
2038 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

Cognitive Resource Optimization for the
Decomposed Cloud Gaming Platform

Wei Cai, Student Member, IEEE, Henry C. B. Chan, Member, IEEE, Xiaofei Wang, Member, IEEE,
and Victor C. M. Leung, Fellow, IEEE

Abstract— Contrary to conventional gaming-on-demand
services that stream gaming video from cloud to players’
terminals, a decomposed cloud gaming platform supports
flexible migrations of gaming components between the cloud
server and the players’ terminals. In this paper, we present the
design and implementation of the proposed decomposed gaming
system. The cognitive resource optimization of the system
under distinct targets, including the minimization of cloud,
network, and terminal resources and response delay, subject to
quality of service (QoS) assurance, is formulated as a graph
partitioning problem that is solved by exhaustive searches.
Simulations and experimental results demonstrate the feasibility
of cognitive resource management in a cloud gaming system to
efficiently adapt to variations in the service environments, such
as increasing the number of supported devices and reducing
the network bandwidth consumption of user terminals, while
satisfying different QoS requirements for gaming sessions. We
also suggest two heuristic algorithms based on local greedy and
genetic algorithm approaches, which can potentially provide
scalable but suboptimal solutions in large-scale implementations.

Index Terms— Cloud, cognitive, decomposed, resource
management, video game.

I. INTRODUCTION

THE video game industry, driven by the huge sales of
mobile games, video gaming consoles, and computer

gaming software, has a major impact on the economy. The
rapid development of cloud computing technology and its
novel concept of providing Everything as a Service [1] is
revolutionizing this industry and moving it into a new era.
Recently, researchers, system designers, and application
developers have become more and more interested in
the emerging research topic of cloud gaming [2], which

Manuscript received September 22, 2014; revised February 4, 2015 and
April 12, 2015; accepted June 11, 2015. Date of publication June 26, 2015;
date of current version December 3, 2015. This work was supported in
part by the University of British Columbia Four Year Doctoral Fellowship,
in part by the Natural Sciences and Engineering Research Council of Canada
under Grant STPGP 447524, and in part by the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong. This paper was
recommended by Associate Editor K.-T. Chen.

W. Cai is with the Department of Electrical and Computer Engineering,
The University of British Columbia, Vancouver, BC V6T 1Z4, Canada,
and also with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong (e-mail: weicai@ece.ubc.ca).

H. C. B. Chan is with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong (e-mail: cshchan@comp.polyu.edu.hk).

X. Wang and V. C. M. Leung are with the Department of Electrical
and Computer Engineering, The University of British Columbia, Vancouver,
BC V6T 1Z4, Canada (e-mail: xfwang@ece.ubc.ca; vleung@ece.ubc.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2015.2450171

transforms the traditional gaming software into Gaming as
a Service (GaaS) [3]. In contrary to conventional video games,
the cloud gaming model exhibits several unique advantages.

1) Scalability: It overcomes the resource constraints of
gaming terminals, including processing capacity, data
storage, and battery energy in mobile devices.

2) Cost Effectiveness: It reduces the production cost with
a unified development approach.

3) Ubiquitous and Multiple-Platform Support: It provides
cross platform and seamless gaming experience.

4) Effective Antipiracy Solution: It provides a potential
solution to the troublesome piracy problems and trans-
forms the game developing companies to game service
providers.

5) Click and Play: It supports a play-as-you-go mode,
in which a player can start a game session without
downloading or installing the complete game software.

6) Energy Efficiency: It has strong potentials in saving
batteries of the mobile terminals and bringing longer
gaming times for the players by offloading game
programs’ high computational complexity to the cloud.
Therefore, the development of cloud gaming solutions
is currently of significant interest not only to academia
but also to gaming, cloud computing, and networking
industries.

Some game companies such as OnLive,1 Gaikai,2

and G-Cluster3 have started to provide commercialized cloud
gaming services to the public. Following a remote rendering
GaaS (RR-GaaS) or gaming-on-demand model, game service
providers host their video games in cloud servers and stream
the players’ gaming video frames to their terminals over the
Internet. On the other hand, gaming interactions triggered by
game players are transmitted to the cloud server over the same
networks [4]. With this approach, the cloud gaming service
enables the players to run sophisticated games despite the
capacity limitation of their mobile devices, at the expense of
higher communications and network consumptions. It is obvi-
ous that the workload of gaming video rendering in the cloud
is extremely heavy, and the video frame transmissions via the
Internet also consume huge amounts of network resources,
which can lead to high delays in gaming responses [5], [6].
Even though researchers have put plenty of efforts to optimize

1http://www.onlive.com
2http://www.gaikai.com
3http://www.g-cluster.com

1051-8215 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CAI et al.: COGNITIVE RESOURCE OPTIMIZATION FOR THE DECOMPOSED CLOUD GAMING PLATFORM 2039

the RR-GaaS systems [7]–[10], the constraints imposed by
existing means of Internet access are hindering the wide
adoption of gaming on demand.

With improvements in hardware performance, most gaming
terminals, including mobile devices, are capable of performing
complicated graphical rendering for game scenes. Under this
circumstance, a mechanism for on-device rendering instruction
execution, also known as local rendering GaaS (LR-GaaS),
where only instructions needed to render the images are
sent to clients instead of real-time video frames, could be
adopted. Such a mechanism is used in [11], which proposes
a virtual display architecture for thin-client computing. In this
architecture, applications are hosted in a remote server with a
virtual device driver that simulates user inputs received from
client devices and a virtual display driver that intercepts and
transmits drawing commands of screen updates over the net-
work to client devices. However, for a typical LR-GaaS model,
e.g., browser games [12], the workload in the cloud is still
very heavy, especially when the number of users increases to
a certain level. Moreover, the LR-GaaS model is not flexible;
in fact, some procedures other than graphical rendering,
e.g., frequent and simple calculations, can be executed locally
to reduce the latency of responses and also reduce the cloud
workload.

Decomposition provides a potential solution for cloud-based
online gaming. An architecture has recently been proposed
in [13] to decompose the rendering module of a game into
two submodules: one submodule executing in the cloud to
render the scenes and create the rendering instructions for
game scene updates, while another submodule interprets
the rendering instructions and transmits them to the mobile
devices for local execution. By decoupling the creation of
rendering instructions from its execution and transmitting
only small-sized rendering instructions over the Internet,
the communication burden caused by video transmissions
is eased and hence meeting the challenges caused by the
limitations of the mobile networks. As a further step, the novel
idea to decompose the game program into inter-dependent
components that can be distributed to either the cloud or
local terminal for execution was first introduced in [14],
which achieves flexible resource allocation. Accordingly,
the adaptive, interactive, contextual, iterative, and stateful
paradigm of cognitive computing [15] has motivated us to
build a context-aware platform that adapts the cloud-terminal
workload to the runtime environment to optimize the use
of cloud, network, and terminal resources while meeting the
quality of service (QoS) objectives of the gaming sessions.

We highlight the important contributions of this paper in the
following.

1) System Design and Implementation: We present a
novel design for decomposed cloud gaming platform,
provide the framework description, and address the
system implementation issues of measuring component
execution performance and communication status.
We also develop prototype games to conduct empirical
evaluations.

2) System Modeling and Formulation: To the best of our
knowledge, this is the very first work in modeling

cognitive resource management for cloud gaming, which
builds a foundation for further research. We provide
the formulation of a graph partitioning problem and
investigate the QoS requirements in cloud gaming
scenarios to study the different optimization targets for
the proposed system.

The remaining sections of this paper are organized
as follows. We review related work in Section II and
present the proposed system design and implementation
in Section III. Then, in Section IV, we model and formulate
the decomposed cloud games as a graph partitioning problem
and perform theoretical analysis on optimal solutions. The QoS
requirements and the optimization targets for cognitive cloud
resource management are described in Section V. We further
suggest two heuristic approaches for scalable implementations,
based on local greedy and genetic algorithm (GA) approaches,
in Section VI. The results of simulations and experiments con-
ducted over a test bed are presented in Sections VII and VIII,
respectively. Section IX concludes this paper.

II. RELATED WORK

A. Dynamic Partitioning

The resource allocation optimization problem considered in
this paper belongs to a group of dynamic partitioning problems
for multiple devices. Studies on the dynamic partitioning
between cloud and users’ mobile terminals have been
conducted for general-purpose applications. Giurgiu et al. [16]
first introduced a K -step algorithm to compute partitioning
on the fly, when a phone connects to the server and
specifies its resources and requirements. Furthermore,
Chun and Maniatis [17] formulated the dynamic partitioning
problem and discussed the supporting platform that facili-
tates it. A dynamic partitioning system named CloneCloud
was designed in [18]. As a flexible application partitioner and
execution runtime, CloneCloud enables unmodified mobile
applications running in an application-level virtual machine
to seamlessly offload part of their execution from mobile
devices onto device clones operating in a computational cloud.
Similar to MAUI [19], CloneCloud partitions applications
using a framework that combines static program analysis
with dynamic program profiling and optimizes execution
time or energy consumption using an optimization solver.
For offloaded execution, MAUI performs method shipping
with relevant heap objects, but CloneCloud migrates specific
threads with relevant execution state on demand and can
merge migrated state back to the original process. However,
a basic requirement of these two works is that identical
application copies must be placed in both cloud and terminal
sides a priori, which conflicts with our design principles
of click-and-play for the cloud-based games. Moreover, the
mandatory static analysis of both MAUI and CloneCloud
requires all programs to be hosted a priori in the platform for
the static analysis. This procedure extracts the relationships of
components, which is necessary information for dynamic pro-
filing and also potentially increases the efficiency of dynamic
adaption. However, the static analysis needs additional
code instruments, which further complicates the program
development. In contrast, on-the-fly adaptation simplifies

2040 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

the program development, while its real-time estimation and
optimization features may introduce system overheads, such
as increased resource consumption and latency. Our proposed
platform supports both static and on-the-fly partitioning, since
a dynamic measurement method for the components’ perfor-
mances is introduced. Moreover, we also enable cross-platform
gaming experience by adopting the JavaScript language.

B. Cognitive Cloud Gaming Platform

Cai et al. [20] were the first to propose a component-based
cognitive gaming platform that enables distributed component
execution for the purpose of supporting both click-and-play
and cognitive resource allocation. The proposed game design
also allows the players to continue their gaming sessions
in particular gaming scenes without network connection.
The cognitive gaming platform is able to dispatch selected
gaming components from cloud to players’ terminals and
later facilitate dynamic partitioning to adapt the QoS to the
real-time systemic environment. As a development-friendly
environment, the platform also provides a set of application
programming interfaces so that the game developers need
not understand the lower layer resource management details
and focus on the design of game programs. However, system
modeling, optimization problem formulation, and proof-of-
concept implementations were missing in this previous work.

C. Quality of Experience in Cloud Gaming

Maintaining an acceptable quality of experience (QoE)
for the game players is an imperative design concern for
cloud gaming systems. To provide cloud gaming service,
the relationships between cloud gaming QoE and QoS
are different for different implementation architectures.
For RR-GaaS, many subjective user studies have been
conducted to demonstrate the relationships between cloud
gaming QoE and QoS, including game genres, video
encoding factors, central processing unit (CPU) load, memory
usage, link bandwidth utilization [21], response latency and
the game’s real-time strictness [22], category of gaming
scenes [23], and network characteristics (bit rates, packet
sizes, and inter-packet times) [24], [25]. An empirical network
traffic analysis of OnLive and Gaikai has been presented
in [26]. Nevertheless, with the proposed cognitive cloud
gaming platform, the QoE to QoS mapping needs to be
redefined due to the adaptive nature of the platform. There is
a relatively little research done in this respect. Therefore, in
this paper, we focus on hard QoS requirements.

III. SYSTEM OVERVIEW

A. System Design

Fig. 1 shows the design of the cognitive platform that
facilitates the dynamic partitioning. Execution Monitors
implemented on both cloud and mobile sides monitor the
execution information of each component in the cloud, access
network, and mobile terminal. The surveillance data, including
memory usage, CPU percentage, and execution time, are
reported to the cognitive decision engine, where cognitive

Fig. 1. Cognitive platform for mobile cloud gaming.

resource management strategies are made. The cognitive
decision engine also requests information from the
performance prober, which periodically reports its results in
probing the cloud-network-terminal environmental parameters.
Games designed for the cognitive platform consist of a number
of inter-dependent game components. These components are
able to migrate from the cloud to the mobile terminal via
network under the instruction of the onloading manager.
Serving as a message gateway between components, the
partitioning coordinator intelligently selects destination
components, locally or remotely, to achieve dynamic resource
allocation. The synchronization controller is designed to
guarantee the synchronization of data in identical components
distributed in the cloud and mobile terminals. Note that
the onloading manager, partitioning coordinator, and
synchronization controller work with the performance
evaluator and local analyzer for the purpose of maintaining
an acceptable QoS for players.

B. Dynamic System Monitoring

One of the most critical problems for the decomposed
cloud gaming platform is to design a practicable mechanism
to measure the execution status, e.g., component execution
costs, execution probability, and communication costs. In our
design, we introduce an execution monitor and a latency-based
estimation solution to derive these parameters. The execution
monitors on both the cloud and mobile sides monitor resource
usage of each components, whether in cloud or terminal, and
save the execution information in a statistics database. This
execution information includes the property of each com-
ponent in each invocation, including memory consumption,
CPU usage percentage, execution time, output data size,
and execution environment. With the execution information
database, the system is able to retrieve the invocation trees
between the components, including the relationship between
components and the execution frequency of each component.
In fact, the players’ interactional behaviors are identified from

CAI et al.: COGNITIVE RESOURCE OPTIMIZATION FOR THE DECOMPOSED CLOUD GAMING PLATFORM 2041

this database. The performance prober is a software mobile
agent [27] that travels between cloud and terminals to estimate
the cloud-network-terminal environmental parameters. We set
up a mobile agent component with designated iterations and
measure the component’s execution information in the cloud.
Afterward, the component is dispatched and executed in the
terminals. Its execution information is measured and report to
the performance prober in the cloud. Note that this process
involves two network transmissions, in which the system
is able to calculate the network QoS parameters, including
round-trip time (RTT) and data transmission rate. With this
approach, the performance prober is able to compare the com-
putational efficiency of cloud and terminals and, consequently,
estimate the executional information for all components with
computation. Denoting the cloud computational efficiency
as Ec and terminal computational efficiency as Et , therefore
we are able to compute the efficiency ratio RE = Ec/Et .
With RE , we can estimate the execution information that we
could not measure from the system. For instance, the cloud
execution time for a particular component can be estimated
as Et × RE . To minimize the overhead of probing, the
performance prober is designed to work collaboratively with
the execution monitor. As mentioned before, the cognitive
system follows a stochastic approach to calculate the exe-
cution probability of each component. Hence, both cloud’s
and terminals’ databases need to be queried. Meanwhile, the
statistics in the terminal are reported to the cloud periodically.
Accordingly, the mobile agent component in the performance
prober is designed as the database information retriever and
carrier to improve the system efficiency. Of course, our
design imposes some overheads, including recording each
component’s invocation in real time, calculating components’
invocation frequency from the records and periodic end-to-
end network transmission of the performance prober mobile
agent. However, these computational overheads are negligible
in current hardware, while the network transmission overheads
are ineradicable in all existing cognitive systems. In summary,
these costs are minimized by the reuse of status monitoring
for networks and terminals. In our design, the system dis-
patches performance prober to the terminals in an interval
of TI and save the probing results in a database. In fact,
with real-time data analysis, the interval TI can also be a
variable subject to the variety of the terminal, e.g., the network
quality.

IV. SYSTEM MODELING

In this section, we model the resource management problem
from the perspectives of game components, QoS constraints,
and optimization targets.

A. Game Components

In the cognitive cloud gaming platform, games consist
of inter-dependent components that work collaboratively to
provide gaming services for players. As shown in Fig. 2,
we model the dependent game components by a directed graph
G = {V , E}, where each vertex in V represents a game
component vi and each edge ei, j in E indicates a dependency

Fig. 2. Components partitioning for the proposed cognitive platform.

TABLE I

MODELING NOTATION

between vi and v j . Each component vi is characterized by the
parameters listed in Table I.

Once the mobile terminal fetches the game components
from the cloud, the partitioning coordinator works with the
cognitive decision engine to solve the dynamic partitioning
problem to provide a QoS-oriented resource optimization.
In this framework, all input and output data from the compo-
nents are sent to the partitioning coordinator, which provides
a routing service to invoke messages by intelligently selecting
the destination components when an application cycle is
determined.

As shown in Fig. 2, the partitioning problem intrinsically
seeks to find a cut in the component graph such that some
components of the game run on the client side and the remain-
ing ones run on the cloud side. The optimal cut maximizes
or minimizes an objective function O, which expresses the
general goal of a partition such as minimizing the end-to-end
interaction time between the mobile terminal and the cloud,
minimizing the resource consumption in the cloud or minimiz-
ing the data transmissions for the game terminals. Therefore,
the resource management problem is to seek an optimal set of
all connecting terminals’ partitioning solutions in discretized
search space, which meets the system’s optimization target.

B. Formulation

To formulate the costs associated with partitioning of the
game components, whose properties are listed in Table I,
we further define specific parameters, including resource
consumptions, code migration cost, and output transmission
cost, as shown in Table II. Note that the term cost in this paper
is used as a measure of resource utilization or consumptions
in terms of how they impact system performance. For our
practical implementation, the cost is given by the actual
latency.

Note that ti and ci denote the component execution costs in
the terminals and the cloud, which give an overall evaluation

2042 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

TABLE II

FORMULATION NOTATION

of resource consumptions ri in CPU, memory, and energy,
mi denote the overall transmission cost of migrating
component i from cloud to terminal, which depends on code
size si , network quality, and expected gaming session time,
and αi, j , βi, j , λi, j , and θi, j denote message communication
costs between components, subject to the amount of output
data oi, j and network QoS parameters. In addition, pi is
subject to fi , and qi, j is subject to fi, j . Accordingly, we
formulate the optimal partitioning problem to minimize
the overall cost Co, which is a sum of execution costs
for all components Ce, communication costs between all
components Cc, and code migration costs Cm as

Co = Ce + Cc + Cm . (1)

According to our definitions in Table II, we derive

Ce =
∑

vi ∈τ

ti pi +
∑

vi∈σ

ci pi (2)

Cc =
∑

vi∈σ
v j ∈σ

αi, j qi, j +
∑

vi∈τ
v j ∈τ

βi, j qi, j +
∑

vi∈σ
v j ∈τ

λi, j qi, j +
∑

vi∈τ
v j ∈σ

θi, j qi, j

(3)

Cm =
∑

vi ∈τ

mi . (4)

C. Optimal Partitioning Solution

The minimum overall cost Co is subject to the various costs
parameters denoted in Table II. In this section, we derive the
minimum cost for a special case, where the parameters for
all vi and ei in Table II are all identical: we denote their
constant values by t, c, m, p, α, β, λ, θ , and q , respectively.
Consequently, the directed graph for component partitioning is
transformed to a connected and undirected graph with identical
weight (λ+ β) · q for the edges. We derive the minimum cost
for different graph topologies with N components, including
the minimum spanning tree (MST), complete graph, and
general graph. As a practical constraint, at least one component
is executed in each player’s terminal, acting as the player’s
command receiver and transmitter.

1) Partitioning for Minimum Spanning Tree: An MST or
minimum weight spanning tree is a spanning tree with weight
less than or equal to the weight of every other spanning tree.

Fig. 3. Minimum spanning tree with N components.

Fig. 4. Complete graph with N components.

In our context, it refers to a connected graph topology that
contains N − 1 edges, as shown by the example in Fig. 3.

Assume k ∈ [1, n − 1] cuts in the MST GM (N) to split the
N components so that x ∈ [1, N − 1] components are placed
in the terminal and N − x components are placed in the cloud.
This leads to the following cost functions:

Ce = x · t · p + (N − x) · c · p (5)

Cm = m · x (6)

Cc = [(x − 1) · β + (N − x − 1) · α + k · (λ + θ)] · q. (7)

Since (λ + β) · q ≥ 0, to minimize the Co, the value of k
should be set to 1, the minimum value. The derivative of the
function Co at x is shown in

C ′
o = [(t − c) · p + m + (β − α) · q] × 2. (8)

Therefore, we see that if C ′
o ≥ 0, the value of x should

be the minimum, i.e., 1, to minimize Co. On the other
hand, if C ′

o < 0, the value of x should be the maximum,
i.e., N − 1. In general cases, the terminals’ computational
efficiency is always lower than the computational efficiency
of the cloud. Hence, we define t > c and β > α, which
makes C ′

o ≥ 0. Accordingly, the optimal partitioning for MST
is only to migrate the necessary components to the terminal,
while executing all of the others in the cloud. However, if the
cloud server is suffering from an extremely heavy workload,
the computational power in terminals may exceed the cloud,
then the system should migrate all components to the terminal
when C ′

o < 0, where the parameters satisfies

m < (c − t) · p + (α − β) · q. (9)

2) Partitioning for Complete Graph: A complete graph is a
simple undirected graph in which every pair of distinct vertices
are connected by a unique edge, as shown in Fig. 4.

In fact, a complete graph GC (N) with N components
contains N(N − 1)/2 edges. Assume there are x ∈ [1, N − 1]
components executed in the terminal and N − x components
executed in the cloud, we derive Ce and Cm as in (5) and (6),

CAI et al.: COGNITIVE RESOURCE OPTIMIZATION FOR THE DECOMPOSED CLOUD GAMING PLATFORM 2043

and Cc is formulated as

Cc = [β · x(x − 1)/2 + α · (N − x)(N − x − 1)/2

+ (λ + θ) · (N − x)x] · q. (10)

Therefore, we derive Co = Ce + Cm + Cc. In general cases,
α, β � λ, θ , which leads to α + β − 2λ − 2θ < 0, which
indicates that Co has a downward slope. Consequently, the
minimum value of Co is when either x = 1 or x = N − 1.
Given Co = f (x), here we derive � = f (N − 1) − f (1) as

� = (N − 2)[q · (β − α)(N − 1)/2 + p · (t − c) + m]. (11)

Given N > 2, we see that if � ≥ 0, to minimize Co, the
value of x should be 1. If � < 0, the value of x should be
N − 1. In general cases, the terminals are less computational
efficient than the cloud; thus, t > c and β > α, which makes
� ≥ 0. Accordingly, the optimal partitioning is that only the
necessary single component is migrated to the terminal, while
all of the others are executed in the cloud. However, if the
cloud server is suffering from an extremely heavy workload
such that the computational power in terminals exceeds the
cloud, the system will host all components at the terminals
when � < 0, where the parameters satisfy

m < (c − t) · p + (α − β) · (N − 1) · q/2. (12)

3) Partitioning for General Graph: A general graph refers
to a connected graph topology in which vertices are connected
by an arbitrary set of edges. In this section, we discuss the
overall cost for an arbitrary connected general graph G R(N)
with N vertices and {E |2(N −1) < E < N(N −1)/2} directed
edges.

Theorem 1: Given a specific N and that the connected
graph G A is a subgraph of G B , and G A and G B share the
same partitioning solution P , the overall cost of Co satisfies
Co(G A) < Co(G B).

Proof: Since G A is a subgraph of G B with a specific N ,
and G A and G B share the same partitioning solution P ,
we have Ce(G A) = Ce(G B) and Cm(G A) = Cm(G B).
Since G A is a subgraph of G B , we denote a link set
L = L(G B) − L(G A), where LG A and LG B are the
link sets of G A and G B , respectively, then we derive
�Cc = Cc(G B) − Cc(G A) as

∀vi , v j ∈ L

�Cc =
∑

vi∈σ
v j ∈σ

αi, j qi, j +
∑

vi∈τ
v j∈τ

βi, j qi, j +
∑

vi∈σ
v j∈τ

λi, j qi, j +
∑

vi∈τ
v j∈σ

θi, j qi, j .

Therefore, when �Cc > 0, Cc(G B) > Cc(G A) is true.
Since Co = Ce + Cc + Cm , we obtain Co(G A) < Co(G B).
The theorem is proved.

Theorem 2: Given a specific N and that the connected
graph G A is a subgraph of G B , the minimal overall cost
of Cm

o satisfies Cm
o (G A) < Cm

o (G B).
Proof: Denote G A by a subgraph of G B , where

Cm
o (G A) is the minimal overall cost of G A with the optimal

partitioning of P(A) and Cm
o (G B) is the minimal over-

all cost of G B with optimal partitioning solution P(B).
Suppose Cm

o (G A) ≥ Cm
o (G B) is true. Trim G B to G B ′ ,

Fig. 5. General graph with N components.

where G B ′ = G A. According to Theorem 1, we have
Cm

o (G B) > Co(B ′), where Co(B ′) is the overall cost
of G B ′ with the partitioning solution P(B). Therefore,
Cm

o (G A) > Ck
o (G A), where Ck

o (G A) is the overall cost
of G A with the partitioning solution P(B). It contradicts the
assumption that Cm

o (G A) is the minimal overall cost of G A.
The theorem is proved.

Since GM (N) is a subgraph of G R(N) and G R(N) is a
subgraph of GC (N), according to Theorem 2, we derive

Co(GM (N)) < Co(G R(N)) < Co(GC(N)). (13)

Take a general graph with N vertices as an example.
Assume there is a complete graph with A vertices and another
complete graph with B = N − A vertices. Also assume there
is one edge between vertex A and B , as shown in Fig. 5.
It is mandatory that component A is hosted in the cloud and
component B is executed in a terminal.

Assume there are x ∈ [1, N − 1] components executed in
the terminal and N − x components executed in the cloud,
with Ce and Cm derived in (5) and (6), the minimized Cc is
formulated as

For xl < B

Cc(xl) = A(A − 1)αq

2
+ (B − x)(B − x − 1)αq

2
+ αq

+ (λ + θ)x(B − x)q + x(x − 1)βq

2
. (14)

For xe = B

Cc(xe) = A(A − 1)αq

2
+ (λ + θ)q + B(B − 1)βq

2
. (15)

For xg > B

Cc(xg) = x(x − 1)αq

2
+ (λ + θ)(N − x)(x − B)q

+ (x − B)(x − B − 1)

2
βq + B(B − 1)

2
βq + βq.

(16)

Given Co = f (x), we have �l = f (xe) − f (xl).
In general, c ≈ t and α, β � λ, θ . To this end, we consider the
minimum Co(xe) < Co(xl) when the values of the parameters
satisfies

m(xe − xl) < [xl(B − xl) − 1](λ + θ)q. (17)

2044 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

TABLE III

QoS NOTATIONS

Similarly, we derive �g = f (xe) − f (xg) as

�g = [(t − c)p + m](xe − xg)

+ [1 − (N − xg)(xg − B)](λ + θ)q

+
[

A(A − 1)

2
− xg(xg − 1)

2

]
αq

+
[
(xg − B)(xg − B − 1)

2
− 1

]
βq. (18)

Since c ≈ t and α, β � λ, θ , we can easily derive
that �g < 0, and thus minimum Co(xe) < Co(xg).
In conclusion, Co reaches the minimum value when x = B and
m(xe − xl) < [xl(B − xl) − 1](λ + θ)q .

This example illustrates that it is a critical challenge to
derive the solution that minimizes the overall cost for a general
graph with a variety of edges. The computational complexity
of seeking an optimal cut for a general graph is 2N .

V. CLOUD RESOURCE MANAGEMENT

As an assumption in previous sections, the execution and
communication costs are considered as identical constants.
Nevertheless, real-world scenarios generally involve various
values of execution and communication costs, which further
complicate the optimization problem on graph partitioning.
In addition, we also need to extend the problem by consider-
ing the capacity constraints of cloud and players’ terminals.
In this section, we formulate the QoS controls in cloud
resource management and introduce a set of optimization
targets.

A. QoS Constraints

As a gaming service provision system, satisfying all players’
QoS is a fundamental requirement. To this end, we formulate
the QoS constraints with additional notations in Table III.

1) Terminal Cost Constraint: The terminal device needs
sufficient resources to host the set of downloaded gaming
components. To simplify our model, we take execution and
intra-terminal communication as the consumers of processing
resources. The terminal processing resource consumption for
terminal d is formulated as

μ(d) =
∑

vi∈τ

ti (d)pi(d) +
∑

vi∈τ
v j ∈τ

βi, j (d)qi, j (d). (19)

Then the constraint on terminal processing resource is
formulated as

∀d ∈ D, μ(d) ≤ PT (d). (20)

2) Terminal Network Constraint: The remote invokes of
components introduce network bandwidth consumption to the
gaming procedure. To guarantee the QoS for players, the
system needs to control all terminals’ gaming throughput.
We formulate the network resource consumption between
component vi ∈ τ and v j ∈ σ for terminal d as

ni, j (d) = λ j,i (d) · q j,i (d) + θi, j (d) · qi, j (21)

and the constraint on terminal network resource is
formulated as

∀d ∈ D,
∑

vi ∈τ
v j∈σ

ni, j (d) +
∑

vi∈τ

mi (d) ≤ NT (d). (22)

3) Cloud Resources Constraint: As a service provider, the
cloud consumes its processing resources to host a set of
components for M terminals. Therefore, to guarantee the
continuous resource provisioning is a critical issue in QoS
assurance. The cloud processing resource consumption for
terminal d is formulated as

ν(d) =
∑

vi∈σ

vi (d)pi (d) +
∑

vi∈σ
v j ∈σ

αi, j (d)qi, j (d). (23)

With the same notations, we formulate the constraint on
cloud resources as

∑

d∈D

ν(d) ≤ PC . (24)

4) Cloud Network Constraint: During the gaming session,
the cloud handles network connections from the terminals.
We also need to formulate the constraint on the overall network
throughput as

∑

d∈D

⎛

⎜⎝
∑

vi∈τ
v j ∈σ

ni, j (d) +
∑

vi∈τ

mi (d)

⎞

⎟⎠ ≤ NC . (25)

5) Response Delay Constraint: Response delay represents
the time interval between players’ input and the system
response. In cloud gaming system, the latency is caused by
processing latency and networking latency. And hence, in this
paper, the expected processing latency lp(d) is formulated
as the sum of processing time that is proportional to the
sum of processing resource consumptions in both terminal
and cloud with the efficient factors FT and FC , respectively.
Note that to predict and to model the burst of component and
communication costs in real-game sessions will be our next
step of work

l p(d) = f (μ(d), ν(d), FT , FC). (26)

The expected networking latency ln(d) is formulated as
the sum of communication delays for all remote invocations

CAI et al.: COGNITIVE RESOURCE OPTIMIZATION FOR THE DECOMPOSED CLOUD GAMING PLATFORM 2045

between components, which is proportional to their network
resource consumption with the efficient factor FN

ln(d) =
∑

vi∈τ
v j ∈σ

g(ni, j (d), TRTT(d), FN) (27)

where g is the function to calculate the latency from
the specific communication package and RTT. Accordingly,
we conclude the constraint on response relay as

∀d ∈ D, ln(d) + l p(d) ≤ L M (d). (28)

B. Optimization Targets

As a cognitive system, the cloud gaming service is adaptable
by all kinds of terminals, accessible through different networks
and can be hosted by clouds provided by different vendors.
In this paper, we design a set of optimization targets to
demonstrate the flexibility and efficiency of the proposed
system.

1) Cloud Resource Cost Minimization: Cloud is not a
free resource and its capacity is still restricted by existing
visualization techniques. Therefore, minimizing the cloud
resource utilization is crucial from the economic perspective.
To this end, cloud resource cost minimization allocates more
components to selected terminals to reduce its own resource
consumption. Note that the selecting procedure shall be under
the supervision of the QoS constraints, and thus, to guarantee
QoS satisfactory for all players as

min
∑

d∈D

ν(d)

s.t. (20)(22)(24)(25)(28).

2) Network Cost Minimization: The cloud gaming largely
relies on the network quality. Players who access gaming
services via paid mobile network also concern their bill
amount. Hence, the system network throughput is an important
factor that impacts both players’ QoS and users’ interests on
the cloud gaming service. Consequently, another optimization
target network cost minimization dynamically determines an
optimized partitioning solution to minimize the terminals’
average network cost

min
∑

d∈D

⎛
⎜⎝

∑

vi∈τ
v j ∈σ

ni, j (d) +
∑

vi ∈τ

mi (d)

⎞
⎟⎠

s.t. (20)(22)(24)(25)(28).

3) Terminal Resource Cost Minimization: Terminal is
considered as relatively weak devices, especially when
they are mobile devices powered by batteries. Therefore,
minimizing the terminal resource utilization is another
important optimization factor we need to consider. For
this purpose, an optimization target terminal resource cost
minimization seeks optimal partitioning solution to minimize
the terminals’ average resource cost and thus provides lower
energy consumption rate on players’ devices

min
∑

d∈D

μ(d)

s.t. (20)(22)(24)(25)(28).

4) Response Delay Minimization: The response delay to
players’ commands in gaming systems is defined as the time
difference between the time when player initiates a command
and the time when player receives the response from the game
program. As one of the most key factors that impacts the
players’ QoS, the response delay shall be strictly controlled
under a threshold (e.g., 200 ms is maximal tolerable and
120 ms is hardly noticeable, as stated in [28]) to ensure accept-
able gaming procedure. As indicated in [29], the calculation
of the response delay is completely different from that in
the conventional cloud gaming system. We provide response
delay minimization mode to minimize the terminals’ average
response delay with selected partitioning solutions

min
∑

d∈D

ln(d) + l p(d)

s.t. (20)(22)(24)(25)(28).

VI. HEURISTIC SOLUTIONS

The optimizations presented in the previous section may not
scale to more complex systems with large numbers of game
players due to the computational complexity of searching for
the optimal solutions. Suppose the cloud-based game consists
of C components and provides its cloud gaming service for
N terminals, the number of potential component allocation
solutions is 2NC , which implies that an exhaustive search
approach has an extremely high computational complexity.
To address this issue, we sketch two possible heuristic solu-
tions here: a local greedy approach and a more sophisticated
and efficient GA-based [30] approach, which have the potential
to realize the advantages of the cognitive resource optimization
proposed in this paper in real-time scalable implementations.

The intuitive motivation of considering a local greedy
approach, which partitions the optimization problem into a
set of subproblems for all terminals, is its computational
simplicity. After solving these subproblems separately, the
system concatenates all of the sub-solutions into a complete
solution for the global problem. The computational complexity
for local greedy approach is significantly reduced to 2N . Note
that since users are not independent of each other in the use
of system resources, the concatenated solution might not give
the global optimal solution.

In contrast, the GA approach evolves a series of potential
solutions, in which each described by a chromosome repre-
sents a particular genetic instance of the system, toward a
desirable solution. The potential benefits of the GA approach
include: 1) controllable computational complexity for quick
responses; 2) potential parallel chromosome operations in
distributed cloud computing data centers; and 3) possible reuse
of high-quality chromosome candidates in different circum-
stances to speed up the convergence. In the cognitive platform
considered in this paper, we can devise a chromosome that
consists of N × C bits, each of which is assigned a value
of 1 if the corresponding component is hosted in the cloud
or 0 if the component is executed locally in the respective
terminal. Thus, the system places a component for execution,
e.g., the Y th component of terminal X , by looking up the

2046 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

TABLE IV

PARAMETERS OF DECOMPOSED GAMES

bit C ∗ (X − 1) + Y in the chromosome. Based on above
chromosome encoding, the conventional operators of a
GA [30], e.g., cloning, crossover, mutations, and fitness func-
tion, and be applied in the system design.

The two proposed heuristic algorithms can be executed at
either the run-time (on the fly) or prepublished stage (static
approach) of a game. In contrary to on-the-fly execution, the
static approach simulates offline all possible combinations of
the network and terminal states on a testing platform in the
prepublished stage, to find the preferred solutions for the game
in any given set of conditions. With this approach, we can
create a dictionary that enables the run-time system to pick
up the preferred solution according to the states of the system
(cloud, network, and terminal) in real time.

VII. SIMULATIONS

A. Simulation Setup

To validate the performance of the cognitive resource
management of the proposed gaming platform, we set
up the following simulations. Regarding the calculation of
the processing latency lp(d) and networking latency ln(d),
we assume the functions f and g described in Section V-A
follow:

f (μ(d), ν(d), FT , FC) = μ(d) · FT + ν(d) · FC (29)

g(ni, j (d), TRTT(d), FN) = ni, j (d) · TRTT(d) · FN . (30)

We design a set of random components and random
communications to simulate a decomposed cloud gaming
system. The default parameters for the decomposed game is
as shown in Table IV. Note that communication probability
defines the probability for a communication occurs between
two components, while data transmission frequency denotes
the transmission frequency between two components, given
there are communications existed. We can also notice from
Table IV that the communication cost from terminal to cloud
is a bit larger than the one from cloud to terminal, since we
assume that the terminal needs to cost more energy to initiate
a data transmission, especially when they are powered by
batteries.

The default simulation parameters of terminal devices are
listed in Table IV, which represent the wide range of terminals,
from stationary computers to mobile devices connected to
wireless networks.

TABLE V

PARAMETERS OF TERMINAL DEVICES

Fig. 6. Effect of the number of components on the overall cost.

All random variables listed in Tables IV and V follow the
uniform distribution. To simplify the QoS measurement, we set
120 ms as the maximal tolerable latency value as the indicator
of QoS. All simulations are repeated 2000 times with distinct
random seeds to yield an average value.

B. Discussion on Game Design

In our experiments, we realize that the game design, includ-
ing the resource consumption of each component and the
data communication between components, will substantially
impact the system performance. Hence, the first part of our
experimental work is to investigate the features of diverse
genres of games to further explore the optimization potential
of the cloud-based gaming system. In the simulation model,
we first perform the cost minimization to come up with a
candidate partitioning scheme and then check whether this
candidate solution is feasible or not in terms of whether it
meets the QoS constraints.

1) Overall Cost Boundary: In this section, we study the
overall cost of a specific game in different partitioning
solutions. As shown in Fig. 6, the overall cost increases along
with the number of components. However, the increasing
speed of the maximum value is faster than the minimum
value. Note that not all partitioning schemes are feasible in our
proposed system, from the perspective of the QoS restriction.
Therefore, we also depict those maximum and minimum
feasible values for distinct number of components. As we can
see from Fig. 6, the gap between maximum and minimum
feasible values is becoming smaller when the number of
components increases.

The similar trend is also discovered in Fig. 7, which shows
the effect of component communication probability on the

CAI et al.: COGNITIVE RESOURCE OPTIMIZATION FOR THE DECOMPOSED CLOUD GAMING PLATFORM 2047

Fig. 7. Effect of component communication probability on the overall cost.

Fig. 8. Comparison on the terminal incapable rate.

overall cost. Apparently, increased communication probability
indicates the increases on network costs in optimal parti-
tioning, which excludes more infeasible schemes with higher
overall cost from the results. We also plot the error bar for
Fig. 6 and Fig. 7 with a confidential interval of 95%.

2) Effect on Terminal Incapable Rate: In our simulation,
the games’ component structures are randomly created. Hence,
some of them might not have feasible partitioning scheme to
fulfill the QoS requirements. In this paper, we define terminal
incapable rate to indicate the ratio that the cloud server
and terminals are incapable of supporting a game session.
For various of game structures, we compare PureCloud, the
conventional partitioning solution for cloud gaming, with our
proposed cognitive solutions over the terminal incapable rate.
As shown in Fig. 8, as the communication probability arises,
more network communications cause higher overall response
delay. For the component communication probabilities of
0.5 and 0.6, the terminal incapable rate for PureCloud
dramatically increased to 0.78 and 0.95, while our cognitive
solution provides a much lower rate at around 0.15 and 0.3.
This illustrates the advantage of utilizing cognitive resource
allocation for decomposed cloud games: more game genres
are supported.

C. System Performance Evaluation

In this section, we evaluate the system performance based
on the two proposed algorithms. The default simulation
parameters for genetic evolution are listed in Table VI.

TABLE VI

PARAMETERS FOR GA SIMULATION

Fig. 9. Performance evaluation on network cost minimization.

1) Network Cost Minimization: We first evaluate the perfor-
mances of local greedy approach and GA solution regarding
the network cost minimization. With extensive random seeds,
we derive the average network costs achieved by a local greedy
algorithm and a GA with various generation iterations of 100,
200, and 300, respectively. For comparison, we also illustrate
the average network cost of the PureCloud solution and
optimal, the systemic minimal average network cost. Note that
to eliminate 2C N search for optimal solutions, we set up an
infinite loop for GA iteration. If an additional 2000 iterations
yields the same result, we consider that the GA converges to
the optimal solution. This value is then adopted as the optimal
value. Note that the local greedy and GA running times for
different iterations increase along with the quantity of devices.
We measure these execution times in our ASUS windows 7
personal computer (PC) with Intel Pentium G630 @ a
2.70-GHz central processor unit (CPU) and a 4.0-GB internal
memory (RAM). According to our experimental settings,
even though for 100 devices, the local greedy algorithm
and GA with 100 and 200 iterations can be completed
within 1 s, while the GA of 300 iterations can be done in 2 s.
In contrast, the 2000 iterations of GA consume around 28 s
with 100 devices, while only 1 s for 10 devices’ scenario.
In fact, the algorithms’ running time depends on the hardware
capacity. If we upgrade the computer and apply parallel
processing, these execution times can be shortened further.

As shown in Fig. 9, with large-scale simulations, the local
greedy algorithm provides around 19.5%–10.5% decrease in
average network cost compared with the PureCloud solution,
while the series of GA solutions demonstrates even higher
efficiency in optimizing the average network cost. It can be

2048 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

Fig. 10. Variance of the optimal scheme simulation results.

Fig. 11. Performance evaluation on cloud resource cost minimization.

observed that when the device quantity is relatively small,
e.g., 10, a small number of generation iterations (e.g., 100)
are able to achieve optimal solution with a 27.6% cost decline.
On the other hand, when the device quantity increases, more
generation iterations for GA are required to approach the
optimal results. Note that optimized average network cost
grows as the device quantity increases. The reason is that
the system needs to sacrifice the performance to fulfill the
requirements of supporting more terminals: some of the opti-
mal partitioning with minimum response delay might not be
qualified as feasible solutions. In our experimental settings,
with 6000 overall cloud computing resources, the optimization
on average network cost will be affected when the quantity of
terminal devices is larger than 60. To clearly demonstrate the
variance, we select the optimal scheme as representative data
to show a box plot in Fig. 10, where the bottom and top of
the boxes are always the first and third quartiles, respectively,
and the band inside the boxes is always the second quartile
(the median).

2) Cloud Resource Cost Minimization: We also perform
simulation on the optimization target of cloud resource
cost minimization to compare the efficiencies of PureCloud
solutions, local greedy algorithm, and a series of GA schemes.

Fig. 11 shows the comparison on the average throughput
of the terminal devices. Apparently, for PureCloud mode, the
cloud cost is proportional to the device quantity. To support
100 terminals, the gaming server need to request around
9000 units computational resource. In contrast, with cloud
resource cost minimization, the overall cost of the cloud
is significantly reduced: to achieve the optimal value, only

Fig. 12. Variance of the local greedy scheme simulation results.

around 6800 units are required, which is only 75.5% of the
conventional PureCloud mode. Given the higher computa-
tional complexity of iterative GA solution, the local greedy
approach also brings the cloud cost down to 3000 units, which
yields a 22.2% decline in our experimental settings. Similar to
the network cost minimization, the cloud resource cost min-
imization is also constrained by the QoS requirements when
the terminal device quantity exceeds a certain threshold. In our
experimental settings with 12 000 cloud network resources,
the resource optimization achieves best performance when
device quantity is 60, where the local greedy algorithm reduces
the cloud cost from 5300 units to 2800 units and the
GA solution only consumes 1500 units, representing the
declines of 47% and 71.7%, respectively. Similar to previous
simulation, for the purpose of illustrating the variance,
we show the box plot for the selected local greedy scheme
in Fig. 12.

VIII. TESTBED EXPERIMENTS

To demonstrate the feasibility of our system design and
the effectiveness of our cognitive resource optimization
methodology, we have developed and deployed three
prototypes in our component-based cloud gaming test
bed [20]. In these three prototypes, we focus on minimizing
the response delay. Runtime screenshots of the three
prototypes are shown in Fig. 13 and their experimental results
are discussed as follows. Note that since the component
quantities in the three prototypes are relatively small, instead
of applying the greedy and GA heuristic methods, the system
traverses all potential partitions, i.e., performs an exhaustive
search over the graph, to obtain the optimal solution.

A. Gobang Game

Gobang game is an abstract strategy board game in which
players alternate in placing a chess piece of their colors on
an empty intersection of the chessboard. We implement the
artificial intelligence (AI) module as a component, which is
feasible to migrate between cloud and players’ terminals and
execute on these two different environments.

Three types of devices are employed in our evaluation,
including an ASUS windows 7 PC with Intel Pentium G630 @
a 2.70-GHz CPU and a 4.0-GB internal memory (RAM), an
Apple iPad mini tablet with ARM Cortex-A9 CPU @ 1 GHz

CAI et al.: COGNITIVE RESOURCE OPTIMIZATION FOR THE DECOMPOSED CLOUD GAMING PLATFORM 2049

Fig. 13. Screenshot of game prototypes on MCG. (a) Gobang game. (b) 3-D Skeletal game engine. (c) Robocode tank game.

and 512 MB RAM, and an LG G2 Android mobile phone with
quad-core Snapdragon 800 CPU @ 2.26 GHz, 2.0 GB RAM,
and long-term evolution (LTE) networks module. Through the
public Wi-Fi network at the University of British Columbia
Vancouver campus and the Fido LTE cellular data network
service in Vancouver, these devices are utilized as players’ ter-
minals to access the Gobang game deployed on our developed
test bed hosting in Amazon Elastic Compute Cloud (EC2).4

By repeating the Gobang game plays with certain chess steps,
we conduct the experiments with schemes iterating different
combination of devices and networks, such as PC–WiFi,
iPad–WiFi, Mobile-WiFi, and Mobile–LTE. For each scheme,
we iterate three execution models (test bed automatic opti-
mization, all cloud execution, and all terminal execution) and
record two critical data: the AI execution time and player expe-
rienced latency. AI execution time is calculated by subtracting
AI component invocation time from AI completing time, while
the player experience latency is a measurement of the time
difference between the time a player placing a chess piece and
the time the AI placing a chess piece. As shown in Fig. 14,
our cognitive engine has made correct decision: all automatic
optimization solutions choose to offload AI component to the
cloud, resulting in a remarkable response delay reduction from
the terminal schemes.

B. 3-D Skeletal Game Engine

The 3-D skeletal engine, our second prototype, aims
to challenge MCG test bed’s capacity on rendering 3-D
game scenes. Reference [13] has explored the possibility
of partial offloading for game scene renderings. The 3-D
skeletal engine is our understanding in this perspective. With
a separate skinning method and forward kinematics in the
OpenGL basic bone system, the implementation screenshot
of a four-component prototype is shown in Fig. 13(b).
To demonstrate the efficiency of cognitive optimization, we
perform experiments to measure the fluency of rendered

4http://aws.amazon.com/ec2/

Fig. 14. Response latency comparison in the gobang game prototype.

animations by the numeric value of frames per second (FPS).
To explicitly control the network parameters between the
cloud and terminals, we employ two identical Windows
7 computers to serve as cloud and client. On the cloud
side, we installed NetBalancer5 to control the bandwidth of
NodeJS process in the cloud, for the purpose of simulating
the variance of network quality in real-world cases. We
design our experiments in two aspects. First, there shall
be comparisons between the automatic optimization and
all potential partitioning schemes. Since 3-D skeletal game
engine contains four components, an iteration of their possible
partitioning makes 24 = 16 schemes. Therefore, we divide
the total experiment time into equal 16 slides for each
scheme. Second, we also concern about the engine’s different
performance over different network bandwidth. Hence, we
repeat the experiments three times with bandwidth settings
of 1000, 500, and 100 kilobytes/s, respectively.

Fig. 15 shows the results of the above experiments. The
average FPS of each time slot (5 s per slot) indicates the
fluency of rendered animation at the specific time period.
We can conclude from the comparison between cognitive and
iterations, the cognitive engine does a great job in seeking

5https://netbalancer.com/

2050 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

Fig. 15. Game QoS (FPS) comparison in the 3-D skeletal game engine.

Fig. 16. Game QoS (FPS) enhancement for the Robocode tank game.

optimal partitioning solutions for the prototype: autoseries
outperforms iteration series almost all the time. In addition,
we derive very similar patterns from the three iteration
schemes: the 1st, 5th, 6th, 8th, 9th, 11th, 12th, and 16th
allocations reach the optimal FPS rate, while the rests fall
to the bottom. This is a result of allocation strategy and the
communication methodology between components.

C. Robocode Tank Game

The idea of the third game prototype, the Robocode
tank, comes from a famous open-source educational game
Robocode, which is a programming game to develop a robot
battle tank to battle against other tanks in Java or .NET.
The robots are controlled by competitors’ AI codes and their
battles are running in real time and on screen. We implement
the Robocode tank game prototype in our test bed, which
inherits all features of Robocode and places an additional tank
controlled by players into the battlefield.

Since the Robocode tank system performance is determined
by the varying complexities of tank AI, here we validate
only the cognitive capacity of the MCG test bed. To record
FPS traces, three players were engaged in the EC2 that hosted
the tank game on the previously mentioned LG G2 Android
smartphone through the Fido LTE network. Four AI-controlled
tanks in the battlefield make strategy decision at a 1 s interval.

As shown in Fig. 16, these players all experienced a very low
FPS rate at the beginning of the gaming sessions, while the test
bed eventually provided an optimal partitioning solution for
them. Note that the optimal solution and solution search time
for these three players are distinct from each other, according
to the ever-changing network quality and game contents.

IX. CONCLUSION

The cognitive cloud gaming platform introduces a flexible
component allocation solution that is promising cloud gaming
service provision. In this paper, we have presented system
modeling and the experimental results to show that the cogni-
tive platform can provide great efficiency in terms of resource
minimization and throughput optimization while guaranteeing
the QoS requirements for game sessions. Our work has several
limitations due to the current limitations of our test bed, which
we shall address in our future work conducted over a more
elaborate test bed with more sophisticated game prototypes
and more concurrent devices to: 1) predict and model the
bursts of component transfers and the communication costs
by real-game traces; 2) develop and test more complex game
prototypes with larger numbers of components; and 3) evaluate
the complexity-performance tradeoffs of the proposed local
greedy and GA heuristic solutions.

REFERENCES

[1] P. Banerjee et al., “Everything as a service: Powering the new informa-
tion economy,” Computer, vol. 44, no. 3, pp. 36–43, Mar. 2011.

[2] P. Ross, “Cloud computing’s killer app: Gaming,” IEEE Spectr., vol. 46,
no. 3, p. 14, Mar. 2009.

[3] W. Cai, M. Chen, and V. C. M. Leung, “Toward gaming as a service,”
IEEE Internet Comput., vol. 18, no. 3, pp. 12–18, May/Jun. 2014.

[4] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu,
“GamingAnywhere: The first open source cloud gaming system,”
ACM Trans. Multimedia Comput., Commun. Appl., vol. 10, no. 1,
pp. 10:1–10:25, Jan. 2014.

[5] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei,
“Measuring the latency of cloud gaming systems,” in Proc. 19th
ACM Int. Conf. Multimedia (MM), New York, NY, USA, 2011,
pp. 1269–1272.

[6] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: Architecture
and performance,” IEEE Netw., vol. 27, no. 4, pp. 16–21, Jul./Aug. 2013.

[7] S. Wang and S. Dey, “Rendering adaptation to address communication
and computation constraints in cloud mobile gaming,” in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Miami, FL, USA, Dec. 2010,
pp. 1–6.

[8] S. Shi, C.-H. Hsu, K. Nahrstedt, and R. Campbell, “Using graphics
rendering contexts to enhance the real-time video coding for mobile
cloud gaming,” in Proc. 19th ACM Int. Conf. Multimedia (MM),
New York, NY, USA, 2011, pp. 103–112.

[9] M. Hemmati, A. Javadtalab, A. A. N. Shirehjini, S. Shirmohammadi,
and T. Arici, “Game as video: Bit rate reduction through adaptive object
encoding,” in Proc. 23rd ACM Workshop Netw. Operating Syst. Support
Digit. Audio Video (NOSSDAV), 2013, pp. 7–12.

[10] W. Cai, V. C. M. Leung, and L. Hu, “A cloudlet-assisted multiplayer
cloud gaming system,” Mobile Netw. Appl., vol. 19, no. 2, pp. 144–152,
Apr. 2014.

[11] R. A. Baratto, L. N. Kim, and J. Nieh, “THINC: A virtual display
architecture for thin-client computing,” in Proc. 20th ACM Symp.
Operating Syst. Principles (SOSP), New York, NY, USA, 2005,
pp. 277–290.

[12] J.-M. Vanhatupa, “Browser games: The new Frontier of social gaming,”
in Recent Trends in Wireless and Mobile Networks (Communications
in Computer and Information Science), vol. 84. Berlin, Germany:
Springer-Verlag, 2010, pp. 349–355.

[13] D. Meilander, F. Glinka, S. Gorlatch, L. Lin, W. Zhang, and X. Liao,
“Bringing mobile online games to clouds,” in Proc. 33rd IEEE Int. Conf.
Comput. Commun. (INFOCOM), Apr./May 2014, pp. 340–345.

CAI et al.: COGNITIVE RESOURCE OPTIMIZATION FOR THE DECOMPOSED CLOUD GAMING PLATFORM 2051

[14] W. Cai, V. C. M. Leung, and M. Chen, “Next generation mobile
cloud gaming,” in Proc. IEEE 7th Int. Symp. Service Oriented Syst.
Eng. (SOSE), San Francisco, CA, USA, Mar. 2013, pp. 551–560.

[15] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango,
A. J. Sherbondy, and R. Singh, “Cognitive computing,” Commun. ACM,
vol. 54, no. 8, pp. 62–71, Aug. 2011.

[16] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: Enabling mobile phones as interfaces to cloud applications,”
in Proc. ACM/IFIP/USENIX 10th Int. Conf. Middleware (Middleware),
Berlin, Germany, 2009, pp. 83–102.

[17] B.-G. Chun and P. Maniatis, “Dynamically partitioning applications
between weak devices and clouds,” in Proc. 1st ACM Workshop Mobile
Cloud Comput. Services, Social Netw. Beyond (MCS), New York, NY,
USA, 2010, pp. 7:1–7:5.

[18] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proc. 6th Conf.
Comput. Syst. (EuroSys), New York, NY, USA, 2011, pp. 301–314.

[19] E. Cuervo et al., “MAUI: Making smartphones last longer with code
offload,” in Proc. 8th Int. Conf. Mobile Syst., Appl., Services (MobiSys),
New York, NY, USA, 2010, pp. 49–62.

[20] W. Cai, C. Zhou, V. C. M. Leung, and M. Chen, “A cognitive platform
for mobile cloud gaming,” in Proc. IEEE 5th Int. Conf. Cloud Comput.
Technol. Sci. (CloudCom), Dec. 2013, pp. 72–79.

[21] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hossfeld, “An evaluation
of QoE in cloud gaming based on subjective tests,” in Proc. 5th Int.
Conf. Innovative Mobile Internet Services Ubiquitous Comput. (IMIS),
Jun./Jul. 2011, pp. 330–335.

[22] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei, “Are all games
equally cloud-gaming-friendly? An electromyographic approach,” in
Proc. IEEE/ACM NetGames, Nov. 2012, pp. 1–6.

[23] W. Cai, X. Wang, M. Chen, and Y. Zhang, “MMOPRG traffic measure-
ment, modeling and generator over WiFi and WiMax,” in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Dec. 2010, pp. 1–5.

[24] S. Wang and S. Dey, “Modeling and characterizing user experience in
a cloud server based mobile gaming approach,” in Proc. IEEE Global
Telecommun. Conf. (GLOBECOM), Nov./Dec. 2009, pp. 1–7.

[25] M. Claypool, D. Finkel, A. Grant, and M. Solano, “Thin to win?
Network performance analysis of the OnLive thin client game system,”
in Proc. 11th Annu. Workshop Netw. Syst. Support Games (NetGames),
Nov. 2012, pp. 1–6.

[26] M. Manzano, J. A. Hernandez, M. Uruena, and E. Calle, “An empirical
study of cloud gaming,” in Proc. 11th Annu. Workshop Netw. Syst.
Support Games (NetGames), Nov. 2012, pp. 1–2.

[27] D. B. Lange and O. Mitsuru, Programming and Deploying Java Mobile
Agents Aglets, 1st ed. Boston, MA, USA: Addison-Wesley, 1998.

[28] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gaming in the
clouds: QoE and the users’ perspective,” Math. Comput. Model., vol. 57,
no. 11, pp. 2883–2894, Jun. 2013.

[29] W. Cai and V. C. M. Leung, “Decomposed cloud games: Design princi-
ples and challenges,” in Proc. IEEE Int. Conf. Multimedia Expo (ICME),
Jul. 2014, pp. 1–4.

[30] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

Wei Cai (S’12) received the B.Eng. degree from
Xiamen University, Xiamen, China, in 2008 and
the M.Sc. degree from Seoul National University,
Seoul, Korea, in 2011. He is currently working
toward the Ph.D. degree with the Department
of Electrical and Computer Engineering, The
University of British Columbia (UBC), Vancouver,
BC, Canada.

He has completed visiting research with Academia
Sinica, Taipei, Taiwan, The Hong Kong Polytechnic
University, Hong Kong, and National Institute of

Informatics, Tokyo, Japan. He has authored over ten first-author international
journal/conference papers in gaming as a service, mobile cloud computing,
online gaming, software engineering, and interactive multimedia.

Mr. Cai received many awards, such as the UBC Doctoral
Four-Year-Fellowship, the Brain Korea 21 Scholarship, and the Excellent
Student Scholarship from the Bank of China. He was a co-recipient of best
paper awards from CloudCom2014, SmartComp2014, and CloudComp2013.

Henry C. B. Chan (M’98) received the B.A.
and M.A. degrees from University of Cambridge,
Cambridge, U.K., and the Ph.D. degree from
The University of British Columbia, Vancouver,
BC, Canada.

He joined The Hong Kong Polytechnic University
(PolyU), Hong Kong, in 1998, where he is currently
an Associate Professor with the Department
of Computing. His research interests include
networking/communications, cloud computing,
Internet technologies, and electronic commerce.

Dr. Chan was a recipient of the IEEE Computer Society’s Computer
Science and Engineering Undergraduate Teaching Award for his outstanding
contributions to computing education through teaching, mentoring students,
and service to the education community in 2015. He received three
President’s awards and five faculty awards from PolyU. He was the Chair
of the IEEE Hong Kong Section in 2012, and the IEEE Hong Kong Section
Computer Society Chapter from 2008 to 2009.

Xiaofei Wang (S’06–M’13) received the B.S. degree
from the Department of Computer Science and
Technology, Huazhong University of Science and
Technology, Wuhan, China, in 2005, and the
M.S. and Ph.D. degrees from the School of
Computer Science and Engineering, Seoul National
University, Seoul, Korea, in 2008 and 2013,
respectively.

He is a Post-Doctoral Research Fellow with the
Department of Electrical and Computer Engineering,
The University of British Columbia, Vancouver, BC,

Canada. His research interests include social-aware multimedia service in
cloud computing, cooperative backhaul caching, and traffic offloading in
mobile content-centric networks.

Dr. Wang was a recipient of the Korean Government Scholarship for
Excellent Foreign Students in IT Field by NIPA from 2008 to 2011, and
the Global Outstanding Chinese Ph.D. Student Award in 2012.

Victor C. M. Leung (S’75–M’89–SM’97–F’03)
received the B.A.Sc. (Hons.) and Ph.D. degrees
in electrical engineering from The University of
British Columbia (UBC), Vancouver, BC, Canada,
in 1977 and 1981, respectively.

He attended the Graduate School, UBC. From
1981 to 1987, he was a Senior Member of the
Technical Staff and a Satellite System Specialist with
MPR Teltech Ltd., Burnaby, BC, Canada. In 1988,
he was a Lecturer with the Department of Electron-
ics, Chinese University of Hong Kong, Hong Kong.

He returned to UBC as a Faculty Member in 1989, where he is currently a
Professor and the TELUS Mobility Research Chair in Advanced Telecommu-
nications Engineering with the Department of Electrical and Computer Engi-
neering. He has co-authored over 800 technical papers in international journals
and conference proceedings and 30 book chapters, and co-edited ten book
titles. His research interests include wireless networks and mobile systems.

Dr. Leung is a fellow of the Royal Society of Canada, the Engineering
Institute of Canada, and the Canadian Academy of Engineering. He received
the Natural Sciences and Engineering Research Council Post-Graduate Schol-
arship from UBC. Several of his papers had been selected for best paper
awards. He was a recipient of the IEEE Vancouver Section Centennial
Award and the UBC Killam Research Prize in 2012. He received the
APEBC Gold Medal as the Head of the Graduating Class with the Fac-
ulty of Applied Science. He is a Registered Professional Engineer in the
province of British Columbia, Canada. He was a Distinguished Lecturer
of the IEEE Communications Society. He is a member of the Editorial
Boards of IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE JOUR-
NAL ON SELECTED AREAS IN COMMUNICATIONS SERIES ON GREEN

COMMUNICATIONS AND NETWORKING, Computer Communications, and
several other journals. He has served on the Editorial Boards of IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, Wireless Commu-
nications Series, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE TRANSAC-
TIONS ON COMPUTERS, and Journal of Communications and Networks.
He has guest edited many journal special issues, and provided leadership
to the organizing committees and technical program committees of numerous
conferences and workshops.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

