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Current hypotheses for the origin of structure in the Universe lead to predictions of the amplitudes of 
anisotropies in the cosmic microwave background radiation. The dipole anisotropy is related to density 
fluctuations on large scales and to other determinations of our motion relative to distant galaxies. 
Observation and theory are coming tantalizingly close to measuring the elusive anisotropy, or to 
revealing that our ideas about the origin of galaxies and large-scale structures are in need of substantial 
revision. 

STUDIES of the angular structure of the microwave background 
radiation play two distinct roles in cosmology. First, there are 
those anisotropies that are intrinsic to the microwave back­
ground. These provide an unsurpassed glimpse of the early 
Universe, propagating freely to us from an epoch when the 
Universe was much simpler than it is today. Galaxy clusters had 
not formed, nor, most probably, had galaxies themselves. Detec­
tion of anisotropies in the background radiation would provide 
a unique measure of the primordial density fluctuations from 
which the present large-scale structure of the Universe 
developed. Yet despite continuing and ever-improving measure­
ments, no such anisotropies have been discovered. Here we 
describe some of the current hypotheses for the origin of struc­
ture in the Universe, and the calculations which have been made 
to predict the amplitude of the microwave anisotropy. A different 
test of cosmological theories is provided by the dipole anisotropy 
of the microwave background, which arises from our motion 
relative to a uniformly expanding 'cosmic frame' defined by the 
mean state of motion of matter at great distances. We describe 
this anisotropy as extrinsic, and infer a solar motion which can 
be used to constrain both the large-scale density fluctuations in 
which we are embedded and independent determinations of our 
motion relative to distant galaxies. In the latter part of this 
review we describe the present status of these studies. 

Origin of structure 
Large-scale structure originated, according to the primaeval 
hypothesis, from infinitesimal density fluctuations in the earliest 
instants of the Big Bang. Inflation l has provided a tentative 
answer to the question of the origin of these fluctuations 2

-
s. 

Quantum fluctuations are amplified to large scales during the 
exponential expansion phase which characterizes the inflation­
ary epoch. The inflation is driven by vacuum energy during a 
first-order phase transition which occurs as the energy of matter 
decays. The universe evolves from the symmetric state of false 
vacuum, when the fundamental forces are unified, to the asym­
metric state of the true vacuum. During the inflationary phase, 
described by de Sitter space-time, there is no particle horizon. 
The fluctuations are boosted to a scale-invariant amplitude, up 
to scales comparable to the radius of the inflated space-time 
bubble, which greatly exceeds our present horizon, and models 
can be constructed that yield density fluctuations at horizon 
crossing of 

(1) 

Values much larger « 8p I P)H = 1) would be disastrous for cos­
mology, producing black holes and large inhomogeneities, and 
much smaller values would not lead to any galaxy formation. 
It is remarkable that constraints on the precise value of (8p I p) 
can be inferred from constraints on temperature fluctuations 

8T I T in the cosmic microwave background. Indeed, all cur­
rently acceptable cosmological theories require large-scale struc­
ture to have originated from infinitesimal fluctuations at early 
phases of the Big Bang, and these inevitably leave a sijplature 
in the form of temperature fluctuations 8T I T. Whether the 
amplitude (1) will emerge naturally from a quantum gravity 
model is not known. Because quantum gravity is poorly under­
stood, most approaches to this problem begin when a classical 
description first becomes valid, well below the Planck energy 
of _1019 GeV. According to one school of thought, the inflation­
ary potential can be designed to yield the correct fjp I p, which 
can then be interpreted as an otherwise unknown particle physics 
parameter. This process results in a scale-invariant spectrum of 
gaussian density fluctuations. Another view is that the initial 
fields that describe the energy content ofthe Universe are chaotic 
and highly variable in space and time6

• Beginning with this 
initial space-time foam, an anthropic argument is applied to 
infer that a very special region, with sufficiently regular fields, 
will inevitably exist and be able to inflate sufficiently to dominate 
space-time, producing a highly isotropic (and nearly 
homogeneous) universe. More than one epoch of inflation could 
have occurred?, and a wide range of possible primordial fluctu­
ation spectra can arise. 

One intriguing consequence is that the primordial fluctuations 
might be formed exclusively on small scales, far smaller than 
those of galaxies or galaxy clusters. Galaxy formation can still 
occur, however, if nonlinear structures develop on stellar mass 
scales; an amplification process can then produce large-scale 
structure8

•
9

• This happens as follows: massive stars form, explode 
as supernovae, and sweep up large shells of ambient matter 
which subsequently fragment on much larger scales, into pieces 
with the mass of star clusters. If sufficient energy is to be released 
by dying stars at this stage for the process to repeat, amplifying 
to larger and larger scales, then formation of structure on galactic 
mass scales can be achieved. Galactic binding energy, in such 
schemes, may be said to be of mediaeval, rather than primaeval, 
origin: it is secondary, having been induced by the explosions 
altering the distribution of matter. 

In the primaeval picture, the excess binding energy of a cluster 
of galaxies can be traced back to a primordial excess of density 
in the same co-moving region at the inflationary epoch, whereas 
in the mediaeval picture this binding energy is imposed at a 
very late epoch, when the region is well inside the horizon. 
There is yet another hypothesis, the 'cosmic string' model 10.11 , 

in which the binding energy fluctuations on a given scale are 
induced by the dynamics of the string network as that scale 
enters the horizon. 

In each of these models there is a link between the very earliest 
instants of the Big Bang and the large-scale structure of the 
Universe today. The microwave background fluctuations result 
from the linear growth regime of the primordial fluctuations, 
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and thus bypass much of the uncertainty associated with non­
linear evolution. Observations of the microwave background 
anisotropy provide a unique probe which may help to distinguish 
between the various models for the origin of galaxies. 

Intrinsic anisotropy 
Figure 1 shows what one may learn by studying the anisotropy 
of the cosmic microwave radiation. The microwave photons 
stream freely to the observer ('here and now') from the surface 
of last scattering, which in the standard model of the Big Bang 
occurs in the redshift range z"" 1,100-1,500. The last scattering 
surface has a finite thickness Az, which is due to the noninstan­
taneous recombination of the hydrogen and to the residual 
ionization level which freezes out. A transmission factor per 
unit redshift interval, (dr/dz)exp(-r), defines the effective 
profile of the last scattering surface, where r = J~ neaT cdt is the 
optical depth to redshift z, aT is the Thomson cross-section and 
no is the electron density. This function can be approximat~d 
by a gausian which peaks at z = 1,065, with a gaussian width 
Az = 80 (ref. 12). The corresponding co-moving distance that 
describes the thickness of the last scattering surface is AL "" 
7h- 1 0-1

/
2 Mpc (where h is the Hubble constant divided by 

100 km S-I Mpc- I ). 

The finite width of this shell smooths out fluctuations on 
angular scales An "is 8 0-1

/
2 arc min. Even larger-scale primor­

dial fluctuations are not necessarily preserved: a source of ener­
getic photons or heat could re-ionize the Universe or increase 
its ionization over the low post-recombination value (no/ nH ''is 
10-3

) and thereby shift the last scattering surface towards lower 
redshift. As the thermal history of the Universe at the relevant 
epoch (1 ,000 ~ z ~ 30) is uncertain, there is considerable 
ambiguity in the interpretation of fine-scale anisotropy. This 
ambiguity is avoided if we search over angular scales exceeding 
that subtended by the particle horizon at the latest possible 
epoch of last scattering. No causal process could erase such 
structure. This angular scale is _(0/Z)I/2 radians, where 0 is 
the cosmological density parameter. As the minimum red shift 
at which significant scattering could have occurred (r ~ 1) is 
-30 if the baryon density parameter Ob ''is 0.1, we infer that an 
observational strategy aimed at fluctuations over angular scales 
of ~ 10° would involve the least number of assumptions about 
the early evolution of the Universe. 

The corresponding co-moving linear scale is -1,000 Mpc. At 
recombination, a linear scale of 100 Mpc subtends an angle of 
-Oh degrees. Observations of the background radiation fluctu­
ations therefore nicely complement studies of galaxy clustering, 
which provide firm evidence for structure only on scales of up 
to a few Mpc, in probing the large-scale structure of the Universe. 
Thus, the interpretation oflarge-angle anisotropy is independent 
of the uncertain ionization history, but is crucially dependent 
on the assumed extrapolation of density fluctuations to large 
scales by means of equation (1). For small-scale anisotropy the 
situation is reversed. Regardless of the angular scale considered, 
the radiation has streamed freely since the Universe was very 
homogeneous, at which time it was well described by linear 
fluctuation theory. Thus, in contrast with studies of galaxy 
formation and clusteringI3

-
16

, the complexities of nonlinear 
evolution are completely bypassed. The detection of anisotropy 
on any angular scale could provide a unique and direct measure 
of the primordial fluctuations from which large-scale structure 
evolved. 
Predicting 4.TIT. A variety of calculations predicting AT/T 
can be found in the recent literature; they differ mainly in the 
assumed material content of the Universe, the assumed initial 
fluctuations and the normalization to present-day structure. In 
order to make sense of the issues here, we first describe one set 
of calculations, which we refer to somewhat arbitrarily as the 
standard model, and then describe variations on this theme. 
The 'standard' model: cold dark matter with isentropic gaussian 
fluctuations. The fluctuations in this model have been studied 

z:=:::: 1,060 

<lz'" 80 

L=3 cl."'200h- 1 Mpc 

/1::::::2 0 

Fig. 1 A co-moving space/ conformal time diagram of the Big 
Bang. The observer ('here and now') is at the centre; the Big Bang 
singularity is the outermost dashed circle, and the horizon scale 

is schematically indicated at last scattering. 

in detaiI 17
•
18

• The Universe is assumed to have three components: 
a cold, collisionless fluid (this might represent axions, for 
example); the baryonic gas, initially hot and fully ionized; and 
the photons and neutrinos, described by a distribution function, 
with the former being coupled to the gas by electron scattering. 
The initial state is assumed to be isentropic, which means that, 
for any two types of particle A and B, the ratio of the number 
density of As to Bs, nA / nB , is a constant independent of position. 
This terminology arose in the context of a universe containing 
only radiation and plasma, for which the ratio of the number 
of photons to the number of baryons n.) nB is a measure of the 
entropy (per baryon). Such perturbations are sometimes referred 
to as 'adiabatic' because they can be generated by compressing 
all of the particles in some region, producing a net density 
perturbation Bp(r)=p(r)-p. Strictly speaking, one must also 
specify the initial peculiar velocity field, but this is usually 
dispensed with by stipUlating that the perturbation should con­
tain only growing modes. 

A 'gaussian' field is one which can be generated as a linear 
sum of spatial Fourier components with random phases. Such 
a field is specified by its power spectrum, which in this case is 
taken to be the Zel'dovich spectrum, IBkl2 = IBp/ pit = Ak (where 
k is the wavenumber of a Fourier component and A is a constant 
to be specified by a normalization described below), which 
results in binding energy fluctuations that are scale-invariant. 

With the initial conditions thus specified, the spatial Fourier 
modes can evolve independently until some time after recombi­
nation. This results in final linear fluctuations in the matter and 
radiation which are now decoupled. The angular dependence 
of the sky fluctuations is now completely specified. The ampli­
tude, however, remains to be fixed. This 'normalization' is per­
formed by requiring that the density fluctuations be of sufficient 
amplitude to generate the observed large-scale structure. This 
is conventionally measured by the integral of the galaxy-galaxy 
correlation function: J3(x) = 3/x3 J~ fgal-gal (r)r2 dr, where x is 
a measure of the separation between an arbitrarily selected pair 
of galaxies. Note that despite the fact that f(r)>> 1 on small 
scales, this integral satisfies linear theoryl9. One evaluates this 
at a scale where the fluctuations are linear but large enough so 
that f(r) is well known. For example, at x = 10h-1 Mpc, the 
r.m.s. fluctuations are - 50%. This normalization assumes that 
the galaxies are 'fair tracers' of the density field. Although this 
is a fairly natural assumption, this need not necessarily be the 
case. If the Universe has closure density (0 = 1), then it seems 
that galaxies must be more strongly clustered than mass, at least 
in the dense clusters where virial analysis is applied to estimate 
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mass to light ratios. In considering these models, some allowance 
must be made for this, somewhat reducing the amplitude of 
fJTIT. 

There are two final complications. Uncertainty in the Hubble 
constant Ho leads to uncertainty in fJT I T. Specifically, for cold 
dark matter, a decrease in Ho leads to an increase in Leq (the 
radius of the co-moving sphere encompassing the causal horizon 
at the epoch of equality of matter and radiation densities), and 
thus to an increase in fJT I T. Similarly, if 0 < 1, fJT I T is 
increased, approximately in proportion to 0-1. This is because 
the Universe becomes curvature-dominated at redshift -110, 
and fluctuation growth effectively ceases. One is now in a posi­
tion where l>T I T can be predicted. The detailed coupling of 
matter and radiation must, of course, be followed. This involves 
solving the perturbed Boltzmann equation for the photon 
intensity today20.21. Rather than give any details here, we will 
simply indicate in a qualitative manner the magnitude of the 
various terms that contribute to l>T IT. 

On small scales, corresponding to a co-moving scale that 
subtends the thickness of the last scattering surface at -10 Mpc, 
there are adiabatic temperature fluctuations. These were first 
predicted in 196722.23

, and would be of order (l/3)l>pl p were 
recombination instantaneous and complete. Their angular scale 
is typically 5-10 arc min, and fluctuations of smaller angular 
scale do not survive recombination. The amplitude of these 
small-scale fluctuations is reduced, because of the finite thick­
ness of the last scattering (LS) surface, to l>T IT = (l>pl p ks/30. 
On larger scales, the random motions of fluctuations induce 
Doppler shifts. These dominate l>T I T at co-moving scales d = 
L rec (the radius of the co-moving sphere encompassing the causal 
horizon at recombination) at -50-100 Mpc, corresponding to 
angular scales of 1_2°, and are of order l>T IT = 
(l>plp)LS(dlct)LS, where c is the speed of light and t is the 
time elapsed since the Big Bang. On the largest scales, the 
gravitational potential difference between last scattering and 
now generates gravitational redshifts, of order fiT IT = 
l~)( l>p I p M d I ct )~. These fluctuations, also first predicted in 
196724, are contributed by co-moving scales d of 103_104 Mpc, 
and dominate over angular scales greater than a few degrees l8. 

The result of all this is a gaussian sky pattern (the gaussian 
nature of the fluctuations being preserved in linear theory), with 
roughly equal power in each logarithmic interval of angular 
wavenumber. The r.m.s. amplitude is a function of global cosmo­
logical parameters such as 0, h and Db, and constraints can be 
placed on these by comparison with the stringent small-scale 
anisotropy limits. High-density models are generally consistent 
with these limits, but low-density models can be excluded. There 
are two reasons for this: first, there is reduced growth of Api p 
at late times if 0« 1, and second, the fluctuations appear at a 
more favourable angular scale. The results we have described 
were obtained numerically. The anisotropy on large scales, much 
greater than the horizon size at decoupling, for these isentropic 
fluctuations can be calculated analytically24 (see ref. 25 for an 
application to cold dark matter). The effect is analogous to the 
usual gravitational redshift effect, with photons being redshifted 
(blueshifted) if they were last scattered in overdense (under­
dense) regions. The amplitude of AT I T is one third of the 
newtonian peculiar potential 4> evaluated at the point of 
emission. 

In these calculations it is assumed that the Universe is not 
re-ionized after recombination. There is some justification for 
this in that, for most reasonable choices of parameters, the 
spectrum of density fluctuations is such that very little matter 
forms nonlinear structure at a sufficiently early epoch to plaus­
ibly re-ionize the Universe I7.18. We now describe some variations 
on this 'standard' model. 
Hot dark matter. An interesting alternative is to replace the cold 
dark matter (axions, photinos, or the like) with hot dark matter 
such as massive neutrinos. The main effect of this is to erase 
post-recombination density fluctuations on scales smaller than 

that of superclusters (the angular dependence of AT I T being 
largely unaffected because the AT I T fluctuations on small scales 
are in any case smeared out)17,26. The normalization to 13 (for 
galaxies) is now questionable, because galaxy formation is a 
secondary phenomenon in a neutrino-dominated universe, aris­
ing from pancake fragmentation27. An alternative normalization 
is to require that 'pancake' collapse should occur sufficiently 
early to form quasars and the most distant galaxies. For a 
neutrino mass of -30 eV, the predicted anisotropy is compatible 
with the current upper limits. 
Isocurvature fluctuations. An alternative to the isentropic fluctu­
ations discussed so far is the 'isocurvature' mode. These fluctu­
ations are, in a sense, orthogonal to the isentropic modes 
because, while the latter have fluctuations in the total energy 
(and therefore in space curvature) but no variation in the relative 
abundances of the various particles, fluctuations can be realized 
by spatially varying the equation of state on some initial t = 
constant hypersurface in a universe which was hitherto 
absolutely homogeneous. This process conserves energy locally, 
so any excess in one species is balanced by a deficit in the others. 
It is the constancy of the spatial curvature on this initial hyper­
surface which gives rise to the terminology employed here. These 
fluctuations are not, strictly speaking, isothermal, but are often 
referred to as 'entropy' or 'isothermal' fluctuations. 

Isocurvature fluctuations in a universe dominated by cold 
dark matter have recently been investigated28.29. The small-scale 
anisotropy is very similar to that arising from isentropic fluctu­
ations. The large-scale anisotropy, however, is about an order 
of magnitude larger. This increase is a consequence of two 
factors: the first is that the spectrum of density fluctuations is 
flatter than in the isentropic case, because no sub-horizon growth 
occurs in the radiation era. Thus, with the same normalization, 
the value of Api p at large scales is about twice as large. 

The origin of the other factor can be understood as follows. 
Imagine that, at some early time z» Zeq, we impose a positive 
perturbation to the axion density APAI PA = AnAl nA = e in some 
large spherical region destined to enter the horizon at some time 
after ZEQ' We must also impose a smaller compensating negative 
perturbation in the radiation density, Apyl Py = -(PAl pyle, so 
that PTOTAL is unperturbed. When this region enters the horizon, 
the density of the radiation will be negligible, having been 
redshifted, so we will have a positive perturbation to the proper 
mass enclosed: (AM I M)proper = AnAl nA = e. However, from 
considerations of causality, we know that the gravitational mass 
as registered by an external observer is unperturbed. There is 
no paradox here; the perturbed region must now be sitting in 
a potential well of depth 4> = e so that M grav = Mproper( 1 - 4» is 
unchanged. If the perturbation were isentropic then we would 
see the Sachs-Wolfe term, (A TI T)sw = -4>/3 = -e/3. However, 
this perturbation is not isentropic: we initially increased the 
number of ax ions but the number of photons was almost unal­
tered. Thus, relative to an isentropic state, we have a negative 
entropy perturbation, Anyl ny = -e, which gives rise to a tem­
perature fluctuation (A T I T)entropy = 4(Anyl ny)/3 = 4e/3. We 
see then that the usual Sachs-Wolfe term is augmented by an 
entropy perturbation of the same sign but four times larger, and 
the net result is to increase (A T I ThoTAL by a factor of -5. 
With the conventional normalization, the predicted anisotropy 
is incompatible with the limits of Fixen et al.30

• 

The re-ionized Universe. If re-heating were to occur, the Universe 
would become transparent over approximately one expansion 
time at the mean redshift of last scattering. The photons we see 
would then arrive from a broad range of redshifts, Az = Zls' The 
temperature anistropy due to the large-scale structure in such 
a re-ionized universe is smaller than that predicted to arise in 
a un-ionized universe. This is because, along any line of sight 
through the cosmic photosphere, we will see fluctuations due 
to many regions adding incoherently and this results in statistical 
cancellation. 

The dominant source of anisotropy in a re-ionized universe 
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is the peculiar motion of the last scatterers. The calculation of 
the anisotropy is greatly simplified by two approximations which 
are expected to hold to high accuracy. First, at the epoch of last 
scattering, the density fluctuations that give rise to the currently 
observed large-scale structure were still in the linear regime, 
and second, the dynamical effect of the radiation on the matter 
was almost certainly negligible. Hence we need only calculate 
the effect of the matter on the radiation. 

The statistical cancellation due to the projection of density 
fluctuations along the line of sight depends on the statistical 
nature of the density perturbation field 8(k). If this density field 
was gaussian (that is, if the Fourier components 8(k) had 
random phases), then the temperature fluctuations on the sky, 
d( 0), will also be a gaussian field. The power spectrum of this 
field, d 2

, is related to the power spectum of density fluctuations 
by d 2 oc k-4 82(k), where the constant of proportionality depends 
on the ionization history of the Universe31

• A consequence of 
the fact that the scale of the fluctuations is much smaller than 
the thickness of the photosphere is that the fluctuations d(k) at 
some angular wavenumber k are determined solely by the value 
of 82 at the corresponding spatial wavenumber. 

A useful measure of the amplitude of the temperature fluctu­
ations at angle 0 is (8T/T)e=.Jed2(k), where k=I/0. 
Similarly, the amplitude of the density fluctuation on scale A is 
(dp/ P)A = [k3 82 (k)]1/2. Thus, to order of magnitude, we have 
(dT/T) = (HA)5/2(dP/p) (where H, A and 8p/p are evaluated 
at Zls)' Equivalently, we can write (d T / T) = (l/.JN) CPA, where 
CPA is the gravitational potential fluctuation on scale A and N 
is the number of regions of size - A seen along a line of sight. 
One can infer that the anisotropy due to fluctuations of a given 
scale A is smaller for smaller Zls (as N is then increased), and 
cP" is approximately equal to the square of the velocity dispersion 
of the final nonlinear structures produced. As this velocity 
dispersion appears to be a non-decreasing function of mass (and 
therefore of A), the result tells us that the greatest anisotropy 
is generated by the largest structures we see today. If galaxies 
fairly trace the mass distribution, then the anticorrelation seen 
in the redshift survey suggests that the power spectrum falls 
rapidly for k,,;;; 27T / 60h -I Mpc. These fluctuations would gener­
ate d T / T = (3-6) X 10-6 on an angular scale of _1°. (We have 
here assumed n = 0.2 in accord with the assumption that galaxies 
trace the mass). In a high-density universe (n = I),the amplitude 
would be smaller by a factor of -3 and the anisotropy would 
appear at an angular scale of -10 arc min. 

On larger scales, the amplitude of d T / T depends on the 
extrapolation of the power spectrum. If this is assumed to be a 
power law with 8iockn, then dT/Toco(-n+2)/2 and would 
increase with angular scale if n ,,;;; 2. The estimate we have given 
above is the minimal anisotropy implied by the structure 
observed today, and it does not require any extrapolation of 
the power spectrum to large scales. The predicted anisotropy is 
well below the current upper limits on the relevant scales. 

So far we have not specified the source of energy which 
re-ionizes the Universe. An interesting possibility is that these 
pre-galactic sources of radiation may, if they are sufficiently 
inhomogeneous, generate the large-scale structure32

• A con­
straint on such theories is that, in addition to the 'Doppler 

. scattering' fluctuations we have discussed above, the radiation 
released would probably have been degraded to microwave 
frequencies and would appear anisotropic on a scale of a few 
degrees, this being the angular size subtended by the width of 
the photosphere. 

This effect was investigated in ref. 33. The assumptions are 
that a population of sources tum on and bum at redshift z*, 
that these sources are inhomogeneous on some scale A* and are 
uncorrelated on larger scales (note that there is no assumed 
initial density inhomogeneity), and that these sources produce 
a substantial fraction of the microwave background. The 
diffusion or streaming of this radiation away from the sources 
then generates density fluctuations by the pressure of the radi-

ation of the gas. This process can transfer momentum, and 
generate density fluctuations, on scales up to the radiation Jeans 
length, which is comparable to the scale of the largest structures 
we see today. The redshift of burning was taken33 to be z* = 
200-500; if z* is lower than this, then radiation drag becomes 
inefficient, and for higher Z the luminosity of the sources must 
exceed the Eddington luminosity. This process could generate 
the observed large-scale structure if the initial scale of radiation 
inhomogeneity is of the order of a galactic mass scale. The 
transfer of radiation smooths out the initially inhomogeneous 
radiation on scales up to the horizon scale at last scattering. 
The final microwave background anistropy predicted (assuming 
thermalization of the radiation by dust) appears at an angular 
scale of a few degrees and is comparable to the present upper 
limits on this scale. 

On larger scales the temperature anisotropy decreases as 
d T / T oc cP -I, and so any quadrupole anisotropy would be very 
small. This d T / T oc cP -I behaviour at large angles is the hallmark 
of spontaneous theories of formation of structure. Most 'primor­
diaI' theories of large-scale structure invoke a Zel'dovich spec­
trum which would generate large-angle d T / T fluctuations which 
are scale-independent. Thus observation of large and compar­
able quadrupole, octopole and higher-order moments would 
rule out spontaneous generation theories. Unfortunately, our 
Galaxy gives rise to anisotropy, with significant low-order multi­
poles. It may then be that one would be able to detect the 
Zel'dovich anistropy only on intermediate angular scales, where 
one could test for a dependence of d T / T on galactic latitude. 
Anisotropy from cosmic strings. All of the mechanisms we have 
discussed so far give rise to gaussian fluctuations, either by 
virtue of the assumed initial conditions or, as in the re-ionized 
universe, where we have many fluctuation regions adding inco­
herently, so that the central limit theorem should apply. An 
interesting alternative is supplied by the 'cosmic string' 
hypothesis lO

•
l1 (for a review of this subject see ref. 34). The 

perturbations provided by cosmic strings are inherently non­
gaussian and result in step-like discontinuities snaking across 
the microwave skl5

-
37

• The pattern is like that arising from a 
Zel'dovich spectrum, scale-invariant on large scales. In this 
picture, one would naturally expect the Universe to be re­
ionized, so the theory is relatively immune to the constraints 
from small-scale anisotropy. In order to detect the distinctive 
features predicted in this model, one would need to scan a 
region of sky at least _10° square with reasonably good 
resolution. 
dT/T in the explosive model. Explosive amplificationB

,9 begins 
with rare seeds, either massive objects (-106 solar masses) or 
possibly galaxies themselves, and results in a foam-like distribu­
tion of galaxies: swept-out voids separate thin shells, sheets and 
ridges where shells intersect, and there most of the galaxies 
form. The typical void size can be up to -5 Mpc in diameter if 
sufficient explosive energy is available. Although this falls short 
of the observed voids in the galaxy distribution, which are 
- 25 Mpc across3B

, the qualitative resemblance of the bubble-like 
structure of the galaxy distribution to that predicted in explosive 
amplification is tantalizing, and this model is a serious contender 
for explaining galaxy formation. 

In fact, the voids are not completely empty, but contain hot 
shocked gas at a temperature of ;,,108 K. In the pancake frag­
mentation model, the physics of galaxy formation is very similar 
to that in the Ostriker-Cowie-Ikeuchi modeI8

,9. Pancakes col­
lapse to form thin, dense sheets of gas which fragment into 
galaxies, leaving behind large regions of tenuous hot gas. This 
hot gas can result in observable fluctuations in the cosmic 
microwave background, by means of the Sunyaev-Zel'dovich 
effece9

. Microwave photons Compton-scatter against the hot 
electrons and acquire a perturbation in temperature, in the 
Rayleigh-Jeans part of the spectrum, of d T / T = 
-(2kT / mec2 )reso where k is the Boltzmann constant, me is the 
electron mass and Tes is the scattering optical depth. d T / T for 
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an individual pancake is proportional to the pressure, which is 
constant in the shocked region and depends only on the co­
moving wavelength of the pancake and the epoch of pancake 
collapse. Although the distortion from an individual pancake 
at z"'" 1 is small (~T / T "'" 1 0-7), the contribution from the many 
(N) 100) pancakes along a typical line of sight increases the 
yariance of the temperature fluctuations by a factor of N 1

/
2 

between different lines of sight. Hogan40 performed a similar 
calculation for the explosive galaxy formation model. He found 
that if the observed large-scale structure as measured by the 
galaxy autocorrelation function is generated explosively, small­
scale anisotropy comparable to the Uson-Wilkinson limit41 is 
produced. Vishniac and Ostriker42 generalized this argument 
further, by noting that if the binding energy of the gaseous 
components of newly bound structures is thermalized, regardless 
of its origin (whether explosive or gravitational), then tem­
perature fluctuations of amplitude _10-5 result on sub-arc­
minute scales. Primordial fluctuations are greatly diminished on 
these scales due to the smearing associated with the finite thick­
ness of the last scattering surface, and such secondary fluctu­
ations are expected to dominate. 
Searchesfor intrinsic anisotropy. Since the discovery of the micro­
wave background radiation43 , many attempts have been made 
to search for angular anisotropy. These searches have used a 
variety of techniques to probe a range of angular scales spanning 
more than three orders of magnitude. It is often convenient, in 
the discussion of temperature anisotropies, to decompose the 
sky temperature pattern into spherical harmonics; these provide 
a complete and orthogonal set of modes. As we have mentioned, 
the 1 = 1 mode is probably dominated by our locally generated 
peculiar velocity, which may also generate a small 1 = 2 com­
ponent. Any other anisotropies must be intrinsic. Observations 
at different angular scales suffer from different problems and 
require different observing strategies; it is useful to distinguish 
between 'large' angular scales for which I~ 10, 'intermediate' 
angular scales with I"", 10-100, and 'small' angular scaJes with 
1"d3! 100. 

For large and intermediate angular scales it is necessary to 
raise the observing apparatus above the bulk of the atmosphere. 
Anisotropometers have been deployed from balloons30

•
44

-
46

, 

from U-2 aircraft47 and from a satellite48
• These observations 

have typically employed beam-widths of a few to ten degrees 
and have obtained coverage of a significant fraction of the whole 
sky. Initially there was much emphasis on the possibility ora 
quadrupole anisotropy, and observers obtained estimates of the 
quadrupole tensor components from their data. These observa­
tions also contain useful information about higher-angular­
frequency fluctuations on scales down to the beam-width. 
Although there have been claims of positive detections of quad­
rupole anisotropy at levels significantly above that of the noise, 
none of these have withstood the test of time, and the current 
upper limit from the Soviet RELIC experiment on any 1 = 2 
mode is ~ T / T "'" 3 x 10-5 with 95 % confidence. The limit on the 
1=4 mode is 5 x 10-5 (95% confidence). These limits are much 
smaller than the dipole amplitude, and this fact gives some 
support to the belief that most, ifnot all, of the dipole anisotropy 
is extrinsic or local, since one would expect any intrinsic dipole 
anisotropy to be of similar amplitude to the other low-order 
moments. 

On intermediate angular scales there has also been one 
claimed positive detection of anisotropy44, although few details 
of the method of analysis were given and no confidence level 
was quoted. Other workers have quoted upper limits of ~ T/ T "'" 
3xlO-5. More recently, an upper limit49 of ~T/T""'5xlO-4 
(95% confidence) has been set at a beam-width of 2°. An upper 
limit of 5 x 10-5 (95% confidence) has been set over -6-12° in 
a recent dedicated experiment at 3 cm wavelength (R. D. Davies 
et al., in preparation). At small angular scales the emission from 
the atmosphere is less of a problem, and searches for anisotropy 
on scales of a few arc min have been made using conventional 

ground-based radio telescopes. The comparison of the results 
from these various observations, and their relation to quantities 
which can easily be predicted from theoretical models, are 
hampered by · the variety of observing strategies employed. In 
order to achieve the high sensitivity required, it is necessary to 
perform a differential measurement; many different choices of 
beam geometry have been used. One possibility would be to 
allow the beam to drift across the sky and measure the r.m.s. 
fluctuations in the receiver output. This would then tell us the 
r~ m.s. fluctuation in the sky temperature after this has been 
convolved with the beam pattern. In practice, however, a more 
common strategy is to repeatedly switch between two or more 
patches of sky and subtract the signal. If only two patches are 
observed, the output is simply the autocorrelation function of 
the (convolved) sky brightness. If, as is usual, the beam throw 
is comparable to the beam-width, then the output is a useful 
measure of the fluctuations on this angular scale. Such an 
apparatus would also have some sensitivity to fluctuations on 
much larger angular scales, because the apparatus measures the 
gradient of long-wavelength fluctuations. The most stringent 
current upper limits to small-scale anisotropy are those obtained 
by Uson and Wilkinson41 , using a double beam subtraction 
technique. They quote an upper limit ~ T / T"'" 2 x 10-5 at (J "'" 4.5 
arc min, again with 95% confidence. This type of measurement 
is even less sensitive to large angular fluctuations because the 
beam geometry measures the second derivative of the sky pattern 
at large angles. Finally, we mention some searches for anisotropy 
on 'very small' angular scales (a few arc s), using the Very Large 
Array50. The sensitivity is somewhat poorer than that obtained 
on larger angular scales, with upper limits of 10-3,8 x 10-4 and 
5 x 10-4 (95% confidence) at angular scales of 18, 30 and 60 
arc s, respectively. These results have now been superseded by 
new, deeper survey at 6 cm, which improves on these limits by 
factors of 4 and 8 at 18 and 60 arc s, respectively51. Similar 
results have been obtained independently by H. M. Martin and 
R. B. Partridge (in preparation). 

We also expect the microwave sky to display some linear 
polarization. To date, polarimetry searches have been carried 
out only at large angular scales52.53

, these searches having been 
stimulated by the suggestion54 of a quadrupole polarization 
·pattern in an anisotropic universe. Re-ionization can enhance 
this: effect55

• Polarization with a much smaller coherence angle 
will also arise due to inhomogeneity. The amplitude of the 
polarization pattern is of the order of the temperature anisotropy 
on a scale corresponding to the width of the last scattering 
sheI156

• If temperature anisotropy is ever detected, then polariz­
ation studies will provide an important test of the interpretation 
of such a result. It may be that temperature anisotropy searches 
will eventually be limited by confusion from faint sources. If 
ihis is the case, then polarimetry may provide the best way to 
view the primordial fluctuations. 

Confidence intervals 
The figures quoted above for upper limits on sky temperature 
fluctuations are a highly reduced form of the initial data, which 
typically consist of a set of N temperature difference estimates 
Di together with estimates (Ti of the experimental uncertainty 
associated with each D i• Before we consider the implications of 
the quoted upper limits it is important to understand the limita­
tions of these statistics. To this end we will briefly discuss the 
method by which these confidence limits are arrived at and 
highlight some of the associated problems. 

We will consider, for illustrative purposes, the simplified, 
though not entirely unrealistic example in which the Di are 
measured in widely separated fields, and so can be considered 
to be statistically independent, and in which the instrumental 
variances are all equal: (T1 = (T~. In this case, the commonly 
adopted procedure57 is to calculate the statistic X2 == 'i.D7/ (T~, 
and to ask, first, if there is firm evidence for fluctuations in 
excess of that produced by the receiver. Assuming that there is 
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not, we then ask what is the value of 1T~1 such that, if the true 
sky r.m.s. temperature difference is ITsky = IT uh a value of X2 as 
low as that observed will occur only a fraction I - c of the time. 
The number of 1T~1 is our upper limit on the sky variance at 
confidence level c. 

One problem with this method is that it requires a rather 
precise estimate of the instrumental variance ITo (ref. 58). For 
reasonably large N, the central limit theorem tells us that X2 
will have a gaussian distribution with mean N(IT~ + lT~kv)llT~ 
and variance 2N (IT~ + IT;ky)211T~. The upper limit is thenlT~1 = 
lTM(x61 N)/(I - aJ21 N) -I}, where X~ is the value actually 
observed and a is the number of standard deviations associated 
with the confidence level c (for example, a = 1.65 for c = 95%). 
x21 N will be close to unity, x 21 N = (I + O( N - 1

(2», and so 
1T~1 = 1T6N-'(2. But the statistic X2 is inversely proportional to 
the estimate of 1T6, so IT~I to be reliable, any systematic functional 
errors in IT~ must be much smaller than N- 1

/
2

• Ifwe 'generously' 
overestimate 1T6, we will obtain much too Iowa value for IT~I 
and we will be in danger of excluding the true hypothesis. 

Another problem is that, by our definition of lT~h we will 
reject the true hypothesis a fraction I - c of the time. Thus, if 
20 upper limits at 95% confidence are found in the literature 
than the 'best' upper limit is likely to lie below the true value. 
The actual situation will be worse than this if there is any 
selection pressure to favour the appearance of 'good' results. 
This might occur if there is any tendency, either of a voluntary 
or involuntary nature, not to publish results which are deemed 
to be uninteresting compared to other published results. Such 
selection effects cause the number of independent samples of 
event space to exceed the number of published results. The rate 
of sampling of event space can also be boosted by combining 
sets of data from different runs, or if the decision to extend or 
curtail the experiment is made after any data have been collected. 

If for these or other reasons, the value of IT~ I obtained has 
any influence on the publication of results, then the value of 
these constraints for rational decision making is debased. Ulti­
mately, the only practical way to ensure that results are free of 
such bias is for the decision to publish or not to be made before 
the experiment is performed (with a blank space in the manu­
script for 1T~1 to be inserted, of course). It is after all only rational 
that the criterion for acceptance of such a paper should be the 
sensitivity of the apparatus, rather than the random number IT~I 
which results at the end of the day. 

Unreasonably restrictive upper limits may then occur by 
chance, or they may even be selected for. However, one should 
not simply accept this as a painful fact of life. Our procedure 
is guaranteed to reject the true hypothesis 5% of the time (for 
95% confidence limits), but in any particular instance the data 
may give some indication as to whether this is such a case. For 
example, if IT;ky = 0, then negative upper limits will occur. In 
such a case, we can be certain that we have been 'lucky'. There 
are other cases in which a positive limit results on the variance 
but in which one would be reluctant to reject the hypothesis 
that IT;ky;;' IT~I' These are those cases in which, while our statistic 
indicates that the result is unlikely under the hypothesis lT~kY > 
lT~h the result is not significantly more likely under any alterna­
tive hypothesis. The problems associated with various statistical 
procedures for treating null results will be discussed elsewhere 
(A. N. Lazenby and N.K. in preparation), but for the present 
we note that the hallmark of such a spurious result is an 
unusually low value of x2

• Visual inspection of the data present­
ed in ref. 41 suggests this may have been the case in this instance. 
This is unfortunate because, taken at face value, this result rules 
out some interesting hypotheses. 

Implications 
Intermediate and large scales. The most immediate implication 
of these negative results is that we inhabit a universe that is 
currently uniform to a high degree of precision, at least on scales 
greater than the horizon size at last scattering. This inference is 

particularly certain because considerations of causality assure 
us that there is no mechanism which can render the Universe 
isotropic on scales exceeding the horizon scale at last scattering. 
Although we can observe only that region of space which is 
inside our present horizon, we can invoke the copernican prin­
ciple to .exclude such possibilities as that we inhabit an 
inhomogeneous universe which just happens to be isotropic 
about the Earth. We can also infer that the Universe is very 
close to homogeneous on scales much larger than the present 
horizon size59

• If our universe is nearly homogeneous today, 
then it must have been prepared in a state with an extremely 
small amount of 'growing-mode' inhomogeneity present at early 
times; this preparation may have involved an inflationary phase l

. 

The process which prepared the Universe may also have imprint­
ed small departures from perfect homogeneity which could later 
grow to produce galaxies and other structure in the Universe. 
If this is the case, then it is most natural that the fluctuations 
should have curvature (specific binding energy) fluctuations 
which are independent of scale. Were this not the case, then it 
would be necessary to impose a special scale (that of curvature 
nonlinearity) in the initial conditions and this scale would not 
be many orders of magnitude different from the scale of galaxies. 
It is hard to see how the microphysics of the early Universe 
could produce such a scale. 

On large scales the spectrum maintains its initial form. We 
can estimate the level of anisotropy which should be observed 
on intermediate and large angular scales, because the tem­
perature fluctuations should be at least as large, to order of 
magnitude, as the specific binding energies of the largest struc­
tures we see today. Clusters have internal velocity dispersions 
of v = 1000 km S-I and so have specific binding energy 4> = 
(vi C)2 = 10-5

. The binding energies of superclusters are thought 
to have similar magnitude and so we predict ~ TIT = 10-5

• This 
is not much smaller than the current upper limits on these 
angular scales and so it seems that, with a modest improvement 
in the observational situation, we have the hope of either ruling 
out this picture or confirming the presence of these scale-free 
temperature fluctuations . 

To obtain a quantitative constraint on ~p I p on these scales, 
one can use the relation of Sachs and Wolfe24 for the temperature 
fluctuation induced by a plane-wave density ripple. A convenient 
parameter to specify the amplitude of the perturbation is cP, the 
newtonian specific binding energy. The result of Sachs and 
Wolfe is simply that ~ TI T =4>13. We have plotted the constraint 
on (~p I p ) A using this relation, and the observed upper limits 
are shown in Figure 2. This constraint assumed that the initial 
fluctuation spectrum was initially isentropic. 
Small scale. Observations on intermediate and large angular 
scales provide the best constraint on the amplitude of very-long­
wavelength density fluctuations. On these scales, however, there 
is very little direct evidence for clustering of matter. On scales 
of -slOh- 1 Mpc we see strong clustering, at least of luminous 
material. The importance of small scale anisotropy studies is 
that they probe those length scales on which we actually see 
clustering, and so they provide a more direct test of theories of 
galaxy formation. Unfortunately, however, the interpretation of 
smallscale anisotropy is model-dependent: in order to apply this 
test one must first choose the nature of the initial fluctuations 
(for example, 'isothermal' or 'adiabatic'), assume some spectrum 
(such as a power law) and then propagate these fluctuations 
from some sufficiently early time until after the epoch at which 
the matter and radiation decouple. This linear evolution depends 
on the properties of the major constituents of the Universe at 
the time, so the abundances and masses of these particles must 
be specified. Up to this point the amplitude of the initial fluctu­
ations is arbitrary. The next, and most uncertain, step is to 
normalize the calculation by requiring that the density fluctu­
ations should have grown to the presently observed amplitude 
by today. One can then compare the predicted anisotropy with 
observations and thereby constrain the initial parameter space. 
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Fig.2 Constraints on the power spectrum of density fluctuations 
in an Einstein-de Sitter (n = 1) universe. lAp/ ph 0= k 3

/
21h/.f27r. 

The contribution to the r.m.s. density fluctuations per logarithmic 
interval of k, is plotted versus k, where k(Mpc- I

) is comoving 
wave number, 8k = J d 3 k eik

.
x flp(x)/ p, and x labels the spatial 

coordinates of an arbitrary point. Specifically, the mass fluctuation 
within a sphere of radius x is 8M / M = J k2 dkl8k l2 W( kx)/.f27r, 
where the window functinn W(/':x) = 1 for /':x"E I and W(kx)= 

(kx) · 4 for kx» 1. CBR, large- and intermediate-scale microwave 
anisotropy; we have taken fl T / T"" 3 X 10-5 for () "" 1 0 arc min and 
fl T/ T"" 10-4 for () = a few degrees. CBR(CDM), small-scale 
anisotropy limits in a universe dominated by cold dark matter. 
CBR(re-ionized), anisotropy limits if the intergalactic medium is 
re-ionized at large redshift and secondary fluctuations are gener­
ated as discussed in the text (see discussion of 'the re-ionized 
universe'). PV, constraint from peculiar velocity; power spectrum 
of galaxy clustering; CC, power spectrum of cluster clustering; 
CDM, theoretical preduction for density fluctuations in a cold 
dark matter model with h = 0.5. In a low-density universe (n = 0.2), 
large- and intermediate-scale anisotropy limits are - 3 times lower; 
peculiar velocity limits are - 3 times higher; small-scale anisotropy 

limits are -10 times lower. 

In recent years, there have been interesting theoretical and 
observational developments concerning the small-scale 
anisotropy. On the theoretical side there has been a rise in 
popularity of models in which the bulk of the gravitating matter 
is in a form which is otherwise very weakly coupled to other 
forms of matter. These models generate a much smaller level of 
anisotropy than models in which the density is dominated by 
baryons. Meanwhile, the observational limits have improved, 
and now not only rule out baryon-dominated models (or at least 
those with 'adiabatic' fluctuations) but also place useful con­
straints on models involving weakly interacting 'dark' matter. 

The normalization that has been used in these calculations is 
that the density contrast in spheres of radius 8h-1 Mpc should 
have unit variance today. This normalization is chosen because 
the fluctuations in galaxy counts in spheres of this size have 
unit variance and because it is thought that fluctuations on these 
scales should be described fairly accurately by linear theory, 
and so should be accessible to theoretical calculation. IdeaIly, 
it would be desirable to normalize on even larger scales where 
linear theory would be even more accurate, but unfortunately 
the estimates of fluctuations in galaxy counts on larger scales 
become very uncertain. 

With this choice of normalization, the small-scale anisotropy 
limit allows one to exclude 'cold dark matter' models with 
0=0.2 (see the constraint labelled CBR (CDM) in Fig. 2). This 
conclusion is particularly interesting because this is the value 
for n implied if galaxies fairly trace the mass distribution, If 

the value of 0 is significantly greater than 0.2, then galaxies are, 
for some reason, more strongly clustered than the matter. If this 
is the case, then it is inconsistent to use the conventional nor­
malization. Inclusion of this effect would lower the predicted 
tl TIT still further in addition to the approximate 0-1 scaling 
(by a factor of _2)60-62; to detect such tiny fluctuations would 
require a great improvement over the current upper limits. 

The possibility of ruling out a high-density Universe domi­
nated by cold dark matter from small-angle anisotropy is there­
fore fairly remote. Large-angular-scale searches present a more 
hopeful prospect, although in this case the interpretation 
depends crucially on the assumed slope of the primordial spec­
trum of fluctuations. As we have mentioned, there are reasons 
to prefer the Zel'dovich, scale-free curvature spectrum. To rule 
out, or to confirm at the several-sigma level, the existence of 
the consequent scale-free temperature fluctuations would be a 
significant achievement. 

Extrinsic anisotropy 
The microwave sky has now been almost completely mapped 
at an angular resolution of a few degrees. The only convincing 
feature which has been observed to date is the 'dipole' 
anisotropy. Averaging together the two most precise of the recent 
measurements yields a dipole anisotropy with amplitude 
l5T I T = 1.2 x 10-3

• The usual interpretation of this anisotropy 
is that the Sun is moving at a velocity Vsolar = 380 km S-1 towards 
an apex -450 away from the Virgo cluster. The reason for this 
interpretation, rather than as a combination of extrinsic and 
intrinsic anisotropy, is that this dipole is at best an order of 
magnitude larger than the quadrupole or other low-order 
spherical harmonics on the microwave sky, and such an intrinsic 
pattern seems highly implausible. It may be possible to test this 
interpretation if the intrinsic quadrupole is really very small 
because, in addition to the dipole of amplitude vi c, our motion 
will also result63 in an aligned quadrupole of amplitude v21 c2

• 

This measurement of the solar motion provides us with a 
constraint on large-scale density fluctuations because, if these 
induce an r.m.s. amplitude of »300kms-1

, we must live in a 
very special position64

,65. Unless there is some anthropic argu­
ment to favour the existence of observers in regions which seem 
to be special only in so far as they have an unusually low dipole 
anisotropy, we can exclude such hypotheses as unlikely. These 
hypothetical large-scale density fluctuations should be well 
described by linear theory, and we then have Vrms = 
HL(tlp I p )rm" for fluctuations on length scale L. If we assume 
for the moment that the density fluctuations are a gaussian 
process, then the large-scale velocities will also be gaussian­
distributed. We then have an upper limit at 95% confidence of 
vrms",3Vsolar as only -5% of all observers have a velocity less 
than one third of the r.m.s. value. We have assumed a gaussian 
distribution, but this result is not very sensitive to the form of 
the tails of the actual distribution because we are calculating 
the probability of very small values of v I Vrms' The result would 
be misleading, however, if the probability P( v) 1" v;:;;'s for v« 
Vrm .. as would be the case if a small fraction of observers have 
v» Vrms while most are nearly at rest. Note that we have ignored 
contributions to Vsolar from small scales which are nonlinear 
(tlpl p "" 1). This is legitimate if we have no detailed knowledge 
of the form of these velocities, as the inclusion of small-scale 
tlpl p will only broaden the distribution P( v). But as we do 
have some knowledge of the Sun's motion in the Galaxy and 
the Galaxy's motion in the Local Group, we should incorporate 
this information. In doing so, we will be able to 'filter out' the 
nonlinear velocities and concentrate on those linear velocities 
of interest. 

The first step in this process is to allow for the rotation of 
the Galaxy. This results in a larger velocity, Vgalaxy = 550 km S-I, 

and therefore a weaker constraint than we would have if we 
had no knowledge of the galactic rotation. The reason for this 
is that the galactic rotation correction is almost parallel to the 
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solar motion and is therefore unlikely (it means that we have 
one of the lowest dipole anisotropies of all observers in the 
Galaxy). However unlikely this state of affairs is a priori, it is 
hard to imagine that the galactic rotation estimate is wildly 
wrong, and so we must fully incorporate this information. The 
next step is to subtract the motion of the Galaxy with respect 
to other galaxies in the vicinity. Here, as we shall see, the 
situation is not so clear-cut. As before, the a priori expectation 
is that the velocity will decrease. However, as with the galactic 
rotation we should prepare ourselvles for possible surprises. 

We determine the galactic motion with respect to a sample 
of galaxies around us by means of a Tully-Fisher' or 'Faber­
Jackson' relation, or some analogous intrinsic correlation 
between a distance-dependent and a distance-independent 
quality. These' L-u' relations, or analogous relations, are estab­
lished for a set of galaxies which we believe to be at the same 
distance from us (for example, in a cluster of galaxies). If we 
then assume that the correlation found is universal, this allows 
us to correct redshifts to true distances in a statistical manner 
by minimizing residuals. The validity of a velocity thereby 
obtained depends crucially on the assumed universality of the 
relation. If there are systematic differences in the zero-point of 
the relations from cluster to cluster, then these will be misinter­
preted as peculiar velocities. An effect of this kind must be 
present at some level. In principle one can test for this by 
applying the method to clusters at a wide range of distances. 
Any spurious velocities will increase linearly with distance. 
These effects, if present at a significant level, do not however 
present any fundamental limit to the depth of sample for which 
one can determine the net velocity, as the number of clusters 
increases sufficiently quickly that the errors remain manage­
able. 

The important question, for our purpose, is whether the source 
of our peculiar velocity has been localized within the sample. 
If so, we obviously get a stronger constraint on /:lpj p at large 
scales. It seemed, following the publication by Hart and Davies66 

that this was indeed the case. They studied a sample of galaxies 
with V"" 5,000 km S-1 using a radio variant of the Tully-Fisher 
(TF) technique, and found that the net motion of these galaxies 
with respect to the MBR was very small: VHD= 130±70kms- l

. 

This result stands in contrast to the earlier result by Rubin et 
al.67 for a sample of similar depth, although doubts about this 
result had already been expressed68

•
69

• However, the Hart and 
Davies sample has now been reanalysed70, and yields a much 
greater net motion of ;;.700 km S-I. An independent sample of 
similar depth was analysed by de Vaucouleurs and Peters71 , who 
found an intermediate value, VdV"" 300 km S-I. More recently, 
CoIlins et al.72 and Burstein et aC3

•
74 have found net streaming 

velocities of -700 km S-I using slightly deeper samples, and are 
in approximate agreement with the original result of Rubin et 
al.67

• However, these results had been preceded by those of 
Aaronson et aC5

, who used the infrared TF technique to analyse 
a sample of galaxies lying in the declination strip visible from 
Arecibo. They found a net motion of ",,200 km S-I, although the 
geometry of their sky coverage results in increased uncertainty 
for a velocity vector in the direction favoured by Burstein et 
al. 73, 74 and by CoIlins et al.72. Another interesting result to emerge 
from the Aaronson et al.75 sample is that the scatter of individual 
cluster velocities about the Hubble flow (or of any offsets in the 
TF relation interpreted as velocities) is very small. They obtained 
a limit of - 200 km s -Ion the amplitude of such motions, roughly 
consistent with the individual cluster motions of -400 km S-I 
(for a different sample) inferred by Burstein et aC5

, and suggest­
ing that the infrared TF technique has very low intrinsic scatter. 

The differences between the solutions found, both for net 
motion and for individual cluster motions, give some measure 
of the uncertainty associated with these methods. Certainly, the 
question of whether the source of the galactic motion has been 
localized remains in doubt. It is probably premature to try to 
use 'these data to constrain /:lp I p on very large scales. The most 

reliable datum we have is for the galactic motion of - 550 km S-I 
with respect to the microwave frame, and this results in the line 
labelled PV in Fig. 2. If a consistent picture for large streaming 
motions does emerge then this will imply, according to standard 
theory, sizeable density fluctuations (;;'30%) on a scale of 
;;.100h- 1 Mpc. Such density fluctuations present a challenge to 
theorists: for instance, it appears that such fluctuations do not 
arise naturally in the cold dark matter model. A theory in which 
non-gaussian fluctuations emerge naturally, such as cosmic 
strings combined with hot dark matter, offers some prospect of 
simultaneously allowing large streaming motions and low l3T IT. 
It should someday be possible to directly measure, or possibly 
exclude, such density fluctuations with large"scale redshift 
surveys. 

Conclusions 
The microwave background isotropy limits, as well as the 
measured dipole anisotropy and large-scale galaxy distribution, 
have already succeeded in severely constraining inflationary 
cosmological models. Indeed, the only survivors require an 
appeal to rather more contrived models than discussed here. 
One possibility requires a biasing scheme 10 which the observed 
galaxy distribution samples the gravitational effects of a universe 
with 0=0.1, while the true 0 is unity I4,61. Biasing schemes 
generally predict that -90% of the Universe should contain 
'failed galaxies', with the baryonic matter forming luminous 
galaxies only in the rare fluctuation peaks that sample -10% 
of the Universe76.77

. One alternative involves appeal to the 
vacuum energy density (or cosmological constant A): with 
Ovac = 0.2, where A == 0vac, a combination of cosmological con­
stant and cold dark matter can reduce both l3T I T and the 
large-scale peculiar velocity field to acceptable levels, while 
allowing light to be a good tracer of mass 78. Another option is 
to let the cold dark matter (with 0 = 1) decay into relativistic 
weakly interacting particles at a recent epoch (after galaxies 
have formed), thereby allowing astronomical measurements 
today to effectively sample a low-O universe79,8o. This scheme 
apparently fails to produce flat galactic rotation curves87 and 
generates an unacceptable feature in the galaxy correlation 
function88, but it is consistent with l3TjT limits81 . One could 
also revive hot dark matter in some non-baryonic guise such as 
the massive neutrino, with nonlinearity of the hot dark matter 
at a very recent (z"" 1) epoch, as required by the various con­
straints such as ~(r) and the pairwise galaxy peculiar velocity 
distribution, but now seeding the Universe with large-amplitude 
small-scale fluctuations (cold dark matter, cosmic strings?) in 
order to allow some, if not all, galaxies to form at an earlier 
epoch 7,82,83. Finally, the wakes produced by cosmic strings could 
themselves generate large sheet-like structures which might 
dominate the large-scale galaxy distribution84-8.6. String models 
naturally yield low (but ultimately observable) ~T / T. 

It is of course conceivable that 'we are completely on the 
wrong track. Perhaps the primordial fluctuation spectrum was 
not described by a scale-invariant power law, nor was it gaussian, 
nor even adiabatic. One might then resort to explosive 
amplification of primordial seeds to explain galaxy formation 
and leave little trace of the primordial initial conditions. This 
still poses the problem, however, of the origin of the large-scale 
clustering of the galaxies. We do observe large-scale correlations 
(superclusters and voids): surely these trace initial conditions. 
If our interpretation of the CBR in the standard Big Bang model 
is correct, and there is no real alternative, then we inevitably 
expect to see some residue of these initial conditions in the 
background radiation anisotropy. It would be too perverse of 
Nature to have thrown down an impenetrable screen which 
renders such fluctuations invisible. Eventual detection of l3T / T 
on some angular scale is inevitable, and it will surely elucidate 
one of the most challenging mysteries of the Big Bang theory, 
namely the origin and the formation of large-scale structure. 
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A molecular gradient in early Drosophila embryos 
and its role in specify.ing the body pattern 

Paul M. Macdonald· & Gary Struhf 
Department of Biochemistry and Molecular Biology, Harvard University, 7 Divinity Ave, Cambridge, Massachusetts 02138, USA 

After fertilization, the protein products of the Drosophila homeobox gene caudal (cad) accumulate in a concentration 
gradient spanning the anteroposterior axis of the developing embryo. Mutations in the cad gene that reduce or eliminate 
the gradient cause abnormal zygotic expression of at least one segmentation gene (fushi tarazu) and alter the global body 
pattern, 

ONE recurring dilemma in developmental biology is the conflict 
between mosaic models of embryonic patterning which invoke 
rigid localizations of qualitatively distinct determinants, and 
regulative models, which postulate morphogen gradients or 
inductive cascades of cell-cell interactions. In the case of insect 
development, the classic experiments of Sanderl

-
4 and others5

-
9 

have ruled out mosaic models, except possibly for the segrega­
tion of the germ Iine lO

, and argued strongly for anteroposterior 
gradients of morpho gens that specify the body pattern. Further 
support for such a gradient model has come from the analysis 
of maternal effect mutations, such as bicaudal, oskar and bicoid, 
which alter the global segment pattern"-18

, But concrete 
demonstrations of graded morphogens have been frustratingly 
absent. 

* Present address: Howard Hughes Medical Institute, Center for 
Neurobiology and Behaviour, Columbia University College of Phys­
icians and Surgeons, 722 West 168 Street, New York, New York 10032. 

During the past few years, molecular studies have led to the 
identification of a conserved structural domain, the homeobox, 
common to many genes which control segment developmentl9

,20. 

In general, homeobox containing genes have tightly restricted 
spatial roles21

-
25

; hence, they are first activated in specific regions 
of the embryo around the time segments are establishedI9

,26-33. 

Recently, we (unpublished observations) and others34
,35 have 

identified a new homeobox gene, caudal (cad)34, which has the 
unusual property of being expressed during oogenesis and early 
embryogenesis. Hence, it seemed possible that this atypical gene 
might have a more global role in organizing the segment pattern. 
Indeed, circumstantial evidence for such a role has been 
obtained by Mlodzik et al.34 and Levine et aC5 who observed 
that cad transcripts form an anteroposterior concentration 
gradient during the syncytial blastoderm stage when the segment 
pattern is being set up. 

We have used antibodies directed against the cad protein, 
together with mutations in the cad gene, to examine its develop-
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