
MCG Test-bed:
An Experimental Test-bed for Mobile Cloud Gaming

Wei Cai
University of British Columbia

Vancouver, Canada
weicai@ece.ubc.ca

Conghui Zhou
We Software Limited

Hong Kong
neio.zhou@gmail.com

Minchen Li
Zhejiang University
Hangzhou, China

minchen@zju.edu.cn
Xiuhua Li

University of British Columbia
Vancouver, Canada

lixiuhua@ece.ubc.ca

Victor C.M. Leung
University of British Columbia

Vancouver, Canada
vleung@ece.ubc.ca

ABSTRACT
Conventional cloud gaming benefits from many aspects by
executing the game engine in the cloud and streaming the
gaming videos to players’ terminals through network. How-
ever, this type of cloud gaming service can not guarantee
stable Quality of Service (QoS) in mobile scenarios, subject
to the diversity of end-user devices and frequent changes in
network quality. To address this issue, a component-based
cloud gaming platform for mobile devices has been proposed,
where the decomposed game can be partially offloaded to
the cloud, achieving load balancing between cloud and ter-
minals. In this work, we implemented the very first experi-
mental test-bed for component-based mobile cloud gaming.
Three game prototypes are built on our test-bed, in order to
demonstrate its feasibility and efficiency. Experiments have
been conducted to show that intelligent partitioning leads to
better system performance, such as lower response latency
and higher frame rate.

Categories and Subject Descriptors
C.5.0 [Computer System Implementation]: [General];
D.2.10 [Software Engineering]: Design—Methodologies;
K.8.0 [Personal Computing]: General—Games

Keywords
Cloud Gaming, Mobile Games, Test-bed

1. INTRODUCTION
Gaming industry is evolving itself to a new stage that

aims to provide mobile gaming experience anywhere any-
time to their customers. Researchers, developers and oper-
ators are eager for novel cross-platform solutions to video

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiGames’15, May 19, 2015, Florence, Italy.
Copyright c© 2015 ACM 978-1-4503-3499-0/15/05 ...$15.00.
http://dx.doi.org/10.1145/2751496.2751501.

games, which is responsive to the variety of players’ screen
sizes, device hardware capacity, operating systems and inter-
actional controllers. This demand has significantly soared,
along with the arising number of mobile terminals in mod-
ern society. The cloud, well recognized as the next genera-
tion computing modality, has attracted attentions in video
gaming service provisioning. Conventional cloud gaming so-
lutions, including industrial systems (e.g. OnLive1, Gaikai2,
G-Cluster3, etc.) and research test-beds (e.g. GamingAny-
where[1]), exhibit a streaming-based approach, in which the
video games are executed in cloud servers and the gaming
videos are streamed to the players’ terminals over network.
In reverse, the players’ inputs are transmitted to the cloud
server to replicate the players’ actions. [2]. The streaming-
based cloud gaming platform brings many advantages, such
as cross-platform distribution, anti-piracy, overcoming the
hardware restriction of terminals, reducing the development
and maintenance fee, etc.

Nevertheless, things go different when the scenario turns
to portable terminals with mobile networks. Even though
stream-based cloud gaming service providers claim that stream-
ing gaming videos to mobile devices can eliminate the hard-
ware constraints of mobile devices, they also have to admit
that the quality of service of the existing system can not
be guaranteed, since real-time video transmission requires
low-latency and high-bandwidth network access, while we
are still suffered from the unstable quality of Internet in-
frastructure [3][4]. On the other hand, the capacity of mo-
bile terminals has made remarkable enhancement, thanks to
the rapid development of hardware design and technologies.
Consequently, [5] has stated that there shall be alternatives
toward gaming as a service (GaaS). Our previous work [6]
has proposed a component-based cloud gaming framework,
which consider game application as decomposed software
to be dynamically allocated between cloud and terminals,
according to terminals’ computational power and network
quality. In other words, the system will dynamically and
partially offload the game to the cloud [7], so that the mo-
bile terminal utilizes the rich resources from the cloud to

1http://www.onlive.com/
2http://www.gaikai.com/
3http://www.g-cluster.com/

25

enhance its functionality. Thus, mobile cloud gaming be-
comes possible.

However, there is still no existing experimental environ-
ment for component-based cloud gaming platform. In this
work, we develop the world’s very first test-bed for component-
based mobile cloud gaming, which learns about the status
of terminal ↪aŕs environment and adapts the cloud gaming
service to these evaluations. With the test-bed, we devel-
op 3 game prototypes to demonstrate the efficiency of the
proposed framework. The remainder of the paper is as fol-
lows. We review related work in Section 2 and briefly intro-
duce the test-bed implementation in Section 3, respectively.
Afterwards, we develop three game prototypes to conduct
experiments in Section 4. Section 5 concludes the paper.

2. RELATED WORK

2.1 Cloud Gaming Architecture
Adaptive mobile video streaming architectures have been

widely studied for mobile cloud games. The framework
in [8] monitors the end-to-end network status and alters
the video encoding parameters for cloud games accordingly.
This work considers dynamic video encoding adaptation fo-
cusing on improving the user-perceived quality of a Gaming-
on-Demand service, which is a highly demanding interactive
multimedia application based on a client-server infrastruc-
ture and video streaming. Similarly, a recent work [4][9]
proposes a Remote Server Based Mobile Gaming (RSBMG)
architecture and develops a set of application layer optimiza-
tion techniques to ensure acceptable gaming response time
and video quality in the remote server based approach. The
techniques include downlink gaming video rate adaptation,
uplink delay optimization, and client play-out delay adap-
tation.

2.2 Partitioning Solution
To facilitate intelligent resource allocation, the cloud games

should support dynamic partitioning between cloud and mo-
bile terminal. There has been some work on partitioning
of mobile applications. [10] first introduces a K-step algo-
rithm as a dynamic solution where the partition is calcu-
lated on-the-fly, once a mobile connects and communicates
its resources. Furthermore, according to [11], there is no
single partitioning that fits all due to environment hetero-
geneity (device, network, and cloud) and workload. Conse-
quently, they proposed a system that can seamlessly adap-
t to different environments and workloads by dynamical-
ly instantiating what partitioning to use between weak de-
vices and clouds. An implementation [12] called CloneCloud
is a flexible application partitioner and execution runtime
that enables unmodified mobile applications running in an
application-level virtual machine to seamlessly off-load part
of their execution from mobile devices onto device clones
operating in a computational cloud. However, these works
requires the application to be completely installed in both
the mobile terminal and the virtual machine residing in the
cloud.

3. TEST-BED IMPLMENTATION

3.1 Component-based Framework
As stated in our previous work [6], the proposed test-

bed considers game software as inter-connected components,

which function as cooperative modules via inter-component
message transfer. In other words, a game application is de-
composed into a number of pieces, which either executed
in the cloud or the players’ terminal, according to the sta-
tus of devices and network quality. Consequently, the test-
bed is required to be capable in perceiving the application
runtime environment, making decisions of workload alloca-
tion, and facilitating the dynamic inter-connectivity between
cloud/terminal components. Due to the limitation of paper
length, we would not mention the detailed algorithms and
mechanisms for the framework design, which has been de-
scribed in [13].

Figure 1: Sequence Diagram for Cognitive Engine
of MCG Test-bed

To help readers of this paper understand the core work-
flow of MCG test-bed, we illustrate a sequence diagram for
its cognitive engine in Fig. 1. To start the gaming, the cloud
server first dispatches a JavaScript engine (including small
portion of game instance) to the terminal, while launching
the game instance in the cloud. During the gaming ses-
sion, the gaming instance in terminal keep sending status
statistics to the Cognitive Engine, which analyze the sys-
tem performance and acknowledge the Partitioning Coordi-
nator its decision of partitioning. This decision will instruct
the Partitioning Coordinator to redirect all control-messages
and inter-component messages, in order to facilitate dynam-
ic partitioning. In other words, this is the key mechanis-
m that enables the proposed environment-aware adaption.
Note that, there is an optional onloading process when Par-
titioning Coordinator receives decisions from Cognitive En-
gine. This process works if the terminals are lack of sufficient
components to perform optimal partitioning.

3.2 Test-bed Development
To develop the MCG test-bed, a programming model that

facilitates code migration and execution between cloud and
terminals is in need. This requirement leads us to JavaScrip-
t, which exhibits as scripts in client-side and also power-
ful back-end language in Node.js4 software system that de-

4http://nodejs.org/

26

Figure 2: Deployment Directory of MCG Test-bed

signed for writing scalable Internet applications, notably we-
b servers. For the mobile client, we embed a WebKit-based
browser into our Android application to parse and execute
the JavaScript mobile agent. Even though we currently only
provide Android app, other mobile operating systems sup-
porting browsers will work with MCG test-bed after a small
portion of modification.

As depicted in Fig. 2, besides the standard elements of N-
ode.js project (package.json, npm-debug.log and node modules
directory that imports dependent Node.js libaries), the M-
CG test-bed project is organized by Express5, a Node.js
web application framework following Model-View-Controller
(MVC) software architectural pattern. Following is the de-
ployment of our test-bed:

• game.js: as the entrance of MCG test-bed, game.js
creates and launches a Node.js web server that listens
players’ commands and responses corresponding mes-
sages or documents to them.

• /views: as the portal of MCG test-bed, Embedded
JavaScript (EJS) template files in directory of views
provide views for the game server, including home.ejs,
confignavi.ejs and config.ejs. The home.ejs lists exist-
ing games on the test-bed, so that the players can click
through the icons to access the game.

• /route: as the test-bed’s core, the controllers and mod-
els designed in the directory of route enable the pro-
posed dynamic partitioning. While route.js functions
as the entrance to different views and api.js interprets
the application programming interfaces (API) invoca-
tions in applications, the combination of engine.js and
client-engine-plugin.js are in charge of inter-component
message redirection, following the partitioning deci-
sions made by their built-in algorithms.

• /public: as the container of plug-ins and accessaries,
the directory of public loads all client-side third-party
Cascading Style Sheets (CSS) and JavaScript files to
players’ terminal. Since our target is to develop a re-
sponsive, mobile first gaming environment, all layout
designs adopt the Metro UI CSS6, which is a set of
Windows 8 template extended from Bootstrap7 frame-
work.

5http://expressjs.com/
6http://metroui.org.ua/
7http://getbootstrap.com/

• /application: for our application developers, their ap-
plications shall contains at least one EJS view app.ejs
and its accessorial components. Their codes will be
deployed to the directory of programs, with name ex-
tensions of .application (e.g. tank.application). Note
that, the components within directory of common can
be accessed by all applications.

• /results: as a full-access directory, results enables the
application developers to write intermediate data into
binary files. In our following experiments, we saves all
resulting data produced by prototype programs here.

As a test-bed that supports component-based games, we
provide a set of APIs to encapsulate lower layer partitioning
for game developers. To acknowledge an inter-component
invocation in MCG test-bed, the developers shall simply add
a “$$” mark before the name of the components when they
are invoked in the code (e.g. $$componentX({msg : args});
stands for an invocation of componentX with a parameter
of args passing as a message).

3.3 The Administration Center

Figure 3: Administration Center of Test-bed

Fig. 3 illustrates a screenshot of the MCG test-bed ad-
ministration center (rendered by config.ejs). The adminis-
trator can browse all ongoing gaming sessions here from the
TERMINALS list session. For each terminal, the partition-
ing and loading status of all components are illustrated in

27

(a) Gobang Game (b) 3D Skeletal Game Engine (c) Robocode Tank Game

Figure 4: Screenshots of Game Prototypes on MCG Test-bed

graphical user interface. Note that, if the AUTO OPTI-
MIZATION SWITCH is turn to off, we can even manually
control each component’s execution environment by a sim-
ple click. This feature supports our following experiments
that test the efficiency of different task allocation schemes.
In addition, the administration center also depicts real-time
figures for terminal status, including network bandwidth,
usage of client CPU, memory, battery, etc.

4. PROTOTYPE AND EXPERIMENTS
To verify the feasibility and efficiency of MCG tesbted,

we develop and deploy three prototypes in this section, in-
cluding a Gobang game, a 3-dimensional (3D) skeletal game
engine, and a Robocode tank game. Runtime screenshot-
s of the three prototypes are illustrated in Fig.4 and their
experimental results are discussed as follows.

4.1 Gobang Game
Gobang game (also known as Gomoku or Five in a Row)

is an abstract strategy board game that players alternate in
placing chess of their color on an empty intersection of chess-
board. The winner is the first player to get an unbroken row
of five stones horizontally, vertically, or diagonally. We de-
veloped the Gobang game prototype for MCG test-bed to
demonstrate the efficiency of offloading game engine’s com-
putational complexity, artificial intelligence (AI) in this con-
text, to the cloud. Therefore, we implement the AI module
as a component, which is feasible to migrate between cloud
and players’ terminals and execute on these two different
environments.

Three types of devices are employed in our evaluation, in-
cluding an ASUS windows 7 personal computer (PC) with
Intel Pentium G630 @2.70GHz central processor unit (CPU)
and 4.0 GB Internal Memory (RAM), an Apple iPad mi-
ni tablet with 1 GHz dual-core ARM Cortex-A9 CPU and
512 MB DDR2 RAM, and a LG G2 Android mobile phone
with 2.26 GHz quad-core Snapdragon 800 processor, 2.0 G-
B RAM and Long-Term Evolution (LTE) networks module.
Through public Wi-Fi network at UBC Vancouver campus
and Fido LTE cellular data network service in Vancouver,

these devices are utilized as players’ terminals to access the
Gobang game deployed on MCG test-bed hosting in Amazon
Elastic Compute Cloud (EC2)8.

PC−WiFi iPad−WiFi Mobile−WiFi Mobile−LTE
0

0.5

1

1.5

2

2.5
x 10

4

T
im

e
 (

m
s
)

AI−Auto

Latency−Auto

AI−Cloud

Latency−Cloud

AI−Terminal

Latency−Terminal

Figure 5: Response Latency Comparison in Gobang
Game Prototype

By repeating the Gobang game plays with certain chess
steps, we conduct the experiments with schemes iterating
different combination of devices and networks, such as PC-
WiFi, iPad-WiFi, Mobile-WiFi and Mobile-LTE. For each
scheme, we iterate three execution models (Test-bed auto-
matic optimization, all cloud execution and all terminal exe-
cution) and record two critical data: AI execution time and
Player Experienced Latency. AI execution time is calculat-
ed by subtracting AI component invocation time from AI
completing time, while the Player Experience Latency is a
measurement of the time difference between the time a play-

8http://aws.amazon.com/ec2/

28

er placing chess and the time the AI placing chess. These
measurements are depicted as six schemes in Fig. 5.

Apparently, the numeric value of AI-Auto is closed to
Latency-Auto, since their differences are caused by two-time
network communications between terminals and the cloud.
According to our measurement, WiFi and LTE network in-
troduce additional 344.37 ms and 485.25 ms delay in aver-
age, respectively. These delays are negligible in these exper-
iments. This is the reason that Mobile-WiFi exhibits nearly
identical pattern to Mobile-LTE. The most remarkable phe-
nomenon is that the cloud schemes reduce a huge proportion
of response time in comparison to terminal schemes. It in-
dicates high computational complexity of designed AI com-
ponents. Apparently, the AI component’s feature of high
resource consumption makes it better to be executed in the
powerful cloud. This conclusion is proved by another obser-
vation in our experimental series: all automatic optimiza-
tion solutions choose to do this, resulting comparable per-
formances between Auto and Cloud solutions.

4.2 3D Skeletal Game Engine
The 3D skeletal engine, our second prototype, aims to

challenge MCG test-bed’s capacity on rendering 3D game
scenes. Besides the complexity of AI, modern games are
also prone to create fantastic game scenes that consumes
huge amount of terminal resources. Recent work [14] has
explored the possibility of partial offloading for game scene
renderings. The 3D skeletal engine is our understanding in
this perspective. A 3D skeletal system (also known as bone
system) is a common technique used to create skeletal an-
imations in video games. As the foundation of generating
acting units, a skeletal animation consists of a skin mesh
and an associated bone structure, so that the movement of
the mesh is associated with the vertices of the bone. The
developed 3D Skeletal Game Engine is consisted of a ani-
mation editor and a 3D rendering module, which computes
and draws action animations for a human and a dog, respec-
tively. The implementation screenshot of a four-component
prototype is illustrated in Fig. 4(b).

To validate and demonstrate the MCG test-bed’s feature
of cognitive task allocation to the network quality, we per-
form experiments to measure the fluency of rendered ani-
mations by the numeric value of frame per second (FPS). In
order to explicitly control the network parameters between
the cloud and terminals, we employ two identical comput-
ers to serve as cloud and client, which are equipped with
Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz processor, 8.00
GB installed memory (RAM) and 64-bit Windows 7 operat-
ing system. On the “cloud” side, we installed NetBalancer9

to control the bandwidth of NodeJS process in the cloud, for
the purpose of simulating the variance of network quality in
real-world cases. We design our experiments in two aspects.
First, there shall be comparisons between automatic opti-
mization and all potential partitioning schemes. Since the
prototype contains four components, an iteration of possi-
ble partitioning makes 24 schemes. Therefore, we divide the
total experiment time into equal 16 slides for each scheme.
Second, we also concern about different system performance
over different network bandwidth. Hence, we repeat the
experiments three times, with bandwidth settings of 1000
KBps, 500 KBps and 100 KBps, respectively.

9https://netbalancer.com/

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

Time Slots (5 seconds per slot)

A
v
e

ra
g

e
 F

ra
m

e
s
 P

e
r

S
e

c
c
o

n
d

 (
F

P
S

)

Auto−1000 Iteration−1000 Auto−500 Iteration−500 Auto−100 Iteration−100

Figure 6: Game QoS (FPS) Comparison in 3D Skele-
tal Game Engine

Fig.6 shows the results of above experiments. The average
FPS of each time slot (5 seconds per slot) indicates the flu-
ency of rendered animation at the specific time period. We
can conclude from the comparison between different band-
width schemes that, network quality plays an important role
in the proposed real-time rendering prototype. The result-
ing FPS decrease from around 48 to around 18, when the
bandwidth falls from 1000 KBPS to 500 KBPS. Things get
worse if the network bandwidth is reduced to 100 KBPS, M-
CG test-bed can only render the 3D skeleton at FPS rate of
5, which is only 10% of the 1000KBPS case. The good part
of this experiment is that, it proves the efficiency of MCG
test-bed. Under all three network conditions, the cognitive
engine does a great job in seeking optimal partitioning so-
lutions for the prototype: Auto series outperforms Iteration
series almost all the time. In addition, we derive very simi-
lar patterns from the three iteration schemes: the 1st, 5th,
6th, 8th, 9th, 11th, 12th, 16th allocations reach the optimal
FPS rate, while the rests fall to the bottom. This is a result
of allocation strategy and the communication methodology
between components.

4.3 Robocode Tank Game
The idea of third game prototype, Robocode Tank, comes

from a famous open source educational game Robocode10,
which is a programming game to develop a robot battle tank
to battle against other tanks in Java or .NET. The robots
are controlled by competitors’ AI codes and their battles are
running in real-time and on-screen. Our Robocode Tank
game prototype inherits all features of Robocode and places
an additional tank controlled by players into the battlefield.

Since the Robocode tank system performance is deter-
mined by the varying complexities of tank AIs, here we only
validate the cognitive capacity of MCG test-bed. To record
FPS traces, three players were engaged in the EC2 hosted
the tank game on previous mentioned LG G2 Android s-
martphone through Fido LTE network. Four AI-controlled
tanks in the battlefield make strategy decision at 1 second
interval. As shown in Fig. 7, these players all experienced

10http://robocode.sourceforge.net/

29

0 5 10 15 20 25 30 35 40 45 50 55
0

20

40

60

80

Time Elapsed (second) : Player 1

F
P

S

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

Time Elapsed (second) : Player 2

F
P

S

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

Time Elapsed (second) : Player 3

F
P

S

Figure 7: Game QoS (FPS) Enhancement for
Robocode Tank Game

very low FPS rate at the beginning of the gaming session-
s, while the test-bed eventually provided an optimal parti-
tioning solutions for them. Note that, the solution search
time for these three players are distinct from each other and
optimal FPS is fluctuating, according to the everchanging
network quality and game contents (the tank interactions in
this game).

5. CONCLUSION AND FUTURE WORK
In this paper, we have described MCG, the world’s first ex-

perimental test-bed for mobile cloud gaming. Unlike conven-
tional research and developing ideas of cloud games, MCG
test-bed facilitates component-based games with unique fea-
tures of dynamic partitioning. We discussed the component-
based framework and core workflow of MCG test-bed, while
explain the selection of implementation technologies. Three
game prototypes are developed and deployed to demonstrate
the validation and efficiency of proposed test-bed. For future
work, we focus on the following directions: i) toward better
scheduling and resource management, we seek better mea-
surement methods for components execution performance,
both in cloud and mobile devices; ii) besides the latency-
related optimizations, we are looking for more sophisticat-
ed mathematic models that consider larger perspectives of
the system, such as computational efficiency, network band-
width minimization, battery preservation, etc.

6. ACKNOWLEDGMENT
This work is supported by a University of British Columbi-

a Four Year Doctoral Fellowship, funding from the Natural
Sciences and Engineering Research Council, and UBC Work
Learn International Undergraduate Research Award.

7. REFERENCES
[1] C. Huang, K. Chen, D. Chen, H. Hsu, and C. Hsu.

GamingAnywhere: The First Open Source Cloud
Gaming System. ACM Trans. Multimedia Comput.
Commun. Appl., 10(1s):10:1—-10:25, January 2014.

[2] S. Wang and S. Dey. Modeling and characterizing user
experience in a cloud server based mobile gaming
approach. In Global Telecommunications Conference,
2009. GLOBECOM 2009. IEEE, pages 1 –7, 30
2009-dec. 4 2009.

[3] K. Chen, Y. Chang, P. Tseng, C. Huang, and C. Lei.
Measuring the latency of cloud gaming systems. In
Proceedings of the 19th ACM international conference
on Multimedia, MM ’11, pages 1269–1272, New York,
NY, USA, 2011. ACM.

[4] S. Wang and S. Dey. Rendering adaptation to address
communication and computation constraints in cloud
mobile gaming. In 2010 IEEE Global
Telecommunications Conference (GLOBECOM 2010),
pages 1–6, USA, 2010.

[5] W. Cai, M. Chen, and V. Leung. Toward gaming as a
service. IEEE Internet Computing, pages 12–18, May
2014.

[6] W. Cai, C. Zhou, V. Leung, and M. Chen. A cognitive
platform for mobile cloud gaming. In 2013 IEEE 5th
International Conference on Cloud Computing
Technology and Science (CloudCom 2013), 2013.

[7] K. Yang, S. Ou, and H. Chen. On effective offloading
services for resource-constrained mobile devices
running heavier mobile internet applications.
Communications Magazine, IEEE, 46(1):56–63, 2008.

[8] S. Jarvinen, J. Laulajainen, T. Sutinen, and
S. Sallinen. Qos-aware real-time video encoding how to
improve the user experience of a gaming-on-demand
service. In Consumer Communications and
Networking Conference, 2006. CCNC 2006. 3rd IEEE,
volume 2, pages 994 – 997, jan. 2006.

[9] S. Wang and S. Dey. Addressing response time and
video quality in remote server based internet mobile
gaming. In Wireless Communications and Networking
Conference (WCNC), 2010 IEEE, pages 1–6, 2010.

[10] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and
G. Alonso. Calling the cloud: enabling mobile phones
as interfaces to cloud applications. In Proceedings of
the ACM/IFIP/USENIX 10th international
conference on Middleware, Middleware’09, pages
83–102, Berlin, Heidelberg, 2009.

[11] B. Chun and P. Maniatis. Dynamically partitioning
applications between weak devices and clouds. In
Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing & Services: Social Networks and
Beyond, MCS ’10, pages 7:1–7:5, New York, NY, USA,
2010.

[12] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
Clonecloud: elastic execution between mobile device
and cloud. In Proceedings of the sixth conference on
Computer systems, EuroSys ’11, pages 301–314, New
York, NY, USA, 2011.

[13] W. Cai, M. Chen, C. Zhou, V. Leung, and H. Chan.
Resource management for cognitive cloud gaming. In
Communications (ICC), 2014 IEEE International
Conference on, pages 3456–3461, June 2014.

[14] D. Meilander, F. Glinka, S. Gorlatch, L. Lin,
W. Zhang, and X. Liao. Bringing mobile online games
to clouds. In Computer Communications Workshops
(INFOCOM WKSHPS), 2014 IEEE Conference on,
pages 340–345, April 2014.

30

