
DCRA: Decentralized Cognitive Resource Allocation model for
Game as a Service

Nabil M. Al-Rousan1, Wei Cai1, Hong Ji2, and Victor C.M. Leung1

1The University of British Columbia, Canada
2Beijing University of Posts and Telecommunications

1{nabil, weicai, vleung}@ece.ubc.ca
2jihong@bupt.edu.cn

Abstract— Game as a Service (GaaS) has rapidly emerged to
the industry of cloud gaming. The power of GaaS lies on having
one source of code with multiple users. Several systems were
proposed to model GaaS. However, none has built a scalable
and reliable model for such a service. The importance of having
such a model lies on having an Internet-scale platform able
to provide flexibility of different types of games genre and
lower the barrier of end systems (i.e. mobile clients) while
taking into consideration the probability of excessive loads and
failures. In this paper, we implement a Distributed Cognitive
Resource Allocation (DCRA) model to run mobile games on a
large-scale distributed system. On the contrary of the existing
centralized models, DCRA scales with the increase of mobile
clients to handle high concurrent loads of clients’ requests
while providing a stable level of gaming experience. The results
show that DCRA is able to scale well by providing almost
fixed throughput and delay while increasing the clients requests
load. Also, the system preserve its key features while simulating
failures.

I. INTRODUCTION

GaaS has been introduced to mobile game industry to

run games on both cloud and clients. Providing the best

quality of experience (QoE) to gamers is the top priority.

One of the techniques to provide such a service is to

implement a cognitive model. A cognitive model redirects

game’s components to be executed in a cloud and in a client

rather than having them all executed in the client or all

in the cloud. Cognitive model learns what is the best set

of game’s components to be executed at the client based

on its environment. In this paper, we try to increase the

performance of the cognitive model by expanding the client-

server model on the cloud side to decentralized system where

many nodes on the cloud assist the client to handle the

most intense components of the game. Such model should

provide no point of failure (fault tolerant). Hence, there will

be no bottleneck on one node in the system. Finally, the

throughput and round trip time (RTT) would scale better

in number of mobile clients and sequentially, the number

of off-loaded game’s components. This paper is organized

as follows: In Section II, we review the related work. The

requirements and the design of proposed model are described

in Sections III to VI. Evaluation of the proposed mode is

discussed in Section VII. We conclude with Section VIII.

II. RELATED WORK

GaaS models define a game as a set of inter-connected

dependent modules. These modules include Input, Render-
ing, and Game logic [1]. Different types of GaaS models are

defined depending on the allocation of these modules on the

client or the cloud sides.

Remote Rendering (RR-GaaS) model is the most popular

model where all the modules run on the cloud except the

Input module. It has been commercially adapted by many

companies such as Onlive and Gaikai [2], [3]. The model

sends video frames from the cloud to the client through

the Internet. Although the client hardware requirements are

minimized, network transmission and high cost motivated

local rendering on the client side.

To address the problems with RR-GaaS and to benefit

from the recent mobile client’s hardware advancement, Local

Rendering (LR-GaaS) models were developed. The basic

idea is to move the Rendering module to the client side so

the high burden of video frame transmission is eliminated.

However, finding an instruction set to transform all the games

visual frames through the Internet to the mobile client is an

unresolved research problem [1].

To overcome the problems in both RR-GaaS and LR-

GaaS, Cognitive Resource Allocation (CRA-GaaS) was in-

troduced [4]. The model keeps the Input and Rendering
modules on the client side but divides the Game logic
between the cloud and the client. CRA breaks a game into

inter-connected dependent components. The cognitive ability

allows the CRA model to optimally and dynamically finds

the best selection of components to run on the cloud to

increase the Quality of Experience (QoE) for the end users.

From software engineering perspective, CRA model is

an API designed for game developers to develop games in

such a way that the game breaks in execution to several

components run both on the mobile client and on the cloud.

The current CRA design allows the game’s developer to de-

compose the game code into components by marking peaces

of the code into different component IDs. Decomposition

problem is an open research area and dynamic decomposition

is the ideal solution where components migration to the cloud

depends on the client and server state.

2015 IEEE 7th International Conference on Cloud Computing Technology and Science

978-1-4673-9560-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CloudCom.2015.63

218

All the previous models share the features of GaaS mod-

els which include: click-and-play, anti-piracy, development

cost reduction, and cross-platform gaming experience. Game

Genre plays an important role in the selection of the GaaS

model. For example, 1st-person shooting games where the

scene images changes on a high rate work best with RR-

GaaS since the scene variety and motion frequency are very

high. On the contrary, 3rd-person management games where

the scene variety and motion frequency are low, fit CRA-

GaaS since the game logic is the most intense module such

games. Current browser games fall into LR-GaaS where all

the rendering occurs on the client side.

Although CRA seems to be the next GaaS generation, the

current design is a client-server design. As a result, it lacks

the features of a real distribution system such as scalability

and reliability. In a client-server model, excessive load on the

server can slow down or break the system. In such a system,

the server acts as a bottleneck on the system.

From the software engineering perspective, centralized

CRA lacks dynamic component execution where the com-

ponents are argument-ed and do return a value. As shown

in Fig. 1a, the current CRA model takes user input only

once before executing all the three components. However, in

(Fig. 1b), the game is able to receive user input while execut-

ing components 3, 5, and 4 on the cloud. Also, component 5

depends on the output of game 3 and the user input. Hence,

we expanded the cloud side implementation of CRA to

replace the client-server implementation to decentralized one

and therefore, there is no point of failure. DCRA overcomes

the problems of excessive load in CRA by building an

overlay network in the application layer to distribute the tasks

of CRA. DCRA works under the assumption that there is a

stable connectivity between the mobile device and the cloud

with no interruptions. Dealing with temporary disconnections

are left for future work.

III. SYSTEM OBJECTIVES

DCRA is built over an P2P overlay on the cloud. several

problems arise with such design choice. The biggest concern

is RTT delay. Games are very sensitive to RTT as it the

most important factor in the QoE requirements. However,

we have implemented various techniques to reduce the delay

as much as possible. These include membership protocol

and caching. Also, The typical life-time of any server in

the cloud is unpredictable and usually uncontrolled by the

system designer. Hence, reliability is a concern in such an

environment. Lost or delayed requests result an immediate

game pause or even a game crash. Also, uneven distribution

of work load by some popular component might slow down

the system. To address these problems, we have designed

DCRA to achieve the following objectives:

• Scalability: The system should scale out with the in-

crease of the number of mobile clients in terms of

throughput and RTT. We have applied various tech-

niques to achieve scalability. First, distribution of single

computation task and spreading it across the node

servers in the cloud. Hence, avoiding single server

to deal with all clients requests. Second, by using

asynchronous communication which hide the communi-

cation latency. This allows the system to continue serve

tasks while waiting for a server’s reply for some other

requests. Third, Caching. Servers cache the replies for

all the processed requests for certain period of time.

In case a request was lost, a server, A, will resend the

request again to server B. Since B has the reply cached

for A’s request, it will not deliver the request to the

upper layers. Instead, it will serve it from the cache.

More details in V.

• Availability (Reliability): The system should be always

available. In other words, every request of any mobile

client should receive a reply from a server. Achieving

availability is very hard in distributed system in the

face of failures and network delays. We overcome these

failures by replicating the execution of mobile client

over a set of server nodes. This technique is known as

Process Resilience. The general idea is to mask process

failure by replicating the execution of a single process

over a group of servers (resilience group). Another

advantage of Process Resilience is to obtain better

performance in terms of latency. A mobile client access

time will be reduced since it receives the the first reply

from any member of the resilience group.

• Fault Tolerance: The system should be tolerant to fail-

ures. Many types of failures can affect the availability

of the system. The most common is the Fail-stop failure

where a server crashes and the other servers detect its

failure. To overcome this type of failures, we need to

detect the failure first. We achieve this by implementing

a membership protocol so each server have a global

view of all the other servers state in the system. Second,

availability should be preserved regardless if a set of

servers are up or down. Again, we solve this issue

by Process Resilience by making sure that there is at

least one server node to respond to any client request.

Other types of failures are Byzantine failures which

are arbitrary failures where servers or mobile clients

might produce malformed requests or replies. In gaming

context, cheating requests might be sent from clients to

servers. We do not cover such type of failures in this

scope and we leave it as a future work.

• Heterogeneity: The system should detect heterogene-

ity in hardware specs of different mobile clients and

network bandwidth for the infrastructure that they are

running on. We plan to achieve this objective by run-

ning reinforcement learning as partitioning algorithm to

specify how much computation should be offloaded to

the cloud. Client side API is left as future work.

IV. DCRA: NETWORK DESIGN

To achieve the previous objectives, a novel decentralized

distributed system is designed and implemented. The system

is a collection of server nodes on the cloud that appear as

a single coherent system to the mobile client. The server

nodes group together to distribute execution of one task from

219

Client Server

EXECUTE [1]

EXECUTE [2]

Request: EXECUTE [3,5,4]

EXECUTE [3]

EXECUTE [5]

EXECUTE [4]

Response: SUCCESS [3,5,4]

(a) Normal components execution (CRA).

Client Server 1 Server 2 Server 3

EXECUTE [1]

EXECUTE [2]

Request: EXECUTE [3]

Response: SUCCESS[3]

Request: EXECUTE [5]

Response: SUCCESS[5]

Request: EXECUTE [4]

Response: SUCCESS[4]

(b) Dynamic components execution (DCRA).

Fig. 1: Execution of Game Components.

the mobile client perspective. Hence, Coordination between

nodes is needed to achieve correctness of the proposed

system.

A. Game decomposition

Every game is decomposed to set of dependent compo-

nents. In a game context, a component is a building block

that differs from other components in functionality [7]. Fig 2

illustrates the partitioning of a game components between the

mobile client and cloud. For example, component 3 execu-

tion depends on component 2 execution. Each component

is stateless where no global variables are shared. For the

previous example, component 3 takes component 2’s output

as an input and execute the code of its own before sending its

output as an input to component 5. By supporting dynamic

component execution, it makes no difference for the client if

components 3, 4, and 5 where executed on the same server

node or in different ones. In both ways, it is one hop distance

to the client so there is no extra distance for the client request

to forward.

B. Overlay Network

From networking perspective, DCRA is an overlay net-

work over set of physical nodes on the cloud. A virtual ring

topology constructed to assign an incremental ID for each

server. The ID range is from 0 to N − 1 where N is the

Fig. 2: partitioning of game component between the mobile

clients and the cloud.

total number of server nodes. We have tested our system on

a 95 nodes on PlanetLab [10]. PlanetLab is an open global

research network that is consisting of 1337 nodes around

the world. Although, we could have used more nodes to test

DCRA, a quick sanity test is performed on the 1337 and

showed that 95 are functioning correctly.

Fig. 3 illustrates the naming of the server nodes in the

overlay. For the game shown in Fig. 2, component 1 and 2

are executed on the client side. The rest are executed in the

220

cloud by sending EXECUTE commands from the client to

a random server node.

A0

A1

A2

AN−2

AN−1

EXECUTE

Fig. 3: DCRA as an overlay network.

C. Membership protocol

A Gossip-based membership protocol is implemented to

obtain a global view of the state of each node in the

system [11]. We could have replaced the whole membership

protocol by a simple probe PING message before any one-

to-one communication but that would add an extra overhead

and delay to the system. Taking into consideration the

requirements of GaaS and the objectives of the system, a

membership protocol had to be implemented to have the

aliveness state of any server node in the system at any time

instantly.

To implement a membership protocol, each node holds

an aliveness table with nodeid, t_last_updated, and a

heart_beat counter. Regularly, each node sends HEART-

BEAT messages to log(N) set of random nodes by a gossip

algorithm (Algorithm 1). Upon receiving a HEARBEAT

message, a node updates the local aliveness table by

increasing the heart_beat counter by one and setting the

t_last_updated to the current local time.

1 repeat
2 count = 0;

3 repeat
4 count ++;

5 send message to random node;

6 until count == log(N) nodes;

7 until random number <= 1
k ;

Algorithm 1: Gossip Algorithm.

where k is a constant chosen arbitrary (4).

For node Y , to check if node X is alive, the current

condition must hold true:

time.time()− t_last_updated < T_Fail (1)

where time.time() is the current local time and T_Fail is

a constant set arbitrary to 3 seconds. The condition ensures

that if a node X is alive, there should be an update for

X within the last 3 seconds. Node X can be updated by

HEARTBEAT messages from itself or by a DISTRIBUTE

message from another node.

The gossip algorithm sends DISTRIBUTE messages pe-

riodically (set to 3 seconds arbitrary) to log(N) nodes. The

DISTRIBUTE message contains the local heart_beat coun-

ters for each node in the aliveness table. Upon receiving

a DISTRIBUTE message, the local heart_beat counter for

a node is updated (by increasing the heart_beat counter by

one and setting the t_last_updated to the current local time)

only if Eq. 2 holds true. The upper part of the condition

guarantees that the remote update is more recent than the

local one. The lower part prevents the oscillation in the state

of a node when it dies.

[remote_HEARTBEAT > local_HEARTBEAT]

AND

[(time.time()− t_last_updated < T_Fail

OR

T_Clean < time.time()−t_last_updated)], (2)

where T_Clean is defined as:

T_Clean = 2× T_Fail. (3)

The oscillation might occur when a node W dies but two

other nodes keep incrementing the heart_beat counter for W
node continuously upon receiving DISTRIBUTE messages

from each other containing a heart_beat higher than the

local one. To prevent such a scenario, the lower part of the

condition guarantees that for a period of time more than

T_Fail and less than T_Clean, any of the two nodes will

not accept an update for the W node. This also means that

after T_Clean there will be no updates for dead node unless

it comes alive again since the only way to update its status

is to have a new HEATBEAT messages sent by W itself.

D. Routing/Naming

Routing of a game’s component is achieved by consistent

hashing [12]. A key is defined as the hash of the concatena-

tion of GameID and ComponentID. Each key is assigned

a server node by

hash(key)%N (4)

where N is the total number of nodes. This will result a

uniform distribution from 0 to N − 1. Consistent hashing

ensures load balancing. Hence, If there is K keys distributed

across the system, consistent hashing ensures that every

node is assigned K/N keys. Although all keys are evenly

distributed across the system, some popular games might

translate into highly executed keys. We leave this problem as

future work, however, it can be seen from the Eq. 4 that by

adjusting the keys concatenation into an independent game

string value, a more efficient load balancing can be achieved.

Each node is assigned an ID between 0 and N − 1.

Naming is necessary so each node can identify other nodes.

This allow mapping between the node ID and the node

221

address (IP and port number). General naming solutions can

prevent systems from scaling, but using consistent hash-

ing, the complexity of looking up a node is O(1). Tradi-

tional techniques are client-server (Napster), broadcasting

(Gnutella), and DHT (BitTorrent) [13]. The client-server and

broadcasting techniques proved not to scale. DHT look up

needs O(logN) operations to find a node which is still

worst than O(1). The only drawback for consistent hashing

as method for Naming is the space complexity for routing

state stored in each node. The space complexities are O(N)
and O(logN) for consistent hashing and DHT, respectively.

However, for a system with hundreds of nodes, the space

complexity difference is negligible.

E. Process Resilience

Process Resilience for functions is what replication for

data. It aims to achieve availability and fault tolerance. To

protect against process (nodes) failures, we organize several

identical processes to run in parallel in a resilience group

with a resilience factor (Rf) of 3 (two resilient processes

plus the original process). The resilience group is dynamic

and determined with the help of the membership protocol. It

is set by finding the next two alive nodes on the counter-clock

wise direction of the ring. The purpose of this operation is

to abstract the execution for the client. The client does not

know how many server are executing its function or which

server is replying back. Fig. 4 illustrates the execution of one

game component where a node sends 3 EXECUTE requests

to 3 alive nodes and wait for NE replies. NE is constant set

by default to 1 but it can be adjusted by the game developer

(1 <= NE <= Rf) to control the Quorum size. If it is

set to three, Node A0 has to wait for all the three replies

from nodes 5, 7, and 8. Hence, better consistency but less

availability.

Back to the game shown in Fig. 2, components 3, 5, and 4

are distributed based on the consistent hashing to three server

nodes. Every server replicates the received EXECUTE to Rf

other nodes by sending HINTED_EXECUTE. Next, it waits

for NE instead of Rf replies to minimize the latency. We

have also tried to send the replies directly to the mobile client

by also sending the client address along with the EXECUTE

and HINTED_EXECUTE messages to cut the latency even

more. However, due to UDP’s socket security, the routers in-

between drop any UDP reply with a different receiver (now

sender) address.

V. DCRA: SOFTWARE DESIGN

DCRA is implemented fully in Python. To aid the design,

development, and troubleshooting, the implementation is

divided to service layers where each layer add specific

functionalities to the system:

1) UDP layer:

Basic UDP sender and receiver are implemented in

this layer. UDP is chosen over TCP to avoid the TCP

connection setup/termination delay. UDP unreliability

is masked by using a Request-Reply layer and by using

Process Resilience.

A0

A1

A2

A5A7

A8

AN−2

AN−1

HINTED_EXECUTE

Fig. 4: Process Resilience: Node A0 sends Rf EXECUTE

requests.

2) Request-Reply layer:

This layer adds some reliability to UDP by implement-

ing request-reply protocol over UDP. Three retries after

the first request will be sent to the receiver before

considering it down. This would ensure some level

of reliability over UDP. A Client will add a unique

header in front of each request message to identify

the request’s reply from the server. The identifier is

generated using local time, IP, and port combination

so it will be always unique. Consequently, the server

will use the same unique header in its reply so each

reply is paired to a request.

A cache is implemented on the Server side of the

protocol to hold the replies for 5 seconds in case

of a duplicate message was received. A duplicate

message can be detected by the unique identifier field

by searching the cache. The client timeout can be set

also by the application developers.

3) Wire layer:

This layer is implemented on top of the Request-Reply

layer to add the syntax for application-level commands.

Some of the used Commands

• HEARTBEAT: used by the membership protocol

to send alive messages to the destinations

• DISTRIBUTE: used by the membership protocol

to share the local aliveness table

• EXECUTE: Used by a client to execute a function

on a server node.

• HINTED_EXECUTE: Used by a server node to

hint off the execution to a proper node using

consistent hashing

4) Main layer:

This layer use the Wire layer’s commands to build the

logic of the system. Each server nodes basically runs

an infinite loop waiting to receive a a request which it

will offload to a separate queue upon receiving to be

222

processed. Hence, no requests will be dropped. To en-

sure the asynchronous communication, Rf queues are

used as buffers for the process resilience operations. At

the same time, Rf threads always check for any tasks

pushed in the queues. If any found, the threads pop the

tasks and serve them until there is no more tasks to

be done. Hence, The main loop is always available to

receive a new requests which increases the availability

of the system.

VI. FAULT TOLERANCE

Although hardware failures probability is too low, it is

still a major factor in distributed system design in a large-

scale systems [14]. DCRA handles Fail-stop failures only.

Fail-stop failures are the most common type of failures in

which a server node stops to respond. Fail-stop failure can

be detected by time-out event while waiting for a request’s

reply. To make the system tolerant to such failures, it has

to detect and mask the failure. DCRA detects the failure

by using the membership protocol. The system is K + 1
tolerant meaning that it can tolerate K failures for N =
K + 1 servers. Hence, one server node is sufficient to run

the system. Masking failures mechanisms depend where the

failure may happen:

1) Server node failure:

At-least-once semantic: The system guarantees it will

carry out an operation at least once which is maintained

using Process Resilience. (exactly-once and At-most-
once semantics are the other design variants). From the

nodes in the ring perspective, the failure can occur:

• After HINTED_EXECUTE command was sent:

The node will receive the reply from other member

nodes in the resilience group.

• Before HINTED_EXECUTE command was sent:

The request will be sent to the successor of the

failed node using the membership protocol.

From the clients perspective: The request will timeout

and a new random server node will be selected.

2) Client node failure: The server is executing and

holding system resource (Orphan computation). After

rebooting, client kills all of its processes (KILL

command). The Cache on the server side will help to

reduce the duplication of processing client requests

As for masking message loss:

1) Request message is lost: Client’s request will time out

and retry request will be sent with the same unique ID

of the original request. Even if the three retries failed,

the EXECUTE command is always idempotent which

means that it is repeatable without any harm done if it

happened to be carried out before.

2) Response message is lost:

• If some replies are lost: Do nothing, other server

nodes replies will be received from the members

of the resilience group.

• If all replies are lost: Retries with unique request

IDs (idempotent EXECUTE).

VII. EVALUATION

Various tests were performed to verify the ability of the

system so scale while preserving the requirements of GaaS.

The tests simulate running games by sending EXECUTE

commands to the system and observe the statistics of round

trip time and throughput. For simulating purposes, each

game’s component is simulated by a loop of 1,000,000

iterations.

A. Performance tests

This objective of the test is to measure performance on

large scale deployment. The test reports the response time

and throughput of the system with low, medium, and high

load. In this test, an observer node sends START_TEST

request to multiple nodes on the system to start a test

with specific parameters. The parameters include: number

of EXEUCTE requests need to be send, retrial times for

each EXECUTE request, pausing time between any two

EXECUTE requests, timeout for each EXECUTE request,

and the number of nodes to send the EXECUTE requests to.

The test has two variants:

1) Multiple nodes test: In this variant, the EXECUTE

commands are sent to other random nodes in the system as

shown in Fig. 5. Fig. 6 illustrates the average RTT for various

tests. It is shown that the RTT scales with the increase of

the number of different nodes. However, it decreases as the

number of nodes increases. This shows that the cumulative

RTT is saturating at a fixed value. Cumulative RTT is the

multiplication of the number of messages with average RTT.

To understand scalability in Fig. 6, the cumulative RTT

would give almost a linear function in which the x axes

is the increase in the number of messages and y axis is the

commutative RTT.

To have a better understanding of the RTT delay, it

takes around 115ms on average to execute the EXECUTE

command locally on any server node in the system. Adding

100-250ms for ICMP typical ping delay [15]. The 440ms

sounds an acceptable delay from the system perspective.

As for the user experience, the 440ms falls into the QoE

requirements for DCRA’s games genre.

2) Single node test: The previous test simulates DCRA

in normal operation. DCRA acts as CRA in the worst case

in which there is only one server node in the system. To

simulate CRA, we oberved the performance while applying

high load on a single random node. As shown in Fig. 7,

Multiple server nodes simulates the client nodes and send

EXECUTE requests to the single node. It is shown in Fig. 8

that the performance is worse than the multiple nodes test

(Fig. 6) as the number of nodes increase. This is expected

since all the EXECUTE commands are sent to one node

in the ring. Hence, filling the threads queues with a high

number of tasks. This test also aims to verify the correctness

of DCRA in the worst case.

223

A0

A1

A2

AN−2

AN−1

EXECUTE

EXECUTE

HINTED_EXECUTE

START_TEST

(a) Requests.

A0

A1

A2

AN−2

AN−1

EXECUTE

EXECUTE

HINTED_EXECUTE

START_TEST

(b) Replies.

Fig. 5: Multiple nodes test.

20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

number of nodes

R
T

T
 (

m
s)

Multiple nodes

20 msgs
30 msgs
40 msgs
50 msgs

Fig. 6: RTT for multiple nodes test.

B. Catastrophic failure test

To verify the availability and the reliability of the system,

A SHUTDOWN request is sent to 20% of the server nodes

to simulate a catastrophic failure while sending EXECUTE

requests to multiple nodes. The test should result no sig-

A0

A1

A2

AN−2

AN−1

EXECUTE
EXECUTE

HINTED_EXECUTE
START_TEST

(a) Requests.

A0

A1

A2

AN−2

AN−1

EXECUTE
EXECUTE

HINTED_EXECUTE

START_TEST

(b) Replies.

Fig. 7: Single node test.

20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

number of nodes

R
T

T
 (

m
s)

Single node

20 msgs
30 msgs
40 msgs
50 msgs

Fig. 8: RTT for single node test.

nificant drop in performance in terms of response time and

throughput. Fig. 9 illustrates the scheme of the test. As shown

in Fig. 10, the RTT decreased after the failure, however,

DCRA still function correctly. Hence, proofing the high

convergence of its membership protocol. The system cover

224

A0

A1

A2

AN−2

AN−1

SHUTDOWN

SHUTDOWN

EXECUTE

EXECUTE

HINTED_EXECUTE

START_TEST

(a) Requests.

A0

A1

A2

AN−2

AN−1

EXECUTE

EXECUTE

HINTED_EXECUTE

START_TEST

(b) Replies.

Fig. 9: Catastrophic failure test.

fail-stop failures where nodes stops responding expectingly.

Other failures like Byzantine failures are not masked by the

system. They are left for future work.

50 60 70 50 60 70
0

100

200

300

400

500

600

number of nodes

R
T

T
 (

m
s)

Catastrophic failure

20 msgs
30 msgs
40 msgs
50 msgs
Catastophic Failure

Fig. 10: RTT for catastrophic failure test.

VIII. CONCLUSION

We have implemented a decentralized cognitive resource

allocation system to host a platform to run games over

the cloud. The system matches the required objectives:

availability and fault tolerance while maintaining scalability

by applying various state of the art techniques. The system

shows stable performance on high load with an average

RTT around 400ms (2.5 requests per second) for a single

mobile client. The systems performance evaluation shows

that DCRA succeeds CRA in terms of throughput and RTT.

Finally, the system shows that with proper design choices,

mobile gaming can benefit from the distribution of system

services and use DCRA in real world mobile gaming on a

large scale deployment.

ACKNOWLEDGEMENT

This work was supported by a University of British

Columbia Four Year Doctoral Fellowship, the Canadian

Natural Sciences and Engineering Research Council under

grant STPGP 447524-13, and the National Natural Science

Foundation of China through Project 61271182.

REFERENCES

[1] W. Cai, M. Chen, and V. C. M. Leung, “Towards Gaming as a Service,”
IEEE Internet Computing, vol. 18, no. 3, May/June 2014, pp. 12–18.

[2] OnLive [Online]. Available: http://onlive.com/
[3] Gaikai [Online]. Available: https://www.gaikai.com/
[4] W. Cai, C. Zhou, V. Leung, and M. Chen, “A Cognitive Platform for

Mobile Cloud Gaming,” presented at IEEE International Conference
on Cloud Computing Technology and Science, Bristol, UK, December
2013.

[5] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, "Clonecloud:
elastic execution between mobile device and cloud", in Proceedings of
the Sixth Conference on Computer Systems, EuroSys’11, ACM, New
York, NY, USA, 2011, pp. 301–314.

[6] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso. Calling the
cloud: Enabling mobile phones as interfaces to cloud applications. In
Middleware, 2009.

[7] W. Cai and V. Leung, ”Decomposed Cloud Games: Design Principles
and Challenges”, in IEEE International Conference on Multimedia and
Expo (ICME2014), Chengdu, China, July 2014

[8] C. Xu, J. Rao, and X. Bu., "A unified reinforcement learning approach
for autonomic cloud management", Journal of Parallel and Distributed
Computing, vol. 72.2, pp. 95-105, 2012.

[9] S. Singh, P. Norvig, D. Cohn, and H. Inc, "How to Make Software
Agents Do the Right Thing: An Introduction to Reinforcement Learn-
ing". Adaptive Systems Group, Harlequin Inc, 1996.

[10] PlanetLab | An open platform for developing, deploying, and access-
ing planetary-scale services [Online]. Available: https://www.planet-
lab.org

[11] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure
detection service. In Service,T Proc. Conf. Middleware, pages 55–70,
1998.

[12] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D.
Lewin, "Consistent hashing and random trees: distributed caching pro-
tocols for relieving hot spots on the World Wide Web", in Proceedings
of the Twenty-Ninth Annual ACM Symposium on theory of Computing
(El Paso, Texas, United States, May 04 - 06, 1997). STOC ’97. ACM
Press, New York, NY, 654-663.

[13] A. Tanenbaum, M. V. Steen, Distributed Systems: Principles and
Paradigms. Pearson Prentice Hall, 2007

[14] J. Dean. Designs, lessons and advice from building large distributed
systems. Keynote from LADIS, 2009.

[15] IP Latency Statistics [Online]. Available:
http://www.verizonenterprise.com/about/network/latency/

225

