound

bandwidth price Pi is derived as follows:

Pi = ||N × ρ||1 (7)

while the total outbound bandwidth price Po is derived as

follows:

Po = ||NT × θ||1 (8)

Also, we derive the message networking volume matrix E
as follows:

Algorithm 2 Message Networking Matrix Algorithm

1: Initiate a s× s all 0 matrix E
2: for each (i, j) in Mij ! = 0 do
3: for each (x, y) satisfies Aix == 1 and Ajy == 1 do
4: if x!=y then
5: Exy ←Mij

6: end if
7: end for
8: end for

According to the above formulations, the total message

inbound bandwidth price Qi is derived as follows:

Qi = ||E × ρ||1 (9)

while the total message outbound bandwidth price Qo is

derived as follows:

Qo = ||ET × θ||1 (10)

Therefore, the overall network price Pn is derived as

Pn = Pi + Po +Qi +Qo (11)

4) Total Price: Hence, we derive the total price P of the

inter-cloud parallel computing system:

P = Pc + Pd + Pn (12)

F. State-Transition Pricing

When the price changes, the cognitive system needs to adapt

to the new optimal solution. However, the transition between

two assignment states involves network transmissions. Since

the package size of a program code is relatively insignificant

comparing to the size of a data chunk, we only consider the

networking volume produced by the migration of data chunks.

Given the current data chunk assignment matrix B at the total

price of P , we assume that with up-to-date pricing status, the

proposed system optimizes the system and derive a set of new

data chunk assignment matrix B′ with new total price P ′.
The state-transition network matrix T can be derived by the

following equations:

T = B′ −B (13)

Here we derive the inbound matrix I , a d×s logical matrix,

by

Iij = pos(Tij) =

{
Tij , Tij > 0
0, otherwise

(14)

According to the calculation procedure, a non-zero element

Iij indicates a network transmission of the ith data chunk to

the jth cloud in the state-transition from B to B′.
Similarly, we derive the outbound matrix O, a d× s logical

matrix, by

Oij = pos(−Tij) =

{ −Tij , −Tij > 0
0, otherwise

(15)

Hence, the total inbound bandwidth price Ri is derived as

follows:

Ri = ||DT · I · ρT ||1 (16)

while the total outbound bandwidth price Po is derived as

follows:

Ro = ||DT ·O · θT ||1 (17)

Therefore, the state-transition pricing R can be derived by:

R = Ri +Ro (18)

G. Optimization Target

In the starting stage of the system, the price-aware feature

requires the system to seek an optimal combination of program

code assignments A and data chunk assignments B, which

minimizes the overall cost according to a given prices. Hence,

the optimization target is formulated as follows:

Minimize: P (A,B)

Subject to: (1)(2)(3)(4)
(19)

Once the system is launched, to maintain the price-aware

performance, the cognitive engine needs to make decisions

to adjust the assignments of program codes and data chunks,

according to the real-time pricing fluctuation. It is a continuous

302

process that keeps the assignment up-to-date with changing

pricing environment. Note that, this procedure is not simply

seeking for new optimal solution, but need to take the state-

transition cost into consideration. We formulate this optimiza-

tion target as follows: Assume the pricing policy for all clouds

will last for a pricing variety time interval t, thus the system

is able to make decisions by predicting the overall cost for

current price P and new minimal price P ′ with the state-

transition price R. Hence, the objective function is constructed

as:

Minimize: R+ P ′(A,B)t

Subject to: R+ P ′(A,B)t < P (A,B)t

(1)(2)(3)(4)

(20)

V. SIMULATION

To validate the performance of our proposed system and the

efficiency of optimization approach, we conduct simulations

from the perspectives of pricing optimization and cognitive

pricing-aware transition.

A. Simulation Setup

TABLE I
DEFAULT SIMULATION PARAMETERS

cloud service provider s 10
code quantity c 8
data set quantity d 8
code-data relationship probability p 0.1
computational requirement C (GB) 1 ∼ 30
size of data sets D (GB) 1024 ∼ 10240
size of message exchange M (GB) 0 ∼ 0.1

data access proportion ω 1× 10−5

minimum computing pricing α 0.0073 ∼ 0.0089
maximum computing pricing α 0.036 ∼ 0.044
minimum storage pricing β 0.000032 ∼ 0.000040
maximum storage pricing β 0.000050 ∼ 0.000062
minimum inbound network pricing ρ 0.0011 ∼ 0.0013
maximum inbound network pricing ρ 0.0019 ∼ 0.0023
minimum outbound network pricing θ 0.11 ∼ 0.13
maximum outbound network pricing θ 0.19 ∼ 0.23
code and data set security level (Θ,Φ) (4, 4)

This section describes the default settings for our simula-

tions. For the parallel computing software to be deployed over

an cognitive inter-cloud system, we specify the quantities of

codes and data sets, while initiate their code-data relationship

by randomly generating non-zero values for all elements in the

matrix L with a probability of p. For the pricing variances from

different cloud service providers, we set up random values

for minimum and maximum prices for a specific service and

simulate the variety of spot instance prices within the intervals.

Note that the computing pricing is given by dollars per unit

per hour, the storage pricing is given by dollars per gigabyte

(GB) per hour, and the network pricing is given by dollars per

GB. From existing commercial cloud service pricing policies,

the default values for parameters of the simulation are set

in Table I. Note that, all random parameters follow uniform

distributions.

B. Pricing Optimization

We first simulate the starting stage of the system to demon-

strate the efficiency of seeking an optimal solution with

the lowest cloud service fee. In addition to our proposed

optimization approach, we also derive the cloud service fee

for the conventional Single-Cloud solution, which selects the

cloud with lowest total service fee to host all codes and data

sets.

1 2 3 4 5 6 7 8
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Data Set Security Level (Φ)

C
l
o
u
d

S
e
r
v
i
c
e

F
e
e

(
$
)

Single−Cloud
Θ = 1
Θ = 2
Θ = 4
Θ = 6
Θ = 8

Fig. 3. Tradeoff between Security Level and Cloud Service Fee

Fig. 3 reveals the trade-off between security assurance and

pricing optimization. We derive the cloud service fee for vari-

ous combinations of security levels in codes and data sets. It is

obvious that as the security level increases, either in codes Θ or

in data sets Φ, the total cloud service fee grows. This requires

the user to choose from different security levels based on

various requirements. According to our experimental settings,

the proposed cognitive optimization can only outperform the

Single-Cloud system with some combinations of Θ and Φ in

terms of cloud service fee, e.g., Θ = 6 and Φ > 6.

0 0.2 0.4 0.6 0.8 1
2.5

3

3.5

4

4.5

5

Component−Data Relationship Probability p

C
l
o
u
d

S
e
r
v
i
c
e

F
e
e

(
$
)

Single−Cloud
Θ = 1, Φ = 1
Θ = 4, Φ = 4
Θ = 8, Φ = 8

Fig. 4. Effect of Data-Code Relationship on the Cloud Service Fee

303

One of the most important features of a parallel computing

software system is the data-code relationships. Fig. 4 shows

its impact on the cloud service fee. We increase the value

of p, indicating the probability of code-data relationship, to

illustrates its impact on cloud service fee. Note that, along

with the growth of p from 0 to 1, the cloud service fees for

distinct combinations of Θ and Φ all linearly rise to a higher

level. Apparently, these increases are caused by additional

inter-cloud data transmissions from data chunks to program

codes. Similar comparison on Θ and Φ combinations are also

conducted. As depicted, if we select the highest security level

with Θ = 1 and Φ = 1, the cloud service fee is higher than that

of Single-Cloud within the range of 30% ∼ 46%. In contrast,

the setting of lowest security level with Θ = 8 and Φ = 8 will

save the users’ cost by 3% ∼ 20%.

10
−6

10
−5

10
−4

10
−3

2.5

3

3.5

4

4.5

5

5.5

6

Data Access Proportion ω

C
l
o
u
d

S
e
r
v
i
c
e

F
e
e

(
$
)

Single−Cloud
Θ = 1, Φ = 1
Θ = 4, Φ = 4
Θ = 8, Φ = 8

Fig. 5. Effect of Data Access Proportion on the Cloud Service Fee

Another critical feature of the parallel computing software

system that impacts the cloud service fee is the data access

proportion ω. As shown in Fig. 5, we evaluate the system

performance with various values of ω. Apparently, a larger ω
yields a higher volume of data transmissions between multiple

clouds, which results in a higher cloud service fee. Note

that the cost for highest security level with Θ = 1 and

Φ = 1 dramatically climbs to 6 dollars, with relatively higher

growth rate than other schemes. This is because the highest

security level restricts the program codes and data chunks to be

completely distributed, and thus the solution space for pricing-

aware optimization is much smaller than others.

C. Cognitive Pricing-Aware Transition

After the establishment of the optimal assignment solution,

we perform a simulation over time to evaluate the platform’s

cognitive capacity to the dynamic spot instance prices. With

the default security level setting at Θ = 4 and Φ = 4,

we compare the performance of three methodologies: Single-
Cloud: to host all program codes and data chunks in the

lowest-cost cloud and never change deployment over time,

Optimal-Static: to optimize the program codes and data chunks

assignment and never change deployment over time, and

Optimal-Cognitive: to be cognitive to the pricing variety of

multiple clouds and keep optimizing deployment strategy over

time.

10
0

10
1

10
2

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
x 10

4

Pricing Period (hours)

T
o
t
a
l

P
r
i
c
e

(
$
)

Single−Cloud
Optimal−Static
Optimal−Dynamic

Fig. 6. Efficiency of Proposed Platform with Pricing Variety Time Interval

According to our discussion before, the length of pricing

variety time interval will impact the state transition decisions.

In our formulation, the optimization target in state transition

involves the pricing variety time interval t, which implies

that larger value for time interval will make the cost in state

transition worthy. Therefore, we expect to see a decrease in

total cost, given a longer interval in our simulations. Fig.

6 illustrates the results from our experimental settings with

value of t ranging from 1 hour to 100 hours. In fact, in

contrary to relatively flat values of total fee from Single-Cloud

and Optimal-Static methodologies, we do observe the decline

of the Optimal-Cognitive scheme’s total cloud service fee,

although the degree of elevation decrease is insignificant. In a

nutshell, the performance of proposed dynamic optimization

is not severely impacted by the frequency of price fluctuation.

This phenomenon indicates that, the occurrence of state-

transition in our simulations rarely involves inter-cloud transfer

of data chunks, which will significantly increase the cost of

state-transition.

Given price variety time interval t = 1, Fig. 7 illustrates the

average instant cloud service fee over 50 hours for 100 random

iterations. In fact, in the first hour, Optimal-Static and Optimal-
Cognitive share the same assignment for program codes and

data chunks; thus their costs are identical. Afterwards, since

the Single-Cloud and Optimal-Static schemes are not adaptive

to the price fluctuations of clouds, their performances become

worse as time progresses. In contrast, the Optimal-Cognitive
scheme dynamically adapts new strategies for different pricing

portfolios, thus yields an around 30% reduction on total cloud

service fee.

304

0 10 20 30 40 50
0

1

2

3

4

5

6

Time Elapsed (hours)

I
n
s
t
a
n
t

C
l
o
u
d

S
e
r
v
i
c
e

F
e
e

(
$
)

Single−Cloud
Optimal−Static
Optimal−Cognitive

Fig. 7. Efficiency of Proposed Platform with Time Elapsed

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated a novel privacy and

price-aware inter-cloud system that automatically chooses and

migrates user tasks. We have mathematically formulated and

derived optimal solutions in both first-stage pricing minimiza-

tion and cognitive strategy. Preliminary numeric results have

revealed the trade-off between privacy and cost. Simulation

results also demonstrated the efficiency of the proposed system

in reducing total cloud service fee while considering privacy

constraints.

ACKNOWLEDGEMENT

This research work is supported by the Canadian Natural

Sciences and Engineering Research Council through grant

STPGP 447230, a University of British Columbia (UBC) Four

Year Doctoral Fellowship and a UBC Work Learn International

Undergraduate Research Award.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, pp. 50–58, Apr. 2010.

[2] D. Bernstein, D. Vij, and S. Diamond, “An intercloud cloud computing
economy - technology, governance, and market blueprints,” in SRII
Global Conference (SRII), 2011 Annual, pp. 293–299, March 2011.

[3] M. Gall, A. Schneider, and N. Fallenbeck, “An architecture for commu-
nity clouds using concepts of the intercloud,” in Advanced Information
Networking and Applications (AINA), 2013 IEEE 27th International
Conference on, pp. 74–81, March 2013.

[4] M. Schnjakin and C. Meinel, “Evaluation of cloud-raid: A secure and
reliable storage above the clouds,” in Computer Communications and
Networks (ICCCN), 2013 22nd International Conference on, pp. 1–9,
July 2013.

[5] M. Schnjakin, D. Korsch, M. Schoenberg, and C. Meinel, “Implemen-
tation of a secure and reliable storage above the untrusted clouds,” in
Computer Science Education (ICCSE), 2013 8th International Confer-
ence on, pp. 347–353, April 2013.

[6] M. Zhang, R. Ranjan, A. Haller, D. Georgakopoulos, and P. Strazdins,
“Investigating decision support techniques for automating cloud service
selection,” in Cloud Computing Technology and Science (CloudCom),
2012 IEEE 4th International Conference on, pp. 759–764, Dec 2012.

[7] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the intercloud - protocols and formats for cloud computing
interoperability,” in Internet and Web Applications and Services, 2009.
ICIW ’09. Fourth International Conference on, pp. 328–336, May 2009.

[8] R. Ranjan and R. Buyya, “Decentralized overlay for federation of
enterprise clouds,” CoRR, vol. abs/0811.2563, 2008.

[9] N. Grozev, R. Buyya, and K. Words, “Inter-cloud architectures and
application brokering: Taxonomy and survey.”

[10] A. Toosi, R. Calheiros, R. Thulasiram, and R. Buyya, “Resource pro-
visioning policies to increase iaas provider’s profit in a federated cloud
environment,” in High Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference on, pp. 279–287,
Sept 2011.

[11] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services,” in Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP 2010,
pp. 21–23, Springer.

[12] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan, “Sedic: privacy-
aware data intensive computing on hybrid clouds,” in Proceedings of
the 18th ACM conference on Computer and communications security,
pp. 515–526, ACM, 2011.

[13] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[14] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky:
dependable and secure storage in a cloud-of-clouds,” ACM Transactions
on Storage (TOS), vol. 9, no. 4, p. 12, 2013.

[15] A. Gohad, N. Narendra, and P. Ramachandran, “Cloud pricing models:
A survey and position paper.,” in Cloud Computing in Emerging Markets
(CCEM), 2013 IEEE International Conference on, pp. 1–8, Oct 2013.

[16] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“Deconstructing amazon ec2 spot instance pricing,” ACM Trans. Econ.
Comput., vol. 1, pp. 16:1–16:20, Sept. 2013.

[17] J. Ekanayake and G. Fox, “High performance parallel computing with
clouds and cloud technologies,” vol. 34 of Lecture Notes of the Insti-
tute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, pp. 20–38, Springer Berlin Heidelberg, 2010.

[18] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the
cloud: enabling mobile phones as interfaces to cloud applications,” in
Proceedings of the ACM/IFIP/USENIX 10th international conference on
Middleware, Middleware’09, (Berlin, Heidelberg), pp. 83–102, 2009.

[19] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic
execution between mobile device and cloud,” in Proceedings of the sixth
conference on Computer systems, EuroSys ’11, (New York, NY, USA),
pp. 301–314, 2011.

[20] W. Cai, C. Zhou, V. Leung, and M. Chen, “A cognitive platform for
mobile cloud gaming,” in 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science (CloudCom 2013), 2013.

[21] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar, “Min-cut program
decomposition for thread-level speculation,” in Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and
Implementation, PLDI ’04, (New York, NY, USA), pp. 59–70, ACM,
2004.

[22] D. Watson, J. K. Antonio, H. Siegel, and M. J. Atallah, “Static pro-
gram decomposition among machines in an simd/spmd heterogeneous
environment with non-constant mode switching costs,” in Heterogeneous
Computing Workshop, 1994., Proceedings, pp. 58–65, Apr 1994.

[23] M. Mechtri, D. Zeghlache, E. Zekri, and I. Marshall, “Inter-cloud
networking gateway architecture,” in Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International Conference on, vol. 2,
pp. 188–194, Dec 2013.

[24] D. Lange and O. Mitsuru, Programming and Deploying Java Mobile
Agents Aglets. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1st ed., 1998.

305

