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ABSTRACT

As Web3 projects leverage airdrops to incentivize participation,
airdrop hunters tactically amass wallet addresses to capitalize on
token giveaways. This poses challenges to the decentralization goal.
Current detection approaches tailored for cryptocurrencies over-
look non-fungible tokens (NFTs) nuances. We introduce ARTEMIS,
an optimized graph neural network system for identifying air-
drop hunters in NFT transactions. ARTEMIS captures NFT airdrop
hunters through: (1) a multimodal module extracting visual and
textual insights from NFT metadata using Transformer models;
(2) a tailored node aggregation function chaining NFT transaction
sequences, retaining behavioral insights; (3) engineered features
based on market manipulation theories detecting anomalous trad-
ing. Evaluated on decentralized exchange Blur’s data, ARTEMIS
significantly outperforms baselines in pinpointing hunters. This
pioneering computational solution for an emergent Web3 phenom-
enon has broad applicability for blockchain anomaly detection. The
data and code for the paper are accessible at the following link:
doi.org/10.5281/zen0do.10676801.
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1 INTRODUCTION

Airdrops have become a standard tactic in Web3 business opera-
tions, with Decentralized Applications (DApps) distributing tokens
to encourage user engagement based on smart contract rules [24].
This practice has spurred the rise of “airdrop hunters,” individuals
collecting wallet addresses to claim these bountiful token giveaways
by interacting with the contracts [10]. While airdrop is beneficial for
attracting early DApp users, hunters’ self-trading to appear as ac-
tive participants threatens the ecosystem’s integrity and challenges
DApps’ decentralization goals [22]. DApp teams must balance de-
tecting airdrop hunters without disadvantaging genuine users.

Although airdrops and the corresponding hunters represent an
emerging business model and community, relevant research re-
mains scarce. Fan et al. [10]’s research demonstrates identifiable
and observable patterns among airdrop hunters’ address activities.
The simplest example is “transaction loops” cycling assets between
their wallets to mimic exchanges. But such straightforward tech-
niques often get flagged by DApps’ monitoring systems, prompting
airdrop hunters to evolve more sophisticated strategies [1]. This il-
luminates the limitations of visualizing wallet interactions to detect
increasingly complex fraud, falling short of required responsive-
ness. Moreover, current studies mostly focus on cryptocurrency
and ignore the airdrop hunter issue in the NFT context.

There have been some machine learning attempts to detect
blockchain fraud behaviors. Among them, graph-based modeling
of wallet interactions is a very intuitive approach and has pro-
duced many detection frameworks for phishing scams [35], money
laundering [23], and bot arbitrage [14]. Consequently, construct-
ing airdrop hunter detection models using machine learning based
explicitly on a graphic way is logical. These works offer valuable
references for developing our airdrop hunter detection system, but
directly adopting them has limitations. Specifically,
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(i) Existing GNN modeling methods cannot accurately charac-
terize transaction paths. Merging multiple edges between the same
node pairs in the graph discards critical sequencing data for current
airdrop hunter detection. (ii) Related works lack the utilization of
intrinsic NFT features. Current practices only consider homoge-
neous cryptocurrency transactions, not accounting for additional
information tied to NFTs as traded assets. (iii) Absence of tailored
feature engineering. With a focus on tracing airdrop hunters in
NFT transactions, factors like NFT heterogeneity introduce more
noise. More sophisticated feature extraction could bolster modeling
effectiveness amidst such intricacies.

Our primary focus revolves around tracking airdrop hunters in
NFT transactions, a prevalent trading scenario in Web3. Address-
ing this, we introduce ARTEMIS: AiRdrop hunTErs detection via a
MultImodal and graph learning System. In response to the afore-
mentioned limitations, this system presents three tailored solutions:

(i) A tailored neighbor sampling and aggregator that chains to-
gether multi-hop NFT transaction sequences, incorporating crucial
behavioral information. (ii) Multimodal feature extraction modules,
leveraging Transformer-based pre-trained models to extract visual
and textual insights from NFTs. (iii) Engineer common NFT price
representations and advanced hunter-oriented features based on
market manipulation theories and domain knowledge.

In summary, the contributions of this work are:

e We formalize the problem definition of airdrop hunter de-
tection in the NFT market context, and label hunters within
Blur marketplace data as a dataset.

e We propose the ARTEMIS, the first systematic airdrop hunter
detection based on machine learning. Our system signifi-
cantly outperforms existing ones for hunter identification.
We also introduce tailored strategies during ARTEMIS train-
ing to address associated challenges effectively.

o We design and validate multimodal feature extraction, trans-
action path-based multi-hop neighbor sampling and aggre-
gation, and advanced feature representation modules, which
are transferable to downstream tasks and broadly applicable
to other NFT or on-chain anomaly detections.

2 BACKGROUND AND RELATED WORKS

2.1 Blur and Airdrop Hunters

Unlike the read-only Web1 and platform-controlled Web2, Web3
leverages blockchain technologies like smart contracts and cryp-
tocurrencies to put asset ownership back into users’ hands [30].
As a vital Web3 application, non-fungible tokens (NFTs) are a new
form of digital asset, each representing a unique artwork, certifi-
cate, etc., unlike traditional cryptocurrencies such as Bitcoin and
Ethereum [5]. Attributing to these traits, the NFT market exploded
in 2021, with total market value surging to around $10 billion by
early 2023 [28]. In the NFT landscape, decentralized exchanges
operating via smart contracts are crucial for bolstering market lig-
uidity and ecosystem growth, which has long been dominated by
OpenSea! through first-mover advantage. Blur? entered the NFT
market as an aggregator platform in Oct. 2022, relatively late but

!https://opensea.io/
Zhttps://blur.io/
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(@) Oct.19 Blur announced the airdrop plan.
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(b) Feb. 15 Blur started its airdrop.
3,500,000

25,000

3,000,000
20,000

2,500,000

15,000
2,000,000

3

ETH

1,500,000
10,000

1,000,000

5,000
500,000

- e

0
PSR VS I Y S N
K

Lg

O ® F N P P e P $ e P H e
RO S N N S N
§ I § S F I S
Y P F PP F PP PP PP

2

Figure 1: As a late entrant to the market, Blur announced on
Oct. 19, 2022, that it would adopt an airdrop strategy, subse-
quently attracting users and transactions. On Feb. 15, 2023,
Blur commenced its airdrop distribution, spurring a surge in
daily active users and trade volumes eclipsed OpenSea’s.

empowered by three rounds of token airdrops to incentivize par-
ticipants. During Blur’s second airdrop on Feb. 15th, 2023, over
300 million tokens were distributed (over 10% of the total supply),
drawing 115,834 users to surpass OpenSea [36].

Airdrops are a common token distribution approach utilized by
Web3 projects like Convex and AAVE, whereby tokens are allocated
to users at launch per set criteria to foster long-term holdings or
activity [2]. Post-airdrop, Blur’s daily active users exploded and
then steadily climbed, affirming the immense potential of this Web
3 growth strategy (Figure 1). However, it predictably attracted copi-
ous airdrop hunters. Analysts reveal that 50% of Blur’s NFT trading
volume derives from less than 300 wallets, while 1% of “whales” hold
84% of total value locked in Blur’s bid pools [25]. This implies ram-
pant wash trading on Blur, where a traded NFT’s buyer and seller
are the same airdrop hunter. Such behavior stifles platform growth
and triggers market contagion amidst NFTs, jeopardizing overall
market health and requiring advanced detection mechanisms.

2.2 Graph Learning on Blockchain

Recently, the integration of blockchain and machine learning has
garnered a plethora of notable research. This convergence becomes
especially pivotal in scenarios such as anti-money laundering, phish-
ing scam detection, and de-anonymization. Given that wallet inter-
actions on the blockchain inherently form a network structure, it
offers an ideal landscape for graph representation learning.

In the random walk-based sequence generation, though Deep-
Walk [27] stands as a hallmark, several advancements have also
emerged. Wu et al. devised Trans2Vec [33], integrating transaction
timestamps and amounts into a biased random walk process, aim-
ing to capture transaction relationships more authentically. In a
similar vein, Lin et al. embarked on a time-weighted random walk
approach [18, 19]. Venturing further, Hu et al. considered the hetero-
geneity of nodes and introduced a “Jump-Stay” temporal-weighted
biased walking method [13] for heterogeneous multi-graph model-
ing, balancing the distribution of diverse node types.

In the domain of GNN, the Graph Convolutional Network (GCN)
is a prominent representative [17]. Shen et al., for example, applied
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Figure 2: (a) The overview of our dataset. (b) The comparison of airdrop hunters and normal users.

GCN to phishing detection in the blockchain context [29]. Push-
ing the envelope, Zhou et al. incorporated attention mechanisms,
proposing a Hierarchical Graph Attention Network for account de-
anonymization [37]. Moreover, Lo et al. unveiled Inspection-L [23],
an innovative self-supervised GNN node embedding framework,
which achieved state-of-the-art results on the Elliptic money laun-
dering detection dataset. Kanezashi et al. focused on the hetero-
geneity of nodes, adopted heterogeneous modeling and conducted
an exhaustive evaluation of multiple GNN performances [15].

2.3 Transformer Pre-trained Models

Over the past few years, pre-trained models have made signifi-
cant strides, particularly in Computer Vision (CV) and Natural
Language Processing (NLP). Many pivotal advancements in these
domains have been achieved by constructing and optimizing pre-
trained Transformer models. In the CV arena, the Vision Trans-
former (ViT) proposed by Dosovitskiy and colleagues leverages the
self-attention mechanism of Transformers, demonstrating perfor-
mance on par with or even surpassing traditional Convolutional
Neural Networks [9]. Following closely, Caron and team intro-
duced DINO [4], which is capable of learning visual representations
without labels, further propelling the progress in self-supervised
learning. Concurrently, in the NLP sphere, the BERT model [7],
introduced by Devlin and associates in 2019, utilizes bidirectional
Transformers to pre-train extensive text data, offering robust rep-
resentational learning for downstream tasks. The RoBERTa [21]
model is a robustly optimized version of BERT that enhances per-
formance and universality by tweaking BERT’s training strategy
and data processing workflow. The emergence of these models has
enriched the pre-trained resources available for research in the CV
and NLP fields, facilitating the evolution of various applications.
Innovative works have pioneered the application of pre-trained
models to blockchain-centric tasks, achieving some breakthroughs.
For instance, the BERT4ETH [14] model aims to utilize a pre-trained
Transformer to detect fraudulent activities on Ethereum, show-
ing significant advantages. In predicting the selling price of NFT,
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the MERLIN framework [6], employing multimodal deep learning,
exhibits remarkable predictive performance. Furthermore, in the
realm of smart contract security auditing, research indicates that
large language models like GPT-4 and Claude can identify contract
vulnerabilities to a certain extent, albeit manual auditors are still
required to mitigate false positive rates. These studies unveil the
potential of pre-trained models in blockchain applications.

3 DATASET

After defining airdrop hunter detection as our initial objective, we
compiled transaction data from the NFT marketplace, Blur, over a
designated period and annotated associated addresses.

Data Collection. We utilized the Etherscan API® to compile
all NFT transaction data and airdrop records related to Blur from
Oct. 19, 2022, to Apr. 1, 2023. For traded NFTs, we thoroughly col-
lected metadata, including NFT images, descriptions, and attributes.
Adopting previous works’ methodology, we leveraged clustering
techniques to process transaction information. Through subsequent
labeling, we compared airdrop records to identify airdrop hunters
meticulously. Subsequently, we sampled varying hunter scales and
visualized microscopic transaction paths to validate data reliability.

Data Description. Across the Blur, we acquired 2,453,280 NFT
transactions encompassing 203,370 unique user addresses. Total air-
drops from Blur’s official address* were 123,815. Among them, 4,808
(about 4%) were labeled airdrop hunters, the rest regular traders
(Appendix A.1). We logged timestamps, type (buy or sell), value
(based on ETH token), sending/receiving addresses, NFT collection,
and relevant NFT ID for each transaction. For every wallet, we com-
piled historical transaction and smart contract interaction records.
For NFTs themselves, we gathered full metadata for 1,155,947 traded
tokens. Figure 2a shows the overview. Simultaneously, we display
two simplified real-world examples: In transaction loop 1, two ad-
dresses traded the same NFT back and forth 64 times. In loop 2,
three addresses reciprocally exchanged a single NFT 10 times.

Shttps://etherscan.io/
40xf2d15c0a89428c9251d71a0e29b39 1e86bce25
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Statistical Analysis. Our analysis of airdrop hunters (labeled
“True”) and normal participants (labeled “False”) unearthed two
primary airdrop hunter strategies. Initially, hunters created “trans-
action loops” across their wallets to forge genuine-looking transac-
tions. Recently, their strategies evolved as detection systems became
more sophisticated [20]. As Figure 2b shows: 1. Airdrop hunters had
more pronounced extremes in NFT purchases, indicating a lack of
interest in specific NFTs and a strategy to exploit market asymme-
tries.. 2. Hunters typically held NFTs for shorter periods (36 days)
than normal users (53 days), aligning with a profit-driven approach.
Notably, our study relies not solely on this single metric but em-
ploys it as a contributory signal within a robust framework. 3. Their
smart contract interactions show higher activity levels than regular
users. 4. Airdrop hunters also had a significantly higher distribu-
tion of unique addresses transacted with than regular users. These
behavioral differences support using a GNN model for detecting
airdrop hunters through a comprehensive feature analysis.

Brief Conclusion. With Blur’s initial lenient airdrop rules and
lack of hunter detection, we observed hunters routinely employ
transaction loops to inflate airdrop eligibility. However, as Blur
refined its airdrop policies and instituted logic to deter these basic
tactics, hunters had to adopt more intricate strategies. Similarly
to other Web3 projects, comprehensive detection via conventional
means (e.g., rules-based filtering on structural features) becomes
very challenging in this situation [10]. Nonetheless, given hunters’
consistent underlying motivation to maximize their airdrop acquisi-
tion, we posit that multi-dimensional analysis of address attributes,
transaction patterns, and traded asset (in our study, the NFT) char-
acteristics using GNNs may uncover unique collective on-chain
behavior to identify hunters amidst complexity effectively.

4 MOTIVATION

Our work is the first to systematically detect airdrop hunters using
graph-based machine learning in NFT trading contexts. Several
critical insights motivated our design:

Graph Representations of Blockchain: Previous blockchain
graph modeling traded off between GNNs and random walks. GNNs
fail to capture transaction sequences adequately, crucial for iden-
tifying hunters via trade paths, whereas random walks preserve
sequences but lack GNNs’ modeling depth. We desire both strengths,
capitalizing on NFT traceability and prioritizing sequential neigh-
bors during graph neighbor sampling.

Unique NFT Attributes: NFT heterogeneity presents oppor-
tunities for more discerning models. Intuitively, high-quality NFT
records are more reliable, while hunters may manipulate low-quality
ones. We posit NFT visual and textual traits as critical for assessing
value and incorporate NFT feature extraction to combine quality
cues with other signals to evaluate transaction legitimacy.

Advanced Pricing Features: Unlike fungible tokens, each NFT
has unique pricing, complicating pattern detection from transaction
values. Therefore, more sophisticated characteristics are needed
to capture market manipulation traits accurately. We referred to
Benford’s law and the roundness detection of transaction tail num-
bers, which is widely used in market manipulation detection [8], to
extract higher-order features from transaction prices to determine
whether a transaction occurred “naturally” or by hunters.
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The development of the multimodal feature module is inspired
by research showing the significant impact of NFT image and text
features on pricing, emphasizing the representational power [6].
Furthermore, GNN’s application in Ethereum phishing detection
underscores the importance of incorporating detailed features for
effective modeling [15]. Hence, our goal is to integrate blockchain
technologies, NFT attributes, and user behavior insights into a
comprehensive detection system, distinguishing airdrop hunters.

5 ARTEMIS

For detecting airdrop hunters, we propose ARTEMIS: AiRdrop
hunTErs detection via a Multlmodal and graph learning System.
ARTEMIS uniquely combines advanced feature representation, mul-
timodal extraction (including visual and textual attributes), and
transaction path-based neighbor sampling and aggregation. The
unique melding of these techniques for NFT airdrop hunters high-
lights our work’s core novelty. In this section, we will elucidate our
design rationale and introduce the various modules of ARTEMIS.

] | 2-HOP

Figure 3: Neighbor sampling based on transaction paths. Blue
nodes are randomly sampled 1-hop nodes that have direct
NFT transactions with the center node. Red nodes are 2-hop
nodes that trace the corresponding NFT transaction paths.
This process can be extended to K depth.

5.1 Graph Sampling and Aggregation

In this subsection, we describe the core module within ARTEMIS,
which entails an enhancement of the aggregation function in graph
neural networks. We leverage the transaction paths of NFTs as a
guide for neighbor sampling and node information aggregation.
Unlike random sampling, our algorithm prioritizes sampling along
the NFT transaction paths, ensuring that the generated embeddings
can capture the context of transactions, and obtain ample informa-
tion. This sampling algorithm aligns with our design philosophy of
characterizing node embeddings through transaction paths.
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5.1.1 neighbor Sampling. Showing as Figure 3, we define a
graph G = (V, E), where nodes V represent transactions addresses,
and E represents NFT transactions. Our forward propagation algo-
rithm generates embeddings for each node. We assume the model
has been pre-trained, with fixed parameters including the aggrega-
tion function and weight matrices. At each depth, nodes aggregate
information from neighbors. For the first hop, any neighbor can be
sampled. For subsequent hops, the sampling is based on the transac-
tion paths: if node Vj (central node) transacted NFT, with node V;
(one-hop neighbor), then while sampling two-hop neighbors for Vp,
with V; as the intermediate, only nodes that transacted NFT, are
sampled. This ensures that the sampled neighborhood is a random
subset with nodes sharing the same NFT transaction history and
can be extended to multi-hop neighbors.

5.1.2 Embedding Generation. Upon completing the neighbor
sampling, each node updates its representation not only using its
own current representation but also incorporating information
from its neighbors. To achieve this, we concatenate the current
representation of the node with the aggregated vector from its
neighborhood. This concatenated vector is then passed through a
weight matrix for a linear transformation, followed by a nonlin-
ear activation function o, such as ReLU, to obtain the new node
representation. In our subsequent work, we further incorporate
NFT features into this node representation. These NFT features are
derived from our multimodal feature extraction module, with more
details to be discussed in the next subsection.

5.1.3 neighborhood Definition and Computation Strategy.
For efficiency and consistency, we adopt a fixed-size strategy during
neighbor sampling. Specifically, for any node v, its neighborhood
N(v) is defined as a fixed-size subset obtained by uniform sampling
from the set of nodes connected, denoted as {u € V : (u,0) €
E}. In each iteration of forward propagation, we perform uniform
neighbor sampling anew for every node.

5.2 NFT Multimodal Feature Extraction

We introduce the NFT Multimodal Feature Extraction module within
ARTEMIS (Figure 4). As the transaction targets for airdrop hunters,
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each NFT with unique image and description. We use pre-trained
vision models (ViT) and pre-trained language models (BERT) to
extract their visual and textual features. Then, we fuse these two
types of representations to generate a unified embedding, which
then participates in the graph model’s aggregation module. For the
pre-trained models, we fine-tune them using a public large-scale
NFT dataset [26], and we verify the performance difference between
fine-tuned and non-fine-tuned models in the experimental section.
Input Data Representation. Consider a series of NFT datasets
D, where each data object 7 € D is composed of a pair: an image
I and its corresponding text description T. Both the image and text
are initially transformed into token sequences, represented as:

< in] (1)
- tn] (2

Text Learning. For a given NFT 7, we employ a Transformer-
based Pre-trained Language Model (PLM) — BERT, to perform deep
contextualization of the token sequence of the text part T, mapping
it to a dr-dimensional space:

Embeds = BERT(Ty)

Iy = [il, i,..

T = [tls t2, ..

®)

where Embedy € R™Xdr
Using a pooling function, we obtain an embedding vector repre-
senting the entire text:

ht = pooling(Embedr) (4)

where hy € R9T In this context, the polling function produces a
special token, [CLS], which represents the entirety of the input.
The same is true for the pooling function that follows.

Image Learning. Similarly, for the image part of the NFT, we
utilize a Transformer-based Pre-trained Vision Model (PVM) - ViT,
for processing:

Embed; = ViT(I;)

where Embed; € R"™ I
Using a pooling function, an embedding vector representing the
entire image is obtained:

©)

hy = pooling(Embedy) (6)
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where hy € RY.

Feature Fusion. To obtain a fused representation of both text
and image for each NFT, we first pass ht and hj through two dif-
ferent fully connected layers for dimensionality reduction:

h% = FCr(hr) (7)

R} = FCy(hy) ®

where h/, € R and b} € RY.
Subsequently, we utilize a self-attention mechanism to compute
the weights of these two embeddings:

©
(10)

The final fused representation consists of a concatenation of the
weighted embeddings:

ar = softmax(Attention(h7.))

ar = softmaX(Attention(h}))

(11)

hy = concat(ar © hf, ar © h})

where hy € Rér*d

Subsequently, the NFT embeddings are concatenated with the
address embeddings and are utilized in the downstream graph
neural network training. For the complete processes, please refer
to Sections 5.1 and 5.2, and Algorithm 1 in Appendix A.2.

5.3 Advanced Features

This section elaborates on the effective features we constructed
during the modeling process, along with our insights and some
tests regarding these features.

5.3.1 Market Manipulation Price Features. Each NFT carries a
unique value associated with it, posing a challenge for the model to
extract generalizable information, especially from the prices of NFTs
as it’s hard for the model to directly learn potential market patterns,
necessitating more sophisticated feature extraction techniques. We
hypothesize that the activities of airdrop hunters are essentially
market manipulation behaviors and validated this using two tests:
Benford’s Law and the rounding test of transaction prices (see
Appendix A.3 for test results). Benford’s Law utilizes the leading
digit of price datasets to detect market manipulation. Specifically,
the probability of the leading digit d (where d € {1,2, ...,9}) should
be given by the following formula:

P(d) =logyy(d +1) —log;(d) (12)

Similarly, under market manipulation, certain trailing digits in
prices may appear more frequently than would be expected in
a random distribution. Inspired by these theories, we extracted
the leading and trailing non-zero digits of prices as features to
characterize the naturalness of transactions.

5.3.2 Asset Turnover Features. Through our observation of
the simplistic strategy "transaction loop" previously, the trading
strategies of airdrop hunters imply that their wallets often have
higher asset turnover rates and multiple buyback behaviors. We
extracted the average holding duration of NFT assets for each wallet,
and those NFTs still held are calculated based on the time from
purchase to the present. Similarly, we counted the average holding
occurrences for each wallet concerning NFT assets.
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5.3.3 Wallet Activity Features. The number of interactive ad-
dresses can help us understand the activity level of a wallet and
its connections with other users. The ratio of transaction count to
interactive address count reveals the transaction exclusivity of the
wallet, and often, multiple wallets held by airdrop hunters stand out
in this metric. Due to the complex airdrop computation rules, inter-
actions with contracts without generating transactions could also
lead to airdrops, hence we accounted for the number of contract
calls for each wallet to augment the information.

5.3.4 Acquisition of Airdrop Tokens. This is a crucial post hoc
feature that directly correlates to whether an address belongs to
airdrop hunters. Airdrop hunters employ a series of strategies with
the explicit aim of acquiring airdrop tokens from events. We aim
to construct a real-time model for detecting airdrop hunters rather
than post hoc inductions. Therefore, the unannotated ARTEMIS
in the subsequent experimental sections does not encapsulate this
feature. We only mention and analyze this feature in the ablation
study subsection and conduct relevant analyses.

5.4 Training Strategies

In this subsection, we primarily introduce the training strategies
tailored for ARTEMIS and explain the purpose of these strategies.

Power Law Distribution. The blockchain transaction addresses
often follow a power-law distribution, meaning that a small number
of high-frequency accounts appear massively in transactions. We
tested the blur market address distribution and found it follows a
power-law distribution (Appendix A.4). From a graph construction
perspective, this implies that some nodes act as super-nodes, pos-
sessing many edges. These super-nodes, during training, can affect
the feature representations of other nodes.

To mitigate this impact during training, we employed:

Inverse Frequency Sampling. We aim to reduce the probabil-
ity of sampling super-nodes during neighbor sampling to ensure
effective learning. Since the 2-hop and beyond neighbor sampling
is based on NFT transaction paths, here we only consider the initial
neighbor sampling. We calculate the degree for each node’s neigh-
bors: degree(V;), rank the neighbor nodes in ascending order based
on their degrees r(V;), and then compute the sampling probability:

exp(=f - r(Ni))
2jexp(=f - r(N;))
where f is a hyperparameter, and j iterates over all neighbor nodes.

In this formula, we employ the exponential function to empha-
size the sampling priority of nodes ranked higher (i.e., with smaller
degrees). The hyperparameter f§ determines the extent of this em-
phasis: a larger f value will grant significantly higher sampling
probabilities to the few nodes with the smallest degrees, while a
smaller f will lead to a smoother distribution. The impact of this
hyperparameter on model performance will be discussed in the
subsequent experimental sections.

Batch Balance. We adopt a fixed quantity of neighbor sampling
for training to ensure a balanced number of positive and negative
samples in each batch. Employing a fixed neighbor count aims to
reduce computational load and alleviate the influence of super-
nodes, while balancing samples between batches aims to mitigate
biases brought about by dataset imbalance.

Psample(Ni) = (13)
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6 EXPERIMENTS
6.1 Experimental Setup

Task Description. Experiments are conducted on the dataset de-
scribed in Section 3 with the objective of detecting airdrop hunters,
formulated as a binary classification problem where airdrop hunters
are considered as the positive class. For experimental purposes, the
dataset is split into training and validation sets in a ratio of 9:1. The
evaluation metrics adopted are the precision, recall, and F1 score
for positive samples. Briefly, Precision quantifies the proportion
correctly predicted as the positive class, Recall depicts the propor-
tion of actual positive class correctly predicted, while the F1 score
is the harmonic mean of the two. Therefore, we primarily use the
F1 score to compare the comprehensive performance of models.

Baselines. In this experiment, the ARTEMIS model is utilized
and compared against three types of baseline models: (1) Meth-
ods on structured data like SVM [31] and LightGBM [16] can-
not use edge information, so classification is based on nodes. (2)
Methods based on graph random walks like DeepWalk [27] and
Node2Vec [11], which take advantage of both the graph structure
and node features. (3) Methods based on Graph Neural Networks
like GCN [17], GraphSAGE [12], GAT [32], and GIN [34].

We meticulously optimized the hyperparameters of each baseline
model through techniques such as grid search, adjusting learning
rates, batch sizes, and other critical parameters for peak perfor-
mance on our dataset. We recognize the challenges presented by
the inherent data structure limitations of the baseline models. For
example, models like DeepWalk were limited to using graph topo-
logical information, unlike GNN-based models which could utilize a
broader range of data dimensions. We were diligent in maintaining
comparison fairness, mindful of these inherent differences.

Implementation. The number of layers k in the graph neural
network is treated as an experimental variable. The neighbor sample
size is 8. The batch size is configured to 256 with a dropout ratio of
50%. In the NFT feature extraction module, ViT-base (patch16-224)
is used as the pre-trained visual model (PVM), and BERT-base-
uncased is employed as the pre-trained language model (PLM). A
12-layer Transformer encoder is set up with the hidden layer size
dr = dr defaulted to 768, and 12 attention-heads are used.

Baseline models setup: For methods based on random walks
(DeepWalk and Node2Vec), the number of walks is 20, the walk
length is 5, and the context size is 10. For all methods based on Graph
Neural Networks, the number of GNN layers is 2, the neighbor
sample size is 8, the batch size is 256, and the dropout ratio is 50%.

6.2 Performance Comparison

Each experiment was conducted five times consecutively, averaging
the results of the experiments:

In Table 1, we compare various methods for identifying airdrop
hunters. Even without considering blockchain network topology,
SVM (F1 = 0.629) and LightGBM (F1 = 0.680) have decent perfor-
mance, showing the robustness of traditional machine learning
methods. Random walk-based methods, DeepWalk and Node2Vec,
yield moderate F1 scores of 0.496 and 0.500, highlighting the lim-
itations of only using transaction path topologies. Among GNN
techniques, GIN stands out with an F1 score of 0.776, surpassing
GCN, GraphSAGE, and GAT. ARTEMIS outshines all, achieving the
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Table 1: Comparison for Airdrop Hunters Detection

Method Precision Recall F1
SVM [31] 0.744 0.544 0.629
LightGBM [16] 0.793 0.597 0.680
DeepWalk [27] 0.567 0.501 0.496
Node2Vec [11] 0.620 0.502 0.500
GCN [17] 0.648 0.896 0.752
GraphSAGE [12] 0.562 0.934 0.701
GAT [32] 0.464 0.873 0.579
GIN [34] 0.680 0.903 0.776
ARTEMIS 0.820 0.833 0.826

highest Precision and F1 (0.820 and 0.826, respectively). Compared
with GNNs, even with a slightly lower Recall, the notable improve-
ment of Precision and F1 underscores ARTEMIS’s efficacy, mainly
because it incorporates specific NFT information, enhancing the
ability to discern between airdrop hunters and active traders and
more accurately avoid mistaken identification.

Table 2: Evaluating Non-real-time Improvement

Method Precision Recall F1
ARTEMIS 0.820 0.833 0.826
w/ airdrop count 0.834 0.836 0.835

As Table 2, the enhancement to the model imparted by the post-
event feature Airdrop Count. Given that our objective is to devise
a real-time model, this post-event feature is utilized here solely
for comparison. The performance of our current model does not
significantly fall short when juxtaposed with the state attained with
post-event features, thus preliminarily affirming that our model
satisfactorily fulfills the requirement of real-time operation.

Table 3: Impact of Aggregation Depth K on ARTEMIS

Method Precision Recall F1
ARTEMIS_1 0.783 0.774 0.778
ARTEMIS_2 0.814 0.827 0.820
ARTEMIS_3 0.820 0.833 0.826
ARTEMIS 4 0.803 0.812 0.807

Table 3 illustrates the impact of selecting the depth parameter K
for neighbor sampling and aggregation while keeping other param-
eters fixed. Notably, the model’s performance shows an upward
trend as the depth of neighbor aggregation increases from 1 to 3.
However, when the depth reaches 4, there is a slight performance
decrease. This suggests that most valuable information can be dis-
tilled within three layers of neighbor aggregation, and increasing
K beyond 3 starts to introduce more noise into the model.

We conducted comparative tests on the impact of the hyperpa-
rameter f in Frequency Inverse Order Sampling on model perfor-
mance. The experimental results in Table 4 demonstrate that the
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Table 4: Impact of Frequency Inverse Order Sampling

Method Precision Recall F1
ARTEMIS(S=1.0) 0.820 0.833 0.826
ARTEMIS(6=0.1) 0.743 0.735 0.739
ARTEMIS($=0.5) 0.780 0.785 0.782
ARTEMIS(f=2.0) 0.795 0.800 0.797

choice of f§ has a significant effect on model performance. When
B = 0.1, the strategy degenerates into something approximating
random sampling. When f = 1.0, ARTEMIS achieves the best per-
formance on all metrics. This observation highlights the advantage
of moderate non-linearity in capturing the intrinsic structure of
the data. Further comparison shows that either larger or smaller
values of f§ (such as f = 2.0 and §§ = 0.1) lead to a decline in overall
performance. This might suggest that either overly aggressive or
conservative non-linearity is not applicable on this dataset.

6.3 Ablation Study

Table 5: Ablation Study for Different Modules

Method Precision Recall F1

ARTEMIS 0.820 0.833  0.826
Ablation study of NFT multimodal modules
w/o fine-tuning 0.816 0.829  0.822
w/o Image Embeddings 0.804 0.818  0.811
w/o Text Embeddings 0.812 0.827  0.819
w/o NFT Multimodal 0.797 0.810  0.803
Ablation study of other modules

w/o Adv. Features 0.801 0.817  0.809
w/o Trade Neighb. Aggr. 0.798 0.803  0.800

Table 5 presents the ablation study. Initially, there was a positive
contribution from each module to the results, with a noticeable de-
cline when removing anyone. Secondly, the neighbor aggregation
based on transactions plays the most crucial role; the F1 score drops
by about 0.26 when this module is omitted. The advanced features
also significantly impact the performance with successful deep
characterization of NFT transactions. Furthermore, we demonstrate
the effectiveness of the NFT feature extraction module under vari-
ous conditions. Fine-tuning has not shown sufficient effectiveness,
which is reasonable considering the pre-trained model already pos-
sesses strong feature representation capabilities. Among Image and
Text Embeddings, the image information proves to be more critical,
aligning with our intuition that images hold more importance in
NFTs. We interpreted the multimodal module in Appendix A.5.

7 DISCUSSION AND FUTURE WORK

Accurately identifying airdrop hunters is inherently challenging,
considering the blurred distinction between professional airdrop
hunters and active benign users. The official Blur platform was
widely criticized for its aggressive banning policy towards airdrop
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hunters, which inadvertently harmed many legitimate users [3].
In this challenging context, ARTEMIS achieves state-of-the-art
performance with a precision of 0.820 and a recall of 0.833.

ARTEMIS innovates by leveraging pre-trained models on visual
(ViT) and textual (BERT) data for the unique NFT airdrop hunter
challenge in Web3, where ViT emphasizes the importance of visual
elements in this arena, distinct from conventional cryptocurrency
analysis. Additionally, the enhanced graph neural network system
is tailor-made for blockchain transactions. Our system provides
a holistic analytical framework. This aligns with the WebConf
community’s interests in web technology, user behavior, and data
analytics, advancing security and demonstrating the relevance of
traditional web technologies in evolving blockchain contexts.

Regarding the practical application of the model, we acknowl-
edge that using ARTEMIS as an automatic detector might be too
aggressive. However, ARTEMIS can be an excellent auxiliary tool
for identifying airdrop hunters, aiding analysts in making quicker
and more efficient judgments and decisions. Detecting and relieving
airdrop hunters involves the intrinsic trade-offs between potential
benefits and costs for the stakeholders, necessitating rigorous game-
theoretic modeling. We also recognize the necessity to demonstrate
the generalizability of ARTEMIS to other NFT marketplaces, such as
OpenSea and Rarible, to provide a more encompassing assessment.
Our subsequent research will delve into such analyses, enriching
the discourse around counter-strategies and reinforcing the trans-
ferability and robustness of ARTEMIS.

8 CONCLUSION

This work represents the first step in building a deep learning sys-
tem to detect airdrop hunters, a critical and emerging problem
with implications for Web3 ecosystem health and future research
directions of the WWW community. We formalize the novel task of
airdrop hunter detection and benchmark the performance of base-
line models. Through compiling on-chain data from NFT trading
markets, we propose ARTEMIS, a multimodal graph neural network
system tailored for this task. ARTEMIS contains three primary de-
sign modules and accompanying training strategies to address data
distribution challenges. Subsequent experiments demonstrate the
model’s superiority over various baselines, including traditional
machine learning, random walk-based, and GNN methods, with
ablation studies discussing each component’s importance, espe-
cially the NFT text and image information brought with the mul-
timodal module. In the future, we will extend our analysis data
from other marketplaces to provide a more encompassing assess-
ment of the ARTEMIS system. Moreover, tracing NFT transaction
paths and extracting multimodal NFT representations and general-
ized advanced features could transfer to other potential NFT-based
machine-learning tasks. We provide one of the first specialized
computational solutions for this frontier domain.
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Figure 5: (a) Distribution of the first digits in NFT transaction
prices on the Blur marketplace. (b) Distribution of the last
digits in NFT transaction prices on the Blur marketplace. (c)
Distribution of the first digits in NFT transaction prices on
the Lookrare marketplace. (d) Distribution of the last digits
in NFT transaction prices on the Lookrare marketplace. (e)
Distribution of the first digits in NFT transaction prices on
the Opensea marketplace. (f) Distribution of the last digits
in NFT transaction prices on the Opensea marketplace. (g)
Distribution of the first digits in NFT transaction prices on
the X2Y2 marketplace. (h) Distribution of the last digits in
NFT transaction prices on the X2Y2 marketplace.

A APPENDIX
A.1 Airdrop Hunters Labeling

In our data processing phase, we referred to the identification pro-
cess of Fan et al. [10] and others for the preliminary clustering
identification of airdrop hunters. Our clustering algorithm is de-
rived from a similarity graph, where each address’s features are
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obtained from its graph representation as well as wallet charac-
teristics. We then employed agglomerative hierarchical clustering
(AHC) to cluster the addresses, using the silhouette coefficient to se-
lect the optimal number of clusters. After completing the clustering,
we conducted a further verification process. We invited three expe-
rienced on-chain data analysts to review and label the clustering
results. This process aimed to ensure the accuracy and reliability of
the clustering outcomes. During the labeling stage, we combined
the airdrop records from Blur Season 1 and the transaction history
of the wallets to annotate each major category of the clusters. Ad-
ditionally, the data analysts conducted manual discrimination to
identify and exclude outliers in each category. Finally, we adopted
a consensus-based approach for classifying wallet addresses. If a
wallet address did not reach a 60% consensus threshold in being
labeled as an “Airdrop Hunter”, we categorized it as a regular user.

A.2 Sampling and Aggregation by Transaction

Algorithm 1 Sampling and Aggregation by Transaction Paths

Require: Graph G(V, E) with edge attributes for NFTs
Require: Node features {x,, Vo € V}
Require: Depth K
Ensure: Vector representations Z = {z,, Vo € V}
for k =1to K do
for allv in V do
if k == 1 then
NK — inverse_frequency_sample(G.neighbors (o))
else
for all u in N¥~1 do
NFT « edge_attribute(G, v, u)
N,If « sample({w]|
w € G.neighbors(u)A
edge_attribute(G, u, w) = NFT})
end for
end if
Kk« AGGREGATE({hk~! @ hyrr,Vu € NK})
hK — o(Wk x CONCAT(hk=1, hk))
end for
end for
for allv in V do
Zy — h{f
end for
return Z

A.3 Market manipulation detection

Benford’s Law indicates that in numerical data sets, lower digits
(1-3) are more common as leading digits than higher ones (8-9),

challenging the expectation of equal frequency. This principle is
widely used in forensic accounting and fraud detection to identify

anomalies suggesting number manipulation.

On the other hand, the Last Digit Rounding Law highlights the
human tendency to round numbers, often leading to a dispropor-
tionate number of figures ending in specific digits, especially 0 or 5.
Similar to Benford’s Law, an unusually high occurrence of numbers
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ending in these rounded digits in financial or other data can hint at
potential rounding or data manipulation.

The left half of Figure 5 shows the Benford’s Law test for each
market, while the right half displays the distribution of the last digit.
The image indicates that the market distribution deviates somewhat
from the expected distribution of Benford’s Law. Additionally, the
last digits are not as uniformly rounded as expected, suggesting a
potential for market manipulation to some extent.

A.4 Address frequency power-law detection

In Figure 6, we illustrate an empirical test to ascertain whether the
distribution of addresses in the blockchain follows a power law, a
common characteristic observed in various networked systems. The
axes are plotted on a logarithmic scale to better discern the relation.
The x-axis denotes the rank of addresses, which is determined by
the frequency of their occurrences, while the y-axis represents the
said frequency of occurrences. In a system following a power law
distribution, a linear relationship is expected on a log-log plot, as
exhibited by the data in the figure. This linear trend suggests that
there are a few addresses (the "head" of the distribution) that occur
very frequently, while the majority of addresses (the "tail") occur
much less frequently. This distribution characteristic is crucial as
it highlights the existence of "hubs’ or highly connected nodes, a
feature common in many real-world networks.

Address Frequency

-
1)

Frequency

-
)

10t

10°
Rank

10° 10* 10? 10% 10°

Figure 6: Address Power Law Distribution Test. The x-axis
represents Rank while the y-axis represents Frequency, with
both axes on a logarithmic scale. When the addresses’ fre-
quency and ranks approximate a straight line on a log-log
plot, it suggests that the distribution may follow a power law.

A.5 Multimodal Attention Mechanisms

An intuitive explanation is that if an NFT exhibits transaction vol-
umes inconsistent with its popularity, it is more likely to be in-
volved in fraudulent transactions by airdrop hunters. In Figure 7,

1834

WWW ’24, May 13-17, 2024, Singapore, Singapore

we selected four examples to explore the intuitive interpretations
underlying the multimodal module:

We compared two PFPs (Profile Picture) NFTs, Azuki (ID=6660)
and BONER (ID=2032). We believe that the image and text features

of Azuki provide positive information to the model and prevent
it from being targeted by airdrop hunters. Specifically, the text’s

average attention is concentrated on the top 5 words describing
the NFT’s traits, including its rarity and visual appeal. In contrast,
BONER is preferred by airdrop hunters, whose descriptions contain
provocative terms like “vibe” and “ethereum”, and the image atten-
tion successfully identifies the common imagery of this collection.
Furthermore, we compared functional NFTs. Land (ID=19213) is a
functional NFT from a game where 20,000 fixed genesis blocks were
released. The image and text features accurately identify the map’s
rare resources (e.g., wood, grass, and water), crucial for subsequent
gameplay. Flur Alpha (ID=3949) originates from an investment com-
munity’s NFT, granting access to an internal discord channel for
investment insights. The image feature represents the card’s main
characteristics, while the text feature focuses on the NFT’s function-
ality. However, compared to Land, the ambiguous characteristics
and value of Flur Alpha make it a target for airdrop hunters.
Regarding the intuition behind the utility of multimodal features,
we believe that the multimodal features of an NFT encompass its
value standard and popularity. Intuitively, if an NFT has a transac-
tion volume incongruent with its popularity, it is more likely to be
involved in spurious transactions by airdrop hunters. Our model
relies not merely on the presence of a single indicator but on the
aggregation of signals, which collectively enhance prediction. This
holistic perspective aids in the detection of NFT airdrop hunters.

Heads Mean
Attention

Attention

NFT Name & ID Top 5 words

Type Original Image Hunter Target

1. banner
2. brown
3. chill

4. Azuki
5. hair

Azuki

ID: 6660 PFP

1. Boner

2. vibe

3. mfer

4. nerd

5. ethereum

BONER

D: 2032 PFP

1. Wood

2. Grass

3. Genesis

4. Land

5. community

Land

ID:19213 Utility

1. alpha
2. passes
3. holder
4. discord
5. own

Flur Alpha

1D:3949 Uiility

Figure 7: Analysis of Multimodal Attention Mechanisms
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