
A Cognitive Platform for Mobile Cloud Gaming

Wei Cai1, Conghui Zhou2, Victor C.M. Leung1, Min Chen3
1Department of Electrical and Computer Engineering, The University of British Columbia, Canada

2 We Software Limited, Hong Kong
3 School of Computer Science and Technology, Huazhong University of Science and Technology, China

1 {weicai, vleung}@ece.ubc.ca, 2 neio.zhou@gmail.com, 3 minchen2012@hust.edu.cn

Abstract—Mobile cloud gaming provides a whole new service
model for the video game industry to overcome the intrinsic
restrictions of mobile devices and piracy issues. However, the
diversity of end-user devices and frequent changes in network
quality of service and cloud responses result in unstable Quality
of Experience (QoE) for game players. A cognitive cloud gaming
platform, which could overcome the above problem by learning
about the game players environment and adapting the cloud
gaming service accordingly, does not currently exist. To fill this
void, we design and implement a component-based gaming plat-
form that supports click-and-play, intelligent resource allocation
and partial offline execution, to provide cognitive capabilities
across the cloud gaming system. Extensive experiments have been
performed to show that intelligent partitioning leads to better
system performance, such as overall latency.

Index Terms—cognitive; platform; mobile; cloud; game

I. INTRODUCTION

Well recognized as the next generation computing infras-

tructure, the cloud is considered as a provider of scalable

storage and computational resources, which supports various

types of online services for end users. Researchers have

shown great interest in migrating all kinds of applications

from fixed servers to cloud platforms, so called Everything

as a Service. In this specific environment, cloud gaming is

attracting remarkable attention in both industry and academia

recently.

Hosting games in the cloud brings many advantages. It is

maintenance free and has nominal (almost negligible) costs for

service provisioning compared to the costs of the hardware

and gaming software that one has to pay for in personal

computer (PC) or console gaming. Since cloud-based services

support cross-platform solutions, cloud gaming can replace

those PlayStations or Xboxes with its ability to stream games

to all browsers regardless of whether it is running in a mobile

device or a PC. Moreover, the game developing companies

like the idea of cloud games, since it is the best solution

for anti-piracy. The cloud-based gaming model changes the

distributions of the games into providing gaming services,

which creates continuous profits.

The situation will be even more interesting when the user

terminals are mobile devices. With the approach of offloading

[1], the mobile terminal utilizes the rich resources from the

cloud to enhance its functionality and prolong the battery

lifetime through better energy efficiency, and therefore, to

overcome the intrinsic constraints of mobile devices, such

as incompatible operating system, limited storage, insufficient

computational capacity and battery drain problem. For in-

stance, you can now play World of Warcraft on an Apple

iPad!

OnLive1, Gaikai2 and G-Cluster3 are the most famous com-

mercial providers of gaming services on-demand. Their cloud

gaming model, so called cloud video gaming systems, takes

advantage of cloud computing to overcome the limitations

of mobile devices. Video games are hosted in their private

cloud servers and the gaming video frames are encoded by the

streaming server before being transmitted over the Internet to

the clients, such as interactive televisions, desktop PCs, smart-

phones, etc. In reverse, the players’ inputs are delivered to a

cloud server and accepted by the game content server directly

[2]. In this context, the cloud is intrinsically an interactive

video generator and streaming server, while the mobile devices

function as the event controllers and video receivers that can

run sophisticated games despite their restricted hardware. This

results in a longer battery life for the device and longer gaming

times for the user at the expense of higher consumption

of communication resources. Nevertheless, those cloud-based

video games still suffered from the bandwidth-bottleneck of

Internet access. The bandwidth constraints restrict the bit rate

of gaming videos, while the jitter and delay affect the quality

of experience (QoE) for the players. Therefore, technologies

regarding real-time video rendering, compressing, and trans-

mission quality of service (QoS) control become the most

critical issues for system design [3][4]. Another approach to

provide cloud gaming services is browser game [5], which

always relies on online social network sites with a massive

number of users (e.g., FarmVille on Facebook). In a typical

browser game, the gaming contents, including data and all of

the gaming procedures, are stored and executed within the

cloud, while the gaming graphics and videos are rendered

by the browser, instructed by the returns from the cloud

server. Compared to the normal solution of cloud-based video

games, browser games leave the presentation functionalities

to the browsers, in order to eliminate the high bandwidth

consumption for gaming video transmission. According to the

study of above two types of cloud gaming, we identify that

browser game is more efficient in the use of communication

resources, at the expense of a heavier computation load in the

1http://www.onlive.com/
2http://www.gaikai.com/
3http://www.g-cluster.com/

2013 IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-5095-4/13 $31.00 © 2013 IEEE

DOI 10.1109/CloudCom.2013.17

72

user device.

In other words, the main distinction of the two existing

cloud-based gaming model is the proportion of offloading.

However, both of them are still of insufficient flexibility,

given the various scenarios of playing cloud games on mobile

devices. In this work, we investigate and develop a cognitive

and flexible cloud gaming platform, which learns about the

game players environment (i.e., the combination of terminal

and access network) and adapts the cloud gaming service to

these evaluations. With the proposed platform, we explore a

potential solution that enables players to continue their gaming

sessions while the mobile terminal is temporarily disconnected

from the cloud. The outline of the paper is as follows. We

review related work in Section II. We then discuss the design

objectives of the cognitive platform for mobile cloud games

in Section III. The design and implementation of the cognitive

platform are described in Section IV and V, respectively.

Experiments on optimizing the overall latency and enabling

partial offline execution are conducted in Section VI. Section

VII concludes the paper.

II. RELATED WORK

A. QoE for Cloud Gaming

Maintaining an acceptable QoE is the main criteria of the

proposed cognitive platform for mobile cloud gaming. Various

subjective user studies have been conducted to demonstrate the

relationship between cloud gaming QoE and QoS, including

game genres, video encoding factors, conditions of the wire-

less network [2], CPU load, memory usage, and link band-

width utilization [6], response latency and the game’s real-

time strictness [7], network characteristics (bit rates, packet

sizes, and inter-packet times) [8], number of users [9], and an

empirical network traffic analysis of On-Live and Gaikai [10].

B. Cloud Gaming Architecture

Adaptive mobile video streaming architectures have been

widely studied for mobile cloud games. The framework in [11]

monitors the end-to-end network status and alters the video

encoding parameters for cloud games accordingly. This work

considers dynamic video encoding adaptation focusing on

improving the user-perceived quality of a Gaming-on-Demand

service, which is a highly demanding interactive multimedia

application based on a client-server infrastructure and video

streaming. Similarly, a recent work [4][12] proposes a Remote

Server Based Mobile Gaming (RSBMG) architecture and

develops a set of application layer optimization techniques

to ensure acceptable gaming response time and video quality

in the remote server based approach. The techniques include

downlink gaming video rate adaptation, uplink delay optimiza-

tion, and client play-out delay adaptation.

C. Partitioning Solution

To facilitate intelligent resource allocation, the cloud games

should support dynamic partitioning between cloud and mobile

terminal. There has been some work on partitioning of mobile

applications. [13] first introduces a K-step algorithm as a

dynamic solution where the partition is calculated on-the-

fly, once a mobile connects and communicates its resources.

Furthermore, according to [14], there is no single partitioning

that fits all due to environment heterogeneity (device, network,

and cloud) and workload. Consequently, they proposed a

system that can seamlessly adapt to different environments

and workloads by dynamically instantiating what partitioning

to use between weak devices and clouds. An implementation

[15] called CloneCloud is a flexible application partitioner and

execution runtime that enables unmodified mobile applications

running in an application-level virtual machine to seamlessly

off-load part of their execution from mobile devices onto

device clones operating in a computational cloud. However,

these work requires the application to be completely installed

in both the mobile terminal and the virtual machine residing

in the cloud.

III. OBJECTIVES OF THE PROPOSED PLATFORM

Cognitive systems [16] are attractive for the heterogeneous

environment we are considering. The situation-aware architec-

ture of a cognitive system monitors and assesses the working

environment to predict and make decisions for the providing

services, and refine future decisions by learning from the

achieved results. To the best of our knowledge, a QoE-oriented

cognitive system is not available for cloud gaming systems. To

provide cognitive capabilities across the cloud gaming system,

we need to overcome the diversity of user-end devices and

frequent changes in network QoS and cloud responses. We use

the concept of cognitive system design (i.e., act, learn, adapt)

to realize our proposed situation-aware cloud gaming platform.

Our objective is to develop an architectural framework that is

cognitive of resources and characteristics of the cloud, the

access network, and the end-user devices, to enable dynamic

utilization of these resources.

As shown in Fig. 1, we envision a cognitive platform with a

novel capability to learn about the game players environment

(i.e., the combination of terminal and access network) and

adapt the running of the game to maintain an acceptable QoE.

The proposed platform should be able to:

• support click-and-play without game installation: in con-

trary to most of the partitioning and offloading work

for mobile cloud applications [13][14][15], the game

applications designed for the proposed platform do not

need to be installed in the mobile devices in advance. The

players are able to play their favorite games immediately

when they connect to the gaming platform.

• support intelligent resource allocation: the platform is

able to measure, evaluate and predict the overall system

performance, including CPU load, memory usage, link

bandwidth utilization, and specialized application-layer

metrics, such as the number of players, spatial distribution

of the player population, or game state computation

delay; afterwards, the platform is able to intelligently

adapt its gaming services to system performance, such

as changing network conditions (QoS), to keep user QoE

above a prescribed threshold.

73

Fig. 1. Architecture Framework for Cognitive Mobile Cloud Gaming

• support gaming without network connection for special
cases: strong dependency on network connection is the

intrinsic problem of cloud gaming system. Neverthe-

less, even in multi-player games, players still spend a

significant number of time to interact with Non-Player

Characters (NPCs) by themselves, according to the cat-

egorization of gaming scenes in [17]. The platform is

able to support offline gaming for these scenes, in order

to eliminate the occasional disconnection problem for

mobile devices.

IV. DESIGN OF COGNITIVE PLATFORM

A. Elements of Cognitive Platform

Given the above requirements, we define the main building

blocks of the architectural framework on both the cloud-side

and terminal-side, and identify the prevalent standards that are

applicable to the interfaces between these building blocks.

Fig. 2 illustrates the elements of the proposed cognitive

platform and their relationships. Information Collectors on

both the cloud and mobile sides monitor resource usage at

cloud, access network and mobile terminal. These surveillance

data are reported to the Performance Evaluator and Local
Analyzer. Note that the Performance Evaluator is able to guide

the procedure in Local Analyzer, while the Local Analyzer
reports its results to Performance Evaluator periodically for

further evaluations. Games designed for the cognitive platform

consist of a number of inter-dependent game components.

These components are able to migrate from the cloud to

the mobile terminal via a network, under the instruction of

the Onloading Manager. As the message gateway between

components, the Partitioning Coordinator intelligently selects

Fig. 2. Cognitive Platform for Mobile Cloud Gaming

destination components, locally or remotely, to achieve dy-

namic resource allocations. The Synchronization Controller is

designed to guarantee the synchronization of data in identical

components distributed in the cloud and mobile terminals.

Note that the Onloading Manager, Partitioning Coordinator
and Synchronization Controller are manipulated by the Per-
formance Evaluator and Local Analyzer for the purpose of

maintaining an acceptable QoE for players.

B. Onloading

Since the cognitive platform supports click-and-play, none

of the game component exists in the mobile client at the

beginning of a gaming session. In this case, the cloud server

shall be capable to transmit executable components to the mo-

bile terminal, in order to enable dynamic resource allocation.

We employ the concept of mobile agent [18] to realize this

process. A mobile agent is a composition of computer software

and data, which is able to migrate (move) from one computer

to another autonomously and continue its execution in the

destination computer. In this context, the game components

are encapsulated as mobile agents and dispatched from the

cloud to mobile devices.

The onloading process could either be performed before

gaming session starts or be running in the background during

the gaming session. It is scheduled by the Onloading Manager,

which assigns each game component a priority based on

the overall assessment on the particular component. Similar

to application’s consumption graph in [13], Fig. 3 denotes

the dependency of game components as a directed graph

G = {C,E}, where every vertex in C is a component ci
and every edge ei,j in E is a dependency between ci and cj .

Each component ci is characterized by following parameters:

• ri: the resource consumption of ci on a mobile device

74

• si: the size of the compiled code of ci
• inj,i: the amount of data that ci takes in input from cj
• outj,i: the amount of data that ci sends in output to cj
• finj,i: the frequency that ci takes data input from cj
• foutj,i: the frequency that ci sends data output to cj
In this context, the priority pi for the ith game component

is modeled by the following function:

pi = f(ri, ci,
∑

j

finj,i · inj,i,
∑

j

fouti,j · outi,j) (1)

Fig. 3. Components Partitioning for Proposed Cognitive Platform

Nevertheless, the priority of a game component is also

associated with its function. Some key components should

have a higher priority in the onloading process, since they

provide featured benefits in the mobile terminal. We will

discuss more details on this topic in Section IV-E.

C. Partitioning

Once the mobile terminal fetches the game components

from the cloud, Partitioning Coordinator should work with

Performance Evaluator and Local Analyzer to solve the

dynamic partitioning problem, in order to provide a QoE-

oriented resource optimization. In our proposed framework,

all input and output data from the components are sent to

the Partitioning Coordinator, which provides a routing service

for invoke messages by intelligently selecting the destination

components when an application cycle is determined.

As depicted in Fig. 3, the partitioning problem intrinsically

seeks to find a cut in the consumption graph such that some

components of the game execute on the client side and the

remaining ones on the cloud side. The optimal cut maximizes

or minimizes an objective function O, which expresses the

general goal of a partition, e.g., minimizing the end-to-end

interaction time between the mobile terminal and the cloud,

minimizing the amount of exchanged data, or minimizing the

latency in a gaming session.

In designing the objective function O, we need to satisfy

the user’s QoE requirement, including resource constraints in

mobile devices and tolerable latency for each interaction cycle:

∑

k∈mobile

rk ≤ RMobile (2)

Denote components set Sc involved in each gaming inter-

action cycle, for all i, j ∈ Sc,

∑

i∈mobile,j∈cloud

(finj,i · inj,i + fouti,j · outi,j)
B

+ TSc
≤ Tm

(3)

where RMobile represents the available resource in the

mobile device, TSc
denotes the transaction delay of the com-

ponents, B denotes the average bandwidth, and Tm denotes

the average maximum delay that the players can tolerate.

D. Synchronization

The remote distribution of game components results in the

data asynchronization problem. To address this problem, the

Synchronization Controller is employed to update all parame-

ters in the gaming environment. However, the synchronization

process also introduces a non-negligible network overhead.

Consequently, we design the synchronizing mechanism fol-

lowing the principle of “Sync-Only-If-Necessary” to minimize

the transmission cost.

E. Partial Offline Execution

One of the most critical problems for mobile cloud gam-

ing is the conflict between strong network dependency and

unstable network connectivity. In all existing cloud gaming

frameworks, the gaming session will be suspended or even

destroyed, once the mobile device loses its network connection

to the cloud. In this work, we explore a novel solution for the

temporal disconnection issues in special cases.

As a matter of fact, players are not interacting with each

other all the time during the gaming session, even in those

multi-player games. In a typical Massively Multiplayer Online

Role-Playing (MMORPG) game, the avatar spends a remark-

able amount of time in monster hunting by him/her-self, for

the sake of level-up and outfit gathering [17]. The players will

never be happy if they lose valuable items in the battlefield

due to the network access problem. Our proposed platform

focus on the solution to these scenarios.

Fig. 4 demonstrates a case of redirection service provided by

the Partitioning Coordinator: the mobile-executed component

7 is trying to activate component 3 in the cloud with an

output message, while the network connection to the cloud is

temporarily lost. Rather than suspending the gaming session,

the Partitioning Coordinator locates component 3 on the

mobile device and redirects the output message to this local

copy. Thus, the player will not be disturbed by the temporary

disconnection of Internet. This approach is called “Partial

Offline Execution”.

Note that once the mobile device recovers its network

access, the Synchronization Controller, which is aware of the

data modifications, will perform data synchronization with the

cloud server.

75

Fig. 4. Redirection Service in Disconnection to the Cloud

As has been discussed in Section IV-B, the components

that support partial offline execution will be assigned higher

priority levels in the onloading procedure.

V. IMPLEMENTATION

A. Enabling Technologies

To implement the proposed cognitive platform for mobile

cloud games, we seek enabling technologies that facilitate the

migration and partitioning of game components. JavaScript is

adopted as the programming language, which is originally

implemented as a part of web browsers so that client-side

scripts could interact with the user, control the browser,

communicate asynchronously, and alter the document content

that was displayed. More recently, however, its use has be-

come common in both game development and the creation of

desktop applications.

Node.js4 is a server-side software system designed for

writing scalable Internet applications, notably web servers.

Programs on the server side are written in JavaScript, which

enables web developers to create an entire web application

in JavaScript, both server-side and client-side. This feature

facilitates the game components, JavaScript gaming code in

this context, to migrate from the cloud to user-end, and to be

executed on cloud server and client as a mobile agent.

For the mobile client, we embed a WebKit-based brows-

er into the cognitive engine for parsing and executing the

JavaScript mobile agent from the cloud server. In our im-

plementation, the WebKit browser is built on Android s-

martphone. However, all mobile operating systems supporting

browsers are able to run our cognitive platform after a small

number of modification. We are also looking for alternative

solutions to implement the mobile client as native applica-

tions on JavaScript. As the state-of-the-art, Microsoft already

supports native application development with JavaScript on its

metro-style interface.

4http://nodejs.org/

B. Application Programming Interface

As a game developing platform, our cognitive platform

provides a set of application programming interfaces (APIs),

which facilitates the game developers to create their game

applications without the knowledge of intelligent onloading

and partitioning schemes. To trigger the partitioning, the

developers only have to add a “$$” mark before the name

of the components when these components are invoked in

the code (e.g. value = $$componentX({msg : msg});).
Our cognitive platform then recognizes these components and

performs dynamic partitioning as predetermined.

C. Onloading Solution

Our implementation enables three types of onloading: i) the

system administrator is able to onload specific components

to the client manually from the Cloud Configuration Center

(as shown in Fig.5); ii) the platform is able to randomly

dispatch selected components to the client, when the network

connection between the cloud and mobile devices are idle; iii)

the client is able to request and fetch specific components from

the cloud, once the optimal solution is determined and some

of the components required in the client are still missing. In

our experiments, since the code length of the components are

short, their transmission cost is negligible in the experimental

results, we adopt the third mode.

D. Adaptive Partitioning Solution

For the applications running on the cognitive engine, we

need to measure the computational cost of each component

and transmission cost between the components. Based on

the measurement, once the client request an interaction, the

platform enumerates all possible partitioning solutions for the

involving components to estimate the overall resource cost for

all solutions. Based on the estimation, the platform creates

a cost table of candidate solutions, from which the optimal

solution is determined. Table I shows an example of cost table

of candidate solutions for 7 components.

TABLE I
COST TABLE OF CANDIDATE SOLUTIONS

Solution On Cloud On Client Transmission Cloud Client
1 1,2,3 4,5,6,7 30bps 22MB 32MB
2 1,2,4,5 3,6,7 60bps 30Mb 24MB
3 1,3,4,5,6,7 2 10bps 50Mb 4MB
...

E. Implementation Screenshots

Fig. 5 illustrates a screenshot of Cloud Configuration Center.

The configuration center provides a graphical interface for the

system administrator to monitor the system performance of

each cloud-client pair, such as network bandwidth, usage of

client CPU, memory, battery, etc. In addition, the configuration

center also visualizes the real-time onloading and partitioning

status and enables the administrator to manipulate these ac-

tions by simple clicks.

76

Fig. 5. Screenshot of Cloud Configuration Center

Fig. 6. Screenshot of Monitoring Application on Android

Fig. 6 depicts a demo of component monitoring application

on Android5 smartphone. From the monitoring interace, we are

able to check the real-time status of each component, including

their running environment (cloud or client), onloading state

(unloaded or onloaded), execution status (idle, running, or

waiting), and network connectivity (online or offline). Trigger

buttons are implemented to start our designed experiments.

5http://www.android.com/

VI. EXPERIMENTS

A. Experimental Setup

To validate the performance of our cognitive platform, we

set up the following experiments. For cloud side, we choose

Amazon Elastic Compute Cloud (Amazon EC2)6 as cloud

host, which is a web service that provides resizable compute

capacity in the cloud. Ubuntu7 Server 13.04 is set up as

operating system on the cloud and node.js version 0.8.9 is

installed as the server engine. For mobile client, we utilize

a LG Revolution smartphone with Android 2.3.4 as operating

system. All experiments are conducted in the Vancouver Cam-

pus of The University of British Columbia (UBC), through the

WiFi connection provided by UBC Information Technology.

B. Latency-Oriented Optimization

Latency is one of the most importance impacting factors

for user experience in gaming. In this experiment, we simulate

the interaction procedure between mobile client and the cloud,

exploring a optimization solution to minimize the latency for

each interaction.

To facilitate the experiments, we design a sequence of

4 components, which conducts simple loops and calls each

6http://aws.amazon.com/ec2/
7http://www.ubuntu.com/

77

Fig. 7. A Cycle of Experiment Demo

other as shown in Fig.7. We denote the procedure from

component 1 to component 4 as an application cycle. In order

to simulate the data collection from controllers and sensors in

the mobile devices and information exchange with other users

in the cloud, we design a Client Information module and a

Cloud Information module, which are invoked by component

2 and component 3 for N times, respectively. Note that, if

component 2 is executing on the cloud, the remote call to the

Client Information module will leads to network transmissions.

Otherwise, only local processing is required. In contrast, the

case for component 3 is opposite.

In this specific task, the adaptive partitioning solution can be

simplified: instead of measuring and estimating computational

cost and transmission cost of each candidate solution, we

use overall latency, including computation latency and trans-

mission latency, as the unique criteria to select the optimal

solution. Consequently, our cognitive platform scans the table

and chooses the optimal solution with minimal overall latency.

The simplified version of of cost table of candidate solutions

is as follows:

TABLE II
LATENCY-ORIENTED COST TABLE OF CANDIDATE SOLUTIONS

Solution On Cloud On Client Overall Latency
1 1,2,3 4,5,6,7 132ms
2 1,2,4,5 3,6,7 2400ms
3 1,3,4,5,6,7 2 1240ms
...

We compare the optimal solution selected by our cognitive

platform with two conventional schemes: all-client and all-

cloud, where all-client indicates all agents are executed on the

mobile devices, and the all-cloud solution put all agents in the

cloud. During the simulation, the parameter N , defined as the

number of interactions with cloud and client information, is

creased from 1 to 20 by the step size of 5. For each scenario

of the particular schemes, extensive simulations are performed

to retrieve the average value.

As shown in Fig. 8, even with a very small value of N
the optimal solution achieves a significant gain in terms of

overall latency. It is less than half of those all-client and about

Fig. 8. Average Overall Latency for One Cycle

67% of all-cloud when N = 1. More importantly, along with

the increase of N , the overall latency for all-client and all-

cloud mode go up to a very high value. For N = 20, all-

client scheme suffers more than 3500 ms latency, and all-

cloud mode also receives around 2500 ms delay. In contrast,

the performance of optimal scheme remains stable. Even with

N = 20, the latency only grows 25.3% (from 176.5 ms to

221.1 ms), which is 9.3% of all-cloud and 6.2% of all client.

C. Partial Offline Execution Example

To support partial offline execution is a highlight feature

of the proposed cognitive platform. In this experiment, we

simulate a network disconnection scenario to demonstrate the

ability to support partial offline execution.

Note that, our implementation shall be able to handle the

pending-disconnection case, which happens when a client

component A is pending for a remote component B executing

in the cloud. In this case, the lost of network connectivity will

prevent the component B to invoke the modules in the mobile

client, thus, makes the application procedure interrupted. To

overcome this problem, our implementation creates a network

detector to send disconnect notification to the pending compo-

nent. As a reaction, the pending component rollback its status

and send another invoke to the local version of destination

component, if it exists. In addition, once the network connec-

tion resumes, our platform shall be able to recognize the status

and switch back to the partitioning solutions predetermined by

the platform.

Fig. 9 depicted an example of partial offline execution. We

create a component named ”Demo 1” to be executed in the

cloud and a component name ”Demo 2” running in the mobile

devices. Demo 2 keeps invoking Demo 1 and receive returns

from Demo 1. Fig. 9 a) shows the running status when the

client is connecting to the cloud. We can see the Demo 1 on

the mobile client is idle, since Demo 2 is calling the cloud

copy of Demo 1. However, the mobile devices goes offline

during another invoke process from Demo 2, as illustrated in

Fig. 9 b). Our platform detects the connection lost and triggers

78

Fig. 9. Example of Partial Offline Execution

the client copy of Demo 1 to solve the problem. Note that,

Demo 1 was onloaded to the client before the network breaks,

otherwise, the invoke redirection can be conducted. Fig. 9 c)

visualized that, when network recovers, the client reconnect to

the cloud and Demo 1 is offloaded to the cloud as we specified

in the platform again.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a cognitive, flexible and

promising gaming platform for mobile cloud gaming, which

supports click-and-play, intelligent resource allocation and

partial offline execution. Unlike previous work on cloud

games, we have proposed a component-based game structure

and designed specific mechanisms to facilitate the envisioned

objectives, such as dynamic onloading process, partitioning,

synchronization and redirection services for partial offline

execution. We discussed the enabling technology and im-

plemented the proposed platform as a pure JavaScript solu-

tion. Extensive experiments were performed to show that the

adaptive partitioning is able to provide optimal solution in

terms of overall latency. For the future work, we focus on the

following directions: i) To better scheduling and resource man-

agement, we need to measure the computational performance

of game components, both in cloud and mobile devices. In

addition,the communication between these components shall

also be measured. ii) The platform shall accurately, timely and

efficiently measure, evaluate and predict the real-time system

environment, to provide a reference for QoE-oriented adaption.

iii) Instead of overall latency, we shall consider more sophistic

models with more impact factors, such as computational

performance, network bandwidth, battery percentage, etc.

ACKNOWLEDGEMENT

This work is supported by a University of British Columbia

Four Year Doctoral Fellowship and by funding from the

Natural Sciences and Engineering Research Council.

REFERENCES

[1] Kun Yang, S. Ou, and Hsiao-Hwa Chen, “On effective offloading
services for resource-constrained mobile devices running heavier mobile
internet applications,” Communications Magazine, IEEE, vol. 46, no. 1,
pp. 56–63, 2008.

[2] Shaoxuan Wang and Sujit Dey, “Modeling and characterizing user
experience in a cloud server based mobile gaming approach,” in Global
Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, 30
2009-dec. 4 2009, pp. 1 –7.

[3] Min Chen, “Amvsc: A framework of adaptive mobile video streaming
in the cloud,” in Global Communications Conference (GLOBECOM),
2012 IEEE, 2012, pp. 2042–2047.

[4] Shaoxuan Wang and Sujit Dey, “Rendering adaptation to address
communication and computation constraints in cloud mobile gaming,”
in Global Telecommunications Conference (GLOBECOM 2010), 2010
IEEE, 2010, pp. 1–6.

[5] Juha-Matti Vanhatupa, “Browser games: The new frontier of social
gaming,” in Recent Trends in Wireless and Mobile Networks. 2010,
vol. 84 of Communications in Computer and Information Science, pp.
349–355, Springer Berlin Heidelberg, 10.1007/978-3-642-14171-3-30.

[6] Michael Jarschel, Daniel Schlosser, Sven Scheuring, and Tobias Hoss-
feld, “An evaluation of qoe in cloud gaming based on subjective tests,”
in Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), 2011 Fifth International Conference on, 30 2011-july 2 2011,
pp. 330 –335.

[7] Yeng-Ting Lee, Kuan-Ta Chen, Han-I Su, and Chin-Laung Lei, “Are all
games equally cloud-gaming-friendly? an electromyographic approach,”
in Proceedings of IEEE/ACM NetGames 2012, Oct 2012.

[8] Mark Claypool, David Finkel, Alexander Grant, and Michael Solano,
“Thin to win? network performance analysis of the onlive thin client
game system,” in Network and Systems Support for Games (NetGames),
2012 11th Annual Workshop on, 2012, pp. 1–6.

[9] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg,
“The brewing storm in cloud gaming: A measurement study on cloud
to end-user latency,” in Network and Systems Support for Games
(NetGames), 2012 11th Annual Workshop on, 2012, pp. 1–6.

[10] M. Manzano, J.A. Hernandez, M. Uruena, and E. Calle, “An empirical
study of cloud gaming,” in Network and Systems Support for Games
(NetGames), 2012 11th Annual Workshop on, 2012, pp. 1–2.

[11] Sari Jarvinen, Jukka-Pekka Laulajainen, Tiia Sutinen, and Sami Sallinen,
“Qos-aware real-time video encoding how to improve the user experi-
ence of a gaming-on-demand service,” in Consumer Communications
and Networking Conference, 2006. CCNC 2006. 3rd IEEE, jan. 2006,
vol. 2, pp. 994 – 997.

[12] Shaoxuan Wang and Sujit Dey, “Addressing response time and video
quality in remote server based internet mobile gaming,” in Wireless
Communications and Networking Conference (WCNC), 2010 IEEE,
2010, pp. 1–6.

[13] Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo
Alonso, “Calling the cloud: enabling mobile phones as interfaces
to cloud applications,” in Proceedings of the ACM/IFIP/USENIX
10th international conference on Middleware, Berlin, Heidelberg, 2009,
Middleware’09, pp. 83–102, Springer-Verlag.

[14] Byung-Gon Chun and Petros Maniatis, “Dynamically partitioning
applications between weak devices and clouds,” in Proceedings of the
1st ACM Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond, New York, NY, USA, 2010, MCS ’10, pp. 7:1–
7:5.

[15] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti, “Clonecloud: elastic execution between mobile device and
cloud,” in Proceedings of the sixth conference on Computer systems,
New York, NY, USA, 2011, EuroSys ’11, pp. 301–314, ACM.

[16] Pat Langley, John E. Laird, and Seth Rogers, “Cognitive architectures:
Research issues and challenges,” Cognitive Systems Research, vol. 10,
no. 2, pp. 141 – 160, 2009.

[17] Wei Cai, Xiaofei Wang, Min Chen, and Yan Zhang, “Mmoprg traffic
measurement, modeling and generator over wifi and wimax,” in Global
Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, dec.
2010, pp. 1 –5.

[18] Danny B. Lange and Oshima Mitsuru, Programming and Deploying
Java Mobile Agents Aglets, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 1998.

79

