
IEEE SYSTEMS JOURNAL, VOL. 12, NO. 3, SEPTEMBER 2018 2483

UBCGaming: Ubiquitous Cloud Gaming System
Wei Cai, Member, IEEE, Yuanfang Chi, Student Member, IEEE, Conghui Zhou, Chaojie Zhu,

and Victor C. M. Leung, Fellow, IEEE

Abstract—Cloud gaming provides a novel service model by host-
ing game engines in the cloud and delivering real-time gaming
videos ubiquitously to the players through the Internet. However,
the diversity of end-user devices and frequent changes in network
quality of service and cloud responses result in variable quality
of experience for game players. This paper presents the design
and implementation of a component-based ubiquitous gaming sys-
tem with cognitive capabilities, which aims to overcome the above-
mentioned problem by learning about the game players’ status and
cognitively optimizing resource allocations for different software
components of a game. Experiments show that well-balanced soft-
ware components between the cloud and user devices lead to better
system performance, e.g., in the overall latency.

Index Terms—Cloud, decomposition, game, software.

I. INTRODUCTION

BY EXPLOITING rich and elastic computing resources in
the cloud, cloud gaming [1] is a major direction in the evo-

lution of digital entertainment systems. As a novel paradigm, it
brings many advantages to the profitable video gaming indus-
try. From the perspective of game operators, cloud gaming is
maintenance free and has nominal (almost negligible) costs for
service provisioning compared to the costs of the hardware and
gaming software that one has to pay for in personal computer
(PC) or console gaming. In addition, cloud gaming is the best
solution for antipiracy. The cloud-based gaming model changes
the distributions of the games as software programs into pro-
viding gaming services, which creates continuous profit. From
the perspective of game developers, the cross-platform nature
of cloud gaming shortens the development time and reduces
costs. From the perspective of game players, the offloading [2]
approach in cloud gaming enables terminals that are weak in
computation resources to overcome the intrinsic hardware con-
straints by leveraging the rich resources of the cloud. To this
end, gamers can play sophisticated games without purchasing
or upgrading their hardware.

PlayStation Now is an operating commercial cloud gaming
service developed by Sony Interactive Entertainment. It fol-

Manuscript received January 9, 2017; revised November 26, 2017; accepted
January 10, 2018. Date of publication February 9, 2018; date of current version
August 23, 2018. (Corresponding author: Wei Cai.)

W. Cai, Y. Chi, and V. C. M. Leung are with the Department of Electri-
cal and Computer Engineering, The University of British Columbia, Vancou-
ver, BC V6T 1Z4, Canada (e-mail: weicai@ece.ubc.ca; yuanchi@ece.ubc.ca;
vleung@ece.ubc.ca).

C. Zhou is with We Software Limited, Hong Kong (e-mail: neio.zhou@
gmail.com).

C. Zhu is with the Entertainment Technolgy Center, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15219 USA (e-mail: chaojiez@andrew.cmu.edu).

Digital Object Identifier 10.1109/JSYST.2018.2797080

lows pioneering cloud gaming companies, OnLive, Gaikai, and
G-Cluster, to offer gaming services on demand. In this so-called
streaming-based model, video games are hosted in private cloud
servers and the gaming video frames are encoded by the stream-
ing server before being transmitted over the Internet to the
clients, such as interactive televisions, desktop PCs, and smart-
phones. In reverse, the players’ inputs are delivered to a cloud
server and accepted by the game content server directly [3].
In this context, the cloud serves as an interactive video gen-
erator and streaming server, whereas the terminals function as
the event controllers and video receivers. Another approach to
provide cloud gaming services is the browser game [4], which
always relies on online social network sites with a massive num-
ber of users (e.g., FarmVille on Facebook). In a typical browser
game, the gaming contents, including data and all of the gaming
procedures, are stored and executed within the cloud, whereas
the gaming graphics and videos are rendered by the browser, in-
structed by the returning scripts and documents from the cloud
server. The two different architectures introduce tradeoffs in
system performance [5]. The streaming-based model suffers
from the bandwidth-bottleneck of Internet access. The band-
width constraints restrict the bit rate of gaming videos, whereas
the jitter and delay affect the quality of experience (QoE) for the
players. Therefore, technologies regarding real-time video ren-
dering, compressing, and control of network quality of service
(QoS) become the most critical issues for system design [6]. On
the other hand, browser games leave the presentation function-
alities to the browsers, in order to eliminate the high bandwidth
consumption for gaming video transmission. In other words,
browser game is more efficient in the use of communication re-
sources at the expense of a heavier computation load in the user
device. In fact, the main distinction of the two existing cloud-
based gaming models is the proportion of offloading. However,
both of these models are lacking in flexibility that enables them
to work well over the widely diverse scenarios of accessing
cloud gaming services.

In this paper, we develop the first Ubiquitous Cloud Gaming
(UBCGaming) System, which provides ubiquitous gaming
experience despite the wide variations of players’ gaming be-
haviors, terminal capacities, locations, and network conditions.
The UBCGaming platform decomposes the game program into
interdependent components that can be distributed to either
the cloud or local terminal for execution, and thus enables
the capacity of cognitive adaptivity for system performance
optimization. In this context, cognitive adaptivity refers to the
adaptive, interactive, contextual, and iterative procedure to learn
the game system status and to provide corresponding adaptation
of game component placements for the cloud gaming service.

1937-9234 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

2484 IEEE SYSTEMS JOURNAL, VOL. 12, NO. 3, SEPTEMBER 2018

The main contribution of this paper is to present the sys-
tem design and development for cognitive decomposed cloud
gaming. To the best of our knowledge, UBCGaming is the first
system that enables the players to start gaming session without
any installation, whereas the system workload can be dynami-
cally balanced among the cloud and terminals. We investigate
the issues in system implementation, and conduct empirical
studies in system performance and experimental measurements
to demonstrate the effectiveness of the UBCGaming platform.

The outline of this paper is as follows. We review related
work in Section II and provide the architectural design of the
proposed UBCGaming system in Section III. We then present
the implementation details in Section IV. Prototype design and
experimental results are given in Sections V and VI. Section VII
concludes the paper.

II. RELATED WORK

A. Cognitive Computing Systems

In computer science, cognitive computing [7] is a computing
paradigm that helps to improve decision making by mimicking
the human brains ability to acquire knowledge and understand-
ing through thought, experience, and the senses. In general,
a cognitive system [8] should be able to retrieve, memorize,
and leverage the knowledge of specific area for learning and
problem solving. By leveraging data-driven modeling and task
automation [9], a cognitive system is characterized by an adap-
tive, interactive, contextual, iterative, and stateful paradigm [10],
which is a perfect fit for the heterogeneous environment we are
considering for cloud gaming. The situation-aware architecture
of a cognitive system monitors and assesses the working envi-
ronment to make decisions for the provided services, and refine
future decisions by learning from the achieved results. In par-
ticular, UBCGaming employs cognitive computing to build a
situation- and context-aware scheme that learns the players’ be-
havior and the systems’ environmental conditions during their
gaming sessions, which enables the scheme to adapt the cloud-
terminal workload to the run-time environment to optimize the
use of cloud, network, and terminal resources while meeting the
QoE objectives of the gaming sessions.

B. QoE for Cloud Gaming

Maintaining an acceptable QoE while optimizing resource
utilization is the main objective of the proposed cognitive plat-
form for cloud gaming. Various subjective user studies have
been conducted to demonstrate the relationship between cloud
gaming QoE and QoS, including game genres, video encod-
ing parameters, conditions of the wireless network [3], CPU
load, memory usage, and link bandwidth utilization [11], re-
sponse latency and the game’s real-time strictness [12], network
characteristics (bit rates, packet sizes, and interpacket times)
[13], number of users [14], and an empirical network traffic
analysis of On-Live and Gaikai [15]. In this paper, we select
game’s real-time restriction as our primary concern, since it is
the most critical issue in QoE improvement for cloud gaming
system [12].

C. Cloud Gaming Architecture

According to [1], cloud gaming platforms can be categorized
into two classes: transparent platforms and nontransparent
platforms. The transparent platform is commonly used in
traditional cloud gaming paradigm [16], e.g., PlayStation Now,
which hosts the complete game engine in the cloud and delivers
real-time gaming video via Internet. Existing games without
major modification (minor revisions on the execution environ-
ment adaption may be required) can be executed on transparent
platforms, which enriches the platform content at the expense of
potentially suboptimal performance. For transparent platforms,
adaptive-streaming-based cloud gaming architectures have been
widely studied [17], because the network bandwidth becomes
the bottleneck for the system performance. In contrast, nontrans-
parent platforms [18], [19] require augmenting and recompiling
existing games to leverage unique features, such as video-graph
joint encoding and partial video rendering in terminal side, for
better gaming experience, which may potentially be time con-
suming, expensive, and error prone. In this paper, our proposed
decomposed cloud gaming system falls into the second category.

D. Partitioning Solution

To facilitate cognitive resource allocation, cloud games
should support dynamic partitioning between the cloud and mo-
bile terminals. Existing studies in dynamic partitioning focus on
general applications that offload intensive computational task
to the cloud. CloneCloud [20], one of the most representative
flexible partitioning frameworks, enables unmodified mobile
applications running in an application-level virtual machine to
seamlessly offload part of their execution from mobile devices
onto device clones operating in a computational cloud. How-
ever, CloneCloud requires a static program analysis with code
intrusion during application development, which increases the
complexity of software implementation. Moreover, an applica-
tion on CloudCloud should be completely installed in both the
mobile terminal and the virtual machine residing in the cloud
before it is run. This requirement implies that the players should
install the game program in their terminals prior to game playing.
In addition, existing partitioning methods for general applica-
tions do not consider the extremely low-latency requirement for
video games. In contrast, this paper proposes a completely new
design that solves the above-mentioned issues.

III. SYSTEM DESIGN

To provide cognitive capabilities across the cloud gaming
system, we need to overcome the diversity of end-user devices
and frequent changes in network QoS and cloud responses. We
use the concept of cognitive system design (i.e., act, learn, and
adapt) to realize our proposed UBCGaming platform. Our ob-
jective is to develop an architectural framework that is cognitive
of resources and characteristics of the cloud, the access network,
and the end-user devices, which enables dynamic and optimal
utilization of these resources based on the cognitive informa-
tion. To this end, we envision a cognitive platform with a novel
capability to learn about the game players’ environment (i.e.,

CAI et al.: UBCGAMING: UBIQUITOUS CLOUD GAMING SYSTEM 2485

TABLE I
HIGH-LEVEL SYSTEM REQUIREMENT

Requirement Definition Responsible unit

SR_1 Click-and-play To enable immediate game-play when the players select their favorite games
from the platform portal.

Onloading manager

SR_2 Performance evaluation To measure, evaluate, and predict the overall system performance, including CPU
load, memory usage, link bandwidth availability, and specialized
application-layer metrics, such as the number of players, spatial distribution of
the player population, or game state computation delay.

Performance evaluator

SR_3 Interaction modeling To statistically understand the interaction model between the game instance and
players: The interaction model between components, including the frequency of
execution and probability of communications.

Interaction monitor

SR_4 Cognitive adaptation To intelligently adapt gaming services to system performance, such as changing
network QoS and different players’ distinct behaviors, to keep users QoE above a
prescribed threshold.

Cognitive engine

Fig. 1. Architectural design of UBCGaming platform.

the combination of terminal and access network) and adapt the
running of the game to maintain an acceptable QoE. The pro-
posed platform should be able to fulfill the requirement listed
in Table I. Given the above-mentioned objectives, we design
UBCGaming system as follows. Using specific application pro-
gramming interfaces (APIs), the game developers implement
game programs and deploy them on the platform.

Fig. 1 illustrates the main building blocks of the architectural
framework of this platform on both the cloud side and terminal
side, and identifies the prevalent standards that are applicable to
the interfaces between these building blocks. During the gam-
ing sessions, the performance evaluator collects the execution
efficiency parameters for each game instance, such as execution
latency and network round-trip time. Meanwhile, the user be-
havior identifier analyzes the statistics of interactions between
players and game components and invocations between compo-

nents. The results of performance evaluation and players’ user
behavior are utilized by the cognitive engine as the references
of dynamic partitioning.

A. Decomposition

Decomposition is an intrinsic requirement of the proposed
cognitive platform, since the system aims to dynamically man-
age the workload balance between cloud and terminals by mi-
grating a selected set of game components from the cloud to the
terminals. In this context, the term “decomposition” is defined
as “breaking a large system down into progressively smaller
classes of objects that are responsible for some part of the prob-
lem domain.” The first issue in decomposition is to determine
the granularity of decomposition: fine-grained or coarse-grained
decomposition. Fine-grained decomposition refers the design
patterns that segment the whole game program into tiny com-
ponents, e.g., functions or methods. In contrast, coarse-grained
decomposition partitions the game program into larger com-
ponents, which contains relatively complete and independent
functionalities. These components are often composed by a set
of objects and methods, which work collaboratively within the
scope of the component.

Apparently, fine-grained decomposition provides a larger
quantity of tiny components, which enables more flexible parti-
tioning schemes. Therefore, it leads to better potentials in system
optimization than coarse-grained decomposition. Nevertheless,
a fine-grained decomposition model also needs to maintain more
data flows between components. Data serializing and parsing for
data transferring might introduce more computation and com-
munication overhead to the overall system. On the other hand,
the data model in coarse-grained decomposition is simpler. Con-
sidering these tradeoffs, we adopt coarse-grained decomposition
in this paper, in order to minimize message transmissions among
components. More details regarding game decomposition by dy-
namic partitioning can be found in our previous work [21].

B. Partitioning Coordinator

The partitioning coordinator is the key component that fa-
cilitates dynamic partitioning. Intrinsically, it is a message
router/redirector among components in both the cloud and

2486 IEEE SYSTEMS JOURNAL, VOL. 12, NO. 3, SEPTEMBER 2018

Fig. 2. Sequence diagram for dynamic paritioning.

terminals. Fig. 2 illustrates a sequence diagram for the dynamic
partitioning mechanism in the UBCGaming platform. The cloud
server first launches the game instance in the cloud to start the
game. Meanwhile, a small initial portion of game code is dis-
patched to the terminal. During the gaming session, the gaming
instance in the terminal keep sending status statistics to the
cognitive engine, which analyzes the system performance and
acknowledges the partitioning coordinator and its decision of
partitioning. This decision instructs the partitioning coordina-
tor to redirect control messages and intercomponent messages,
in order to facilitate dynamic partitioning. Note that there is an
optional onloading process when the partitioning coordinator
receives decisions from the cognitive engine. This process is in-
structed by the onloading manager to push components from the
cloud to terminals, if the terminals lack sufficient components
to perform optimal partitioning.

C. Execution Monitor

The execution monitors on both the cloud and terminal sides
monitor resource usage of all the components, whether in the
cloud or terminals, and save the execution information in a statis-
tics database. The execution information pertains to the property
of each component in each invocation, including memory con-
sumption, CPU usage percentage, execution time, output data
size, execution environment, etc. With the execution informa-
tion database, the system is able to retrieve the invocation trees
between the components, including the relationship between
components and the execution frequency of each component. In
fact, the players’ interactional behaviors can also be identified
from this database.

D. Performance Prober

However, the information extracted from the execution in-
formation database is insufficient for the proposed platform to
perform cognitive adaptation, since the system needs to evaluate
the execution performance of each component both in the cloud
and terminals. This might not be possible in a real system, since

the platform can never migrate all components to the terminals
for the tests. Furthermore, the platform also needs to measure
the network QoS between the cloud and terminals. Therefore,
we design a mobile agent [22] based performance prober to
probe the cloud-network-terminal environmental parameters.

A mobile agent is a composition of computer software and
data, which is able to migrate (move) from one computer to
another autonomously and continue its execution on the des-
tination computer. In this context, the game components are
encapsulated as mobile agents and dispatched from the cloud to
mobile devices. In our design, we set up a mobile agent com-
ponent with designated iterations and measure the component’s
execution information in the cloud. Afterward, the component
is dispatched and executed in the terminal. Its execution infor-
mation is measured and reported to the performance prober in
the cloud. An illustration of mobile agent prober is depicted in
Fig. 1. Note that this process involves two network transmis-
sions, with which the system is able to calculate the network
QoS parameters, including the round-trip time and data trans-
mission rate. With this approach, the performance prober is able
to compare the computational efficiency of cloud and termi-
nals, and consequently estimate the execution information for
all components. In our implementation, we denote the cloud
computational efficiency as Ec and the terminal computational
efficiency as Et ; therefore, we are able to compute the efficiency
ratio RE = Ec/Et . With RE , we can estimate the execution in-
formation that we could not directly measure from the system.
For instance, the cloud execution time for a particular compo-
nent can be estimated as Et × RE . Note that the computational
efficiency is determined by a variety of parameters, such as CPU
frequency, memory, and interpreter efficiency. In this paper, we
simplify our model by using execution time as the indicator of
efficiency. Less execution time indicates a better efficiency, and
vice versa.

In order to minimize the overhead of probing, the performance
prober is designed to work collaboratively with the execution
monitor. As mentioned in Section III-C, the cognitive system
calculates the execution probability of each component in a
statistical approach. Hence, it is necessary to traverse in both
the clouds and terminals’ databases. Meanwhile, the statistics
in each terminal should be reported to the cloud periodically.
Accordingly, the mobile agent component in the performance
prober is designed as the database information retriever and
carrier to improve the system efficiency. In our implementation,
the system dispatches a performance prober to the terminals in
an interval of TI and save the probing results in a database.
Table II illustrates some entities of the database. In fact, with
real-time data analysis, the interval TI can also be a variable
subject to the condition of the terminal, e.g., the network QoS.

E. Onloading Manager

Since the cognitive platform supports click-and-play, none
of the game components exists in the terminal at the begin-
ning of a gaming session. In this case, the cloud server should
be capable to transmit executable components to the terminal,
in order to enable dynamic resource allocation. The onloading

CAI et al.: UBCGAMING: UBIQUITOUS CLOUD GAMING SYSTEM 2487

TABLE II
TABLE OF PERFORMANCE INFORMATION

Cloud Proc. Terminal Proc. Code Trans.

Time Records Time Records Time Length

20 ms 100 11 ms 30 28 ms 3 kB
42 ms 208 19 ms 51 22 ms 3 kB
78 ms 376 26 ms 70 33 ms 3.2 kB
102 ms 512 40 ms 92 32 ms 3.3 kB
...

manager employs the concept of mobile agent to realize this
process: components are stringified and dispatched to the termi-
nals as messages. Note that the onloading process could either
be performed before a gaming session starts or be running in
the background during the gaming session. It is scheduled by
the onloading manager, which assigns each game component a
priority based on the overall assessment of the particular com-
ponent. Nevertheless, the priority of a game component is also
associated with its functionality. Some key components should
have a higher priority in the onloading process, since they pro-
vide featured benefits in the terminal.

To simplify the system, we implement three types of onload-
ing in our platform.

1) The system administrator manually onloads specific
components.

2) The platform randomly dispatches selected components
to the client, when the network connections between the
cloud and terminals are idle.

3) The client requests specific components from the cloud
once the optimal solution is determined, and some of the
components required by the client are still missing.

In our experiments, we adopt the third mode since the code
lengths of the components are relatively short such that their
transmission costs are negligible in the experimental results.

F. Cognitive Decision Engine

The cognitive decision engine is the key unit that cogni-
tively determines the system strategy after periodically analyz-
ing the information from the execution monitor and performance
prober. The main strategies include component onloading for
the onloading manager, dynamic partitioning for the partition-
ing coordinator, and data synchronization for the synchroniza-
tion controller. Designing the cognitive decision engine is the
most challenging work for UBCGaming. Theoretical studies
have been conducted in our previous work [23]. In this paper,
we investigate an empirical solution by exploring the knowl-
edge we derived in Table II. Detailed algorithms are presented
in Section V-C.

G. Synchronization Controller

The remote distribution of game components results in the
problem of data getting out of synchronization. To address this
problem, the synchronization controller is employed to update
all the parameters in the gaming environment. However, the syn-
chronization process also introduces a nonnegligible network

overhead. Consequently, we design the synchronizing mech-
anism following the principle of “sync-only-if-necessary” to
minimize the transmission cost: Necessary parameters are seri-
alized as JavaScript Object Notation (JSON) data and passed to
destination components as a message.

IV. TEST BED IMPLEMENTATION

In this section, we describe the implementation of UBCGam-
ing and discuss related issues.

A. Enabling Technologies

The first stage of implementation is to seek suitable enabling
technologies that facilitate the migration and partitioning of
game components. JavaScript is adopted as the programming
language, which is originally implemented as a part of web
browsers so that client-side scripts could interact with the user,
control the browser, communicate asynchronously, and alter the
document content that was displayed. More recently, however,
its use has become common in both game development and the
creation of desktop applications. Node.js1 is a server-side soft-
ware system designed for writing scalable Internet applications,
notably web servers. Programs on the server side are written
in JavaScript, which enables web developers to create an entire
web application in JavaScript, for both the server side and client
side. This feature facilitates the game components, JavaScript
gaming codes in this context, to migrate from the cloud to user-
end, and to be executed on cloud servers and clients as mobile
agents. For the client, we embed a WebKit-based browser into
the cognitive engine for parsing and executing JavaScript mo-
bile agents from the cloud server. In our implementation, the
WebKit browser is built for Android smartphones. However, all
devices that support browsers are able to run our cognitive plat-
form after a small amount of modifications. We are also looking
for alternative solutions to implement the client as native appli-
cations on JavaScript. As the state-of-the-art, Microsoft already
supports native application development with JavaScript on its
metro-style interface.

B. Application Programming Interface

To support component-based games, the UBCGaming system
provides a set of APIs to encapsulate lower layer partitioning
for game developers. To acknowledge an intercomponent invo-
cation, the developers simply add a “$$” mark before the name
of the components when they are invoked in the code. For ex-
ample, $$componentX({msg : args}); stands for an invocation
of componentX with a parameter of args passing as a message.
Note that parameters are serialized as a JSON.

C. Administration Center

Fig. 3 illustrates a screenshot of the UBCGaming administra-
tion center rendered by config.ejs. The administrator can browse
all ongoing gaming sessions here from the TERMINALS session
list. For each terminal, the partitioning and loading status of all

1[Online]. Available: http://nodejs.org/

2488 IEEE SYSTEMS JOURNAL, VOL. 12, NO. 3, SEPTEMBER 2018

Fig. 3. Administration center of UBCGaming.

components are illustrated. Note that if the AUTO OPTIMIZA-
TION SWITCH is turned OFF, we can even manually control each
component’s execution environment by a simple click. This fea-
ture supports our following experiments that test the efficiency
of different task allocation schemes. In addition, the adminis-
tration center also depicts real-time figures for terminal status,
including network bandwidth, usage of client CPU, memory,
battery, etc.

V. PROTOTYPE DEVELOPMENT

To verify the feasibility and efficiency of UBCGaming, we
developed a number of decomposed game prototypes, includ-
ing 3D Skeleton Prototype, Gobang Game, and Robocode Tank,
as described in our previous work [23]. In this paper, our tar-
get is to design quantitative measurements and experiments to
demonstrate the proposed functionalities in the UBCGaming
system. Critical issues in designing such experiments include
the following:

1) How to select representative game prototypes.
2) How to measure the impact of computational capacities

in the cloud and terminals.
3) How to measure the impact of networking parameters.
In order to address above-mentioned issues, we select the

Robocode Tank game prototype to study the execution and net-
work status for components. There are two reasons we select
the Robocode Tank game prototype. The first one is flexibility.
In this game, we are able to create battlefields with different
numbers of tanks. Also, the computational cost for each tank
is adjustable. Complicated algorithm in shooting and moving
strategy might introduce more intensive computing procedure.
Therefore, we can simulate a variety of gaming scenarios by
selecting different combination of tank numbers and their com-
plexities. The second reason is measurability. We need a unified
metric to measure the performances of partitioning schemes,
which should be quantitative and representative. The Robocode
Tank game records the frame per second (FPS) for the game
scenes rendering, which is a perfect overall indicator of system
performance: A better performance yields a higher FPS.

To simulate the cloud, network, and terminal environments,
we set up an experimental test bed at the University of British
Columbia. In order to flexibly simulate more combination of
hardware settings, we employed two PCs to virtualize the en-
vironment of cloud and terminal. These PCs are each equipped
with an 8-core CPU and 8 GB of memory. During the experi-
ment, we use Basic Input/Output System settings to adjust the
CPU cores and memory size, in order to simulate different hard-
ware scenarios. Nodejs v4.4.7 is installed as the cloud server
software, while Firefox 45.0.2 is adopted as the default client
in the terminal. To connect cloud and terminal, we wired them
to a LinkSys Wireless Router WRT120N router so that they are
interconnected within one local area network. The Robocode
tank game is deployed on port 8080 of the cloud PC and the
terminal accesses the game through cloud’s local Internet proto-
col address. In order to control the network parameters between
cloud and terminal, we installed NetLimiter 4,2 an Internet traf-
fic control and monitoring tool designed for Windows.

A. Measurements

In this section, we perform measurements for computational
capacity and the communication capacity. Our purpose is to
calibrate our test bed by determining how different systemic
factors affect these two capacities. The factors we considered
include the CPU and the memory of the cloud and the terminal,
and the network between the cloud and the terminal.

Our test bed records the FPS for the game scenes as the indica-
tor of system performance, since it represents the overall latency
introduced by the component execution and communications.
A better performance will yield a higher FPS. In particular, we
record the real-time FPS values in the gaming session and send
them back to the cloud side. In this way, we are able to quantify
the performance of the whole application with its FPS value.
The average FPS is calculated afterward, which represents the
performance of the application under this situation. By com-
paring the different FPS under different circumstances, we can
reveal how the capacity is affected on either the cloud side or
the terminal side, and which factors affect the capacity the most.
These findings enable us to develop better solutions for dynamic
partitioning.

1) Computational Capacity: Our hypothesis is that the
parameters effecting computational capacity include computing
intensity and process concurrency. The former value indicates
the computational complexity of a particular component,
whereas the later value indicates the ability of parallel execu-
tion for multiple components. In this paper, we used iterative
execution of a segment of code to demonstrate the computation
intensity, and the quantity of simultaneous components to
simulate the process concurrency.

Before quantitatively studying the influence of different fac-
tors, we conducted two case studies to discover the relationships
between FPS and these two parameters. The specifications of
the cloud server and the terminal in the case studies are listed in
Table III.

2[Online]. Available: https://www.netlimiter.com/

CAI et al.: UBCGAMING: UBIQUITOUS CLOUD GAMING SYSTEM 2489

TABLE III
SPECIFICATION FOR CASE STUDIES

Cloud Terminal

CPU 8 cores with 3.40 GHz 4 cores with 3.40 GHz
Memory 8 GB 8 GB
System Windows 7 Professional Ubuntu 16.04LTS

Fig. 4. Different computational capacities of the cloud and the terminal.
(a) FPS and iterations. (b) FPS and component quantity.

The first case study sets five components running at a time
with the same number of iterations and gradually increases the
total number of iterations from 1000 to 100 000, maintaining
all other factors unchanged. As illustrated in Fig. 4(a), the cloud
originally has a higher FPS when the total number of iterations
is 1000; then the FPS slowly goes down, and gets lower as the
number of iterations is increased to 4000. Comparatively, the
FPS when all components run on the terminal is much more
stable at a high level. The second case study restricts the to-
tal number of iterations to 5000 and all components share the
same iterations. Then, we gradually add the number of compo-
nents (with the iterations of each component decreasing) from
5 components to 30 components, maintaining all other factors
unchanged. As shown in Fig. 4(b), the FPS is higher originally
when all components run on the terminal, but it declines dra-
matically with the increase in the number of components. The
average FPS even gets lower than 10 when the number of com-
ponents reaches 30. In contrast, the FPS curve of the cloud only
case declines about 15% when the number of components in-
creases to 30. Fig. 4 illustrates that the terminal can maintain a
higher computation capacity with a larger number of iterations,
while the cloud servers obviously can handle concurrency bet-
ter. So when partitioning the components, these two parameters
need to be taken into account to place the components to more
suitable sides. Inspired by these case studies, we designed a
number of experiments to further validate the relationships be-
tween hardware specifications and execution performance. Our
results reveal that CPU core quantity and memory size are the
most important factors in computational performance. There-
fore, we select different combination of CPU core quantity and
memory size to further evaluate the FPS values, and hence the
performance, of game execution.

Iterations: To find out how CPU and memory may affect the
performance of the cloud server and terminal, we design exper-
iments with all components executing in the cloud (Experiment
C1 to C5) and all components executing in the terminal (Ex-
periment T1 to T5), with specifications shown in the legends of

Fig. 5. FPS experimental results for total iterations.

Fig. 5. The performance of the cloud and terminal, given by the
average FPS with each specification, is shown in Fig. 5. It can
be seen from the figure that when the total number of iterations
for the components increases from 1000 to 10 000, the FPS
values are stable for all experiments conducted in the terminal
(T1 to T5), while an obvious downtrend is seen for all experi-
ments with the cloud (C1 to C5). This implies that the terminal
can tolerate a higher number of iterations in components under
our experimental settings. On the terminal side, we use T1 with
1 CPU core and 0.5 GB memory as our baseline. We first in-
crease the number of CPU cores to 2 (T2) and 3 (T3). It turns
out the performance of T2 is 100% better, whereas T3 further
increases FPS by less than 10%. We use T4 and T5 to simulate
the cases with 1 GB and 2 GB memories, respectively, in the
terminal. Different from the increase of CPU cores, there are
no significant changes in FPS values. In contrast, we conducted
similar experiment sets C1 to C5 on the cloud side. However,
there are no significant differences in FPS values from different
experiment settings.

Concurrency: As mentioned in Section V-A1, concurrency,
which indicates the ability of parallel execution for multiple
components, is another important parameter affecting the com-
putational capacity. Similar to the iteration studies, we again set
different combinations of specifications in cloud and terminal
and record their FPS results as shown in Fig. 6. As expected,
more concurrent components execution leads to lower FPS val-
ues in both cloud and terminal experiments. The only difference
is that the rate of performance decrease for the terminal exper-
iment sets (T1 to T5), dropping from 55 to nearly 0, is much
faster than that of the cloud sets (C1 to C5), which indicates
that the cloud outperforms the terminals in terms of concurrent
computation capacity under our settings. On the other hand, it
is interesting to note that there are no significant performance
differences with distinct hardware settings for either cloud or
terminal experiments. This phenomenon implies that neither in-
creasing CPU cores nor enlarging memory size help to improve
the concurrency performance in the terminal.

2) Communication Capacity: Besides the computation ca-
pacity, the communication capacity between components are
also critical in determining the system performance. We cate-
gorize the communications into three kinds: intracloud commu-
nications, intraterminal communications, and cloud-terminal

2490 IEEE SYSTEMS JOURNAL, VOL. 12, NO. 3, SEPTEMBER 2018

Fig. 6. FPS experimental results for concurrency.

TABLE IV
SYSTEM SPECIFICATIONS FOR EVALUATIONS OF THE

COMMUNICATION CAPACITY

Side CPU Memory Operating system

Cloud 8 Cores 8 GB Windows 7 Pro
Terminal 8 Cores 8 GB Windows 7 Pro

TABLE V
COMPONENTS FOR COMMUNICATION CAPACITY EVALUATIONS

Component No. 1 2 3 4 5 6

Iterations 9200 4000 8900 2200 3600 200
Component No. 7 8 9 10 11 12
Iterations 7100 9200 900 3700 100 4500

communications. Also, we quantify the communications with
two parameters: the message length and the communication fre-
quency. In our measurement, the message length is evaluated
by bytes per message (bpm). In addition, we consider 20 move-
ment steps of a tank as a batch and the frequency is evaluated
by the number of communications per batch (tpb). Apparently,
a higher bpm value represents a larger message payload in one
transmission, whereas a higher tpb value indicates a higher com-
munication frequency. Default experiment settings are listed in
Table IV.

We start with a simplified circular communication model:
Each component sends a certain message to its next component
with a specific frequency, i.e., Component No. 1 sends a message
to Component No. 2, Component No. 2 sends a message to
Component No. 3, etc., and the last component sends a message
back to Component No. 1. Besides, in order to simulate a real
scenario, we create the following iterations for each component
in a specific component group as listed in Table V.

Intracloud Communications: This set of results indicates the
capacity of transmitting data from one component to another
within the cloud. We reveal how message length and frequency
may affect the communication capacity by the different combi-
nations. The FPS results under different communication settings

TABLE VI
FPS OF INTRACLOUD COMMUNICATIONS

TABLE VII
FPS OF INTRATERMINAL COMMUNICATIONS

are shown in Table VI. The first row is considered as the base-
line. As we can see from the table, the FPS values decline when
the lengths of the messages get larger or the messages are sent
more frequently. In fact, except the worst situations, where the
length of messages is 262 144 B, the FPS results in most of the
experiments are higher than 26, which are considered acceptable
in a gaming environment.

Intraterminal Communications: This set of results indicates
the capacity of transmitting data from one component to an-
other within the terminal. We select the first six components in
Table VI to conduct similar experiments in the terminal. The
resulting FPS values shown in Table VII are surprisingly low.
Relatively speaking, the communication frequency seems to be
a more important factor than message length: The FPS is still
above 30 when 128-B messages are sent for 60 times per batch,
whereas the FPS is lower than 5 when the frequency is increased
to 80 tpb. This study reveals that communications within the ter-
minal is a huge burden that should be minimized.

Cloud-Terminal Communications: This set of results indi-
cates the capacity of transmitting data from one component to
another between the cloud and the terminal. Cloud-terminal
communications involve network transmissions between the
cloud and terminal, which may introduce a round-trip time delay
to the components. In the circular communication model that
we adopt for these tests, we manually place the odd numbered
components in the cloud and the even numbered ones in the ter-
minal, so that all component communications are cloud terminal
in nature. The FPS results are listed in Table VIII. As expected,
the FPS value is high when the message length is small and
the sending frequency is low, and vice versa. The combination
of 128 bpm and 200 tpb can still yield over 35 FPS, which in-
dicates that having multiple cloud-terminal communications in
dynamic partitioning is acceptable in terms of latency.

B. Observations

These measurements result in several conclusions regarding
the computation and communication capacity.

CAI et al.: UBCGAMING: UBIQUITOUS CLOUD GAMING SYSTEM 2491

TABLE VIII
FPS OF CLOUD-TERMINAL COMMUNICATIONS

1) The cloud outperforms terminal in terms of component
concurrency, whereas the terminal outperforms the cloud
in terms of iterations and in terms of computation capacity.

2) Increasing the memory capacity can be helpful for the
cloud to improve its computation capacity, whereas adding
more CPU cores is more effective for the terminal.

3) The cost of intracloud communications in degradation of
performance is negligible in most cases.

4) Intraterminal communications degrade the performance
dramatically. Relatively, the frequency of communica-
tions is a more important factor than the message length.

5) Cloud-terminal communications have a medium impact
on performance compared to intracloud communications
and intraterminal communications.

The communication frequency is a relatively more important
factor for cloud-terminal communications, since it determines
the number of round-trip times. Note that these observations
are based on our implementation. Different programming lan-
guages, compilers or interpreters, and hardware architectures
might result in different conclusions. However, our study on
this specific platform is a solid step toward real system imple-
mentation. The system framework and the measurement-based
methodology we introduced in this paper are still valid to alter-
nate platforms. Moreover, the cognitive algorithm introduced in
the next section can be easily modified and fine-tuned to address
the specific characteristics of different platforms.

C. Cognitive Engine

With the above-mentioned observations, the optimal parti-
tioning problem can be intrinsically transformed into the prob-
lem of seeking the optimal tradeoff between cloud and terminals.
Our target is to improve the performance on-the-fly and even-
tually obtain the best partition for the application in a dynamic
context. The partitioning algorithm we implement in this pa-
per is a greedy algorithm that moves the components with the
most iteration from the cloud to the terminal step-by-step un-
til the FPS is maximized. We use a greedy algorithm because
it is simple and fast, which better satisfies the players’ QoE
improvement in a real-time context. In our implementation of
the cognitive engine, we divide the optimizing procedure into
two operations: performance probe operation and partitioning
operation.

The performance probe operation collects two kinds of data
needed for optimization. One is the real-time FPS of the
Robocode tank game. The FPS values are obtained in the ter-
minal, so the terminal needs to send these data to the cloud.

Algorithm 1: Greedy Partitioning Algorithm.

1: if score[partitioncurrent] > threshold then
2: Keep current partition
3: else if fpscurrent < fpsprevious then
4: Undo last action in history
5: score[partitionprevious] + +
6: else
7: find the component with longest execution time
8: Move componentmax from cloud to terminal
9: Record this action in history
10: end if

Another one is the performance information of each component,
as described in Section III-D. The partitioning operation aims to
seek a suboptimal partitioning scheme under dynamic circum-
stances. It takes an attempt-confirm strategy or an attempt-reject
strategy by comparing current FPS to previous values. During
cognitive partitioning, the engine makes partitioning attempts
and decides whether to confirm or reject them according to the
performance probe operation. After this procedure, the overall
performance of the application should be improved to satisfy
players’ QoE requirements. The pseudocode of this algorithm
is listed in Algorithm 1.

According to the algorithm, the cognitive engine initializes
a score for each partitioning scheme. The score is designed to
decide whether the optimizing operation should be terminated.
Once the score of one partition goes above a certain thresh-
old (which is set as 3 in our experiments), the optimization is
stopped to provide a stable experience for the players. Once the
gaming session starts, the system identifies the component that
consumes the longest time and attempts to move it to the termi-
nal. If the last attempt improves the performance, the cognitive
engine confirms this attempt as a better partitioning solution.
Otherwise, the system rejects the attempt. There are many rea-
sons for FPS reduction, from the high component quantity in the
terminal to excessive intraterminal communications. No matter
what the reason is, the previous partition is a better one if the
current attempt reduces the FPS. As a result, the cognitive en-
gine adds to the score of the previous partition and rolls the
attempt back to the previous state. This algorithm demonstrates
a simplified form of a cognitive loop that observes the system
to obtain performance information (shown in Table II), decides
the next component to move, and reacts to the FPS result.

VI. EXPERIMENTS

In this section, we validate the effectiveness of the proposed
decomposed UBCGaming system by designing experiments to
simulate practical cloud gaming scenarios. By applying the cog-
nitive engine to these four experiments, the results show whether
the cognitive engine can improve the system performance and
to what extend the performance is enhanced.

A. Experimental Settings

We pick four general situations of component distributions
in game development: the simple games with few components,

2492 IEEE SYSTEMS JOURNAL, VOL. 12, NO. 3, SEPTEMBER 2018

TABLE IX
TABLE OF COMPONENTS IN DIFFERENT EXPERIMENTS

No. Comp. Quant. Purpose Iterations for each components

1 12 Simple games with fewer components. 9200, 4000, 8900, 2200, 3600, 200, 7100, 9200, 900, 3700, 100, 4500
2 14 Games with high-iteration components. 5000, 100, 3100, 1400, 4500, 6000, 4600, 2100, 700, 5800, 3900, 1500, 5400, 6000
3 20 Games with huge number of components. 1200, 2600, 7500, 4100, 100, 5400, 2200, 5300, 7000, 3700, 200, 5200, 5200, 6600,

8000, 2700, 5100, 6500, 2900, 6000
4 14 Games with only a few high-iteration. 8800, 6000, 200, 800, 900, 1000, 6500, 9200, 3000, 1300, 400, 2700, 400, 100

Fig. 7. Simulations of the partition algorithm. (a) Experiment 1. (b) Experi-
ment 2. (c) Experiment 3. (d) Experiment 4.

the complex games with a larger number of components, the
games with only several high-iteration components leaving oth-
ers low-iteration ones, and the games mainly composed by high-
iteration components. As a result, the experiments are in corre-
spondence with these four situations by an elaborately designed
combination of iterations and component quantity to make our
simulation of the cloud gaming system practical. The settings
and purposes of the four experiments are listed in Table IX.
With these settings, we conducted two sets of experiments, one
with no communication among components and another with
circular communications. With this approach, we can analyze
the impact of the components on computation complexity and
communication complexity separately.

B. Experimental Results

1) Without Networking: We start Robocode tank gaming
sessions with no communication between components and
record the FPS values over time. We compare our proposed dy-
namic partitioning scheme with two static approaches: all cloud
solution and all terminal solutions, where the former scheme
allocates all components in the cloud and the later one assign
all components to the terminals. As illustrated in Fig. 7, the
cognitive partitioning scheme outperforms the other solutions
in terms of FPS in all of these four scenarios. Especially in
Experiment 3, the cognitive approach is able to enhance the
performance by up to 300%, which validates the efficiency of
dynamic partitioning.

TABLE X
RESULT OF PARTITIONING OF COMPONENTS WITHOUT NETWORK

No. Terminal Cloud

1 1, 2, 3, 5, 7, 8, 10, 12 4, 6, ,9, 11
2 1, 6, 7, 10, 14 2, 3, 4, 5, 8, 9, 11, 12, 13
3 3, 4, 6, 8, 9, 12, 14, 15, 18, 20 1, 2, 5, 7, 10, 11, 13, 16, 17, 19
4 1, 2, 7, 8, 9, 12 3, 4, 5, 6, 10, 11, 13, 14

TABLE XI
COMMUNICATION PARAMETERS

No. Frequency (tpb) Message Length (bpm)

1 4 128
2 20 65 536
3 100 256
4 80 4096

The suboptimal component partition solutions in the four
scenarios are listed in Table X. Apparently, some components
should be executed in the terminal, whereas the others should
be hosted in the cloud. Furthermore, these partitioning results
prove two of our hypotheses.

1) A component’s execution time can be used to evaluate
its number of iterations. In all of these four experiments,
the components being moved to the terminal are those
components with the most iterations, which meets our
expectation.

2) The results verify that in contrast to the cloud, the ter-
minal has a better computation capacity when handling
components with high numbers of iterations and worse
computation capacity when handling concurrency. Exper-
iment 4 contains more high-iteration components than
Experiment 2, which leads to more terminal components
as well.

2) With Networking: Communications between components
are also an important factor in some game genres. For example,
some tanks might share their information with their teammates
in order to perform cooperative battle. However, to the best of
our knowledge, there is no existing work on communication
models among components in game programs. It is intuitive
that these communication models will strongly depend on the
application design. In this paper, we simulate these communi-
cations by transferring some pseudodata among the tanks in a
circular communication model, as described in Section V-A2.
Parameters for communications are as listed in Table XI.

CAI et al.: UBCGAMING: UBIQUITOUS CLOUD GAMING SYSTEM 2493

Fig. 8. Simulations of the partition algorithm. (a) Experiment 1. (b) Experi-
ment 2. (c) Experiment 3. (d) Experiment 4.

TABLE XII
RESULTS OF COGNITIVE PARTITIONING OF COMPONENTS OVER NETWORK

No. Terminal Cloud

1 1, 3, 7, 8 2, 4, 5, 6, 9, 10, 11, 12
2 14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
3 3, 9, 15 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20
4 2, 8 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13

The FPS values through optimizing procedure are illustrated
in Fig. 8 and the partitioning outcome for each scenario is listed
in Table XII.

Fig. 8 shows that the cognitive approach always yields the
best performance among all solutions in terms of FPS. It is
noteworthy that the all-terminal scheme yields FPS values of
0 at all time, due to the heavy workload of message transmis-
sions among tanks within the terminal. Evidently, certain type
of games need cloud gaming systems as they are not executable
in the terminals without cloud support. However, as shown in
Fig. 7, the FPS improvements of the cognitive algorithm over
the all-cloud case are not as significant, due to the limitation of
the networking overhead in remote component invocation.

In addition, the differences in the partitioning outcomes in
Tables X and XII also provide some important information.
For example, consider components 1 and 2 in Experiment No.
4. When there is no communication in between, as shown in
Table X, both of these two components are executed in the
terminal. On the other hand, with network communications,
Table XII shows that these components are partitioned to dif-
ferent sides. The underlying reason is that both of them are
high-iteration components and the communication cost in Ex-
periment No. 4 is high (80 tpb and 4096 bpm). The terminal
cannot simultaneously handle the computation and the mes-
sage transfer workload. In contrast, both components 7 and 8
in Experiment No. 1 contain high iterations, but both the parti-
tioning outcomes in Tables X and XII put them in the terminal.

That is because the messages between them are short in length
(128 bpm) and are sent infrequently (tpb). The lesson learnt
from these observations is that the computation and the com-
munication costs should be comprehensively considered in the
dynamic partitioning of components. Consequently, further de-
velopments and enhancements of the cognitive engine should
include the ability to discern these different situations.

VII. CONCLUSION

In this paper, we have proposed a cognitive, flexible, and
promising gaming platform for cloud gaming. Unlike previous
work on cloud games, we have proposed a component-based
game structure and designed specific mechanisms to facilitate
the envisioned objectives, such as dynamic onloading process,
partitioning, and synchronization. We have discussed the en-
abling technology and implemented the proposed platform as a
pure JavaScript solution. Experimental measurements have been
performed to show that adaptive partitioning is able to provide
improved solutions in terms of overall latency.

While the proposed platform is promising, this paper reveals
several limitations that we intend to address in our future work
to refine this platform.

1) Better reasoning and learning approach should be investi-
gated to predict the players’ status for optimal partitioning.

2) More sophisticated game prototypes with larger numbers
of components should be developed and tested in the
platform.

3) More precise model on system performance should be
established to consider more factors in decision making.

REFERENCES

[1] W. Cai et al., “A survey on cloud gaming: Future of computer games,”
IEEE Access, vol. 4, pp. 7605–7620, 2016.

[2] K. Yang, S. Ou, and H.-H. Chen, “On effective offloading services for
resource-constrained mobile devices running heavier mobile internet ap-
plications,” IEEE Commun. Mag., vol. 46, no. 1, pp. 56–63, Jan. 2008.

[3] S. Wang and S. Dey, “Modeling and characterizing user experience in
a cloud server based mobile gaming approach,” in Proc. IEEE Global
Telecommun. Conf., Nov./Dec. 2009, pp. 1 –7.

[4] J.-M. Vanhatupa, “Browser games: The new frontier of social gaming,”
in Recent Trends in Wireless and Mobile Networks (Volume 84 of Com-
munications in Computer and Information Science), Berlin, Germany:
Springer, 2010, pp. 349–355, doi: 10.1007/978-3-642-14171-3-30.

[5] W. Cai et al., “The future of cloud gaming [point of view],” Proc. IEEE,
vol. 104, no. 4, pp. 687–691, Apr. 2016.

[6] S. Wang and S. Dey, “Rendering adaptation to address communication and
computation constraints in cloud mobile gaming,” in Proc. IEEE Global
Telecommun. Conf., 2010, pp. 1–6.

[7] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A.
J. Sherbondy, and R. Singh, “Cognitive computing,” Commun. ACM,
vol. 54, pp. 62–71, Aug. 2011.

[8] P. Langley, J. E. Laird, and S. Rogers, “Cognitive architectures: Research
issues and challenges,” Cogn. Syst. Res., vol. 10, no. 2, pp. 141–160, 2009.

[9] M. Tarafdar, C. M. Beath, and J. W. Ross, “Enterprise cognitive comput-
ing applications: Opportunities and challenges,” IT Prof., vol. 19, no. 4,
pp. 21–27, 2017.

[10] J. Kelly, III, “Computing, cognition and the future of knowing,” IBM Res.,
Cogn. Comput., IBM, New York, NY, USA, White Paper, 2015.

[11] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hossfeld, “An evaluation
of QoE in cloud gaming based on subjective tests,” in Proc. 5th Int.
Conf. Innov. Mobile Internet Serv. Ubiquitous Comput., Jun./Jul. 2011,
pp. 330–335.

http://dx.doi.org/10.1007/978-3-642-14171-3-30

2494 IEEE SYSTEMS JOURNAL, VOL. 12, NO. 3, SEPTEMBER 2018

[12] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei, “Are all games equally
cloud-gaming-friendly? An electromyographic approach,” in Proc. Annu.
Workshop Netw. Syst. Support Games, Oct. 2012, pp. 1–6.

[13] M. Claypool, D. Finkel, A. Grant, and M. Solano, “Thin to win? Network
performance analysis of the OnLive thin client game system,” in Proc.
11th Annu. Workshop Netw. Syst. Support Games, 2012, pp. 1–6.

[14] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm in
cloud gaming: A measurement study on cloud to end-user latency,” in
Proc. 11th Annu. Workshop Netw. Syst. Support Games, 2012, pp. 1–6.

[15] M. Manzano, J. Hernandez, M. Uruena, and E. Calle, “An empirical study
of cloud gaming,” in Proc. 11th Annu. Workshop Netw. Syst. Support
Games, 2012, pp. 1–2.

[16] C. Huang, C. Hsu, Y. Chang, and K. Chen, “Gaminganywhere: An open
cloud gaming system,” in Proc. 4th ACM Multimedia Syst. Conf., New
York, NY, USA, 2013, pp. 36–47.

[17] S. Jarvinen, J.-P. Laulajainen, T. Sutinen, and S. Sallinen, “QoS-aware
real-time video encoding how to improve the user experience of a gaming-
on-demand service,” in Proc. IEEE 3rd Consum. Commun. Netw. Conf.,
Jan. 2006, vol. 2, pp. 994–997.

[18] X. Nan et al., “A novel cloud gaming framework using joint video and
graphics streaming,” in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2014,
pp. 1–6.

[19] S. Shi, C. Hsu, K. Nahrstedt, and R. Campbell, “Using graphics rendering
contexts to enhance the real-time video coding for mobile cloud gaming,”
in Proc. 19th ACM Int. Conf. Multimedia, New York, NY, USA, 2011,
pp. 103–112.

[20] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proc. 6th Conf.
Comput. Syst., New York, NY, USA, 2011, pp. 301–314.

[21] W. Cai and V. C. M. Leung, “Decomposed cloud games: Design principles
and challenges,” in Proc. IEEE Int. Conf. Multimedia Expo Workshops,
Jul. 2014, pp. 1–4.

[22] D. B. Lange and O. Mitsuru, Programming and Deploying Java Mobile
Agents Aglets, 1st ed. Boston, MA, USA: Addison-Wesley, 1998.

[23] W. Cai, Z. Hong, X. Wang, H. C. B. Chan, and V. C. M. Leung, “Quality-of-
experience optimization for a cloud gaming system with ad hoc cloudlet
assistance,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 12,
pp. 2092–2104, Dec. 2015.

Wei Cai (S’12–M’16) received the B.Eng. degree
in software engineering from Xiamen University,
Xiamen, China, in 2008, the M.S. degree in elec-
trical engineering and computer science from Seoul
National University, Seoul, South Korea, in 2011, and
the Ph.D. degree in electrical and computer engineer-
ing from the University of British Columbia (UBC),
Vancouver, BC, Canada, in 2016.

He is currently a Postdoctoral Research Fellow
with the Department of Electrical and Computer En-
gineering, UBC. He has completed visiting research

with the National Institute of Informatics, Tokyo, Japan, The Hong Kong Poly-
technic University, Hong Kong, and Academia Sinica, Taipei, Taiwan. His recent
research interests include cloud computing, software system, interactive multi-
media, and blockchain technology.

Dr. Cai was the recipient of UBC Doctoral Four-Year-Fellowship from 2011
to 2015, the 2015 Chinese Government Award for the Outstanding Self-Financed
Students Abroad, and the Brain Korea 21 Scholarship. He was also the recipient
of the Best Paper Award of CloudCom2014, SmartComp2014, and Cloud-
Comp2013.

Yuanfang Chi (S’14) received the B.A.Sc and
M.A.Sc. degrees in electrical and computer engineer-
ing from the University of British Columbia, Vancou-
ver, BC, Canada, in 2012 and 2015, respectively.

She is currently an Application Engineer with Or-
acle, Beijing, China. Before her postgraduate studies,
she was an R&D Software Engineer with Tsinghua
University, Beijing, China. Her recent research inter-
ests include software system, cloud computing, de-
mand management, and pricing strategy.

Conghui Zhou received the B.E. degree in software
engineering from Huaqiao University, Quanzhou,
China, in 2009, and the M.S. degree in computer
science from the Chinese University of Hong Kong,
Hong Kong, in 2011.

He is currently a Senior Analyst Programmer with
We Software Limited, Hong Kong. Since 2009, he has
been working on software development with several
companies in China and Hong Kong. His research
interests include computer vision, software engineer-
ing, and cloud gaming.

Chaojie Zhu received the B.E. degree in software
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2017, and is currently working
toward the Masters of Entertainment Technology de-
gree at Carnegie Mellon University, Pittsburgh, PA,
USA.

He has completed a Mitacs Globalink Research
Internship regarding cloud gaming system at the Uni-
versity of British Columbia, Vancouver, BC, Canada.
His current research focuses on creating entertaining
experiences with VR, AR, cloud computing, and AI

technology.

Victor C. M. Leung (S’75–M’89–SM’97–F’03) re-
ceived the B.A.Sc. (Hons.) degree in electrical en-
gineering from the University of British Columbia
(UBC), Vancouver, BC, Canada, in 1977. He attended
Graduate School at UBC on a Canadian Natural Sci-
ences and Engineering Research Council Postgrad-
uate Scholarship and received the Ph.D. degree in
electrical engineering from UBC, in 1982.

From 1981 to 1987, he was a Senior Member of
Technical Staff and a Satellite System Specialist with
MPR Teltech, Ltd., Burnaby, BC, Canada. In 1988,

he was a Lecturer with the Department of Electronics, Chinese University of
Hong Kong. He returned to UBC as a faculty member in 1989, and is currently
a Professor and the TELUS Mobility Research Chair in Advanced Telecommu-
nications Engineering with the Department of Electrical and Computer Engi-
neering. He has coauthored more than 1000 journal/conference papers, 38 book
chapters, and coedited 14 book titles. His research interests include wireless
networks and mobile systems.

Dr. Leung is a registered Professional Engineer in the Province of British
Columbia, Canada. He is a Fellow of the Royal Society of Canada, the Engi-
neering Institute of Canada, and the Canadian Academy of Engineering. He was
a Distinguished Lecturer of the IEEE Communications Society. He is a member
of the Editorial Boards of the IEEE TRANSACTIONS ON GREEN COMMUNICA-
TIONS AND NETWORKING, IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE
ACCESS, Computer Communications, and several other journals, and was pre-
viously a member of the Editorial Boards of the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS—Wireless Communications Series and Series on
Green Communications and Networking, IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE
TRANSACTIONS ON COMPUTERS, IEEE WIRELESS COMMUNICATIONS LETTERS,
and Journal of Communications and Networks. He was a Guest Editor for many
journal special issues, and provided leadership to the Organizing Committees
and Technical Program Committees of numerous conferences and workshops.
He was the recipient of the IEEE Vancouver Section Centennial Award, the 2011
UBC Killam Research Prize, and the 2017 Canadian Award for Telecommuni-
cations Research. He coauthored papers that won the 2017 IEEE ComSoc Fred
W. Ellersick Prize and the 2017 IEEE SYSTEMS JOURNAL Best Paper Award. He
was also the recipient of the APEBC Gold Medal as the head of the graduating
class in the Faculty of Applied Science. Several of his papers had been selected
for Best Paper Awards.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

