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Abstract

Walking animals must maintain stability in the presence of external perturbations, despite
significant temporal delays in neural signaling and muscle actuation. Here, we develop a 3D
kinematic model with a layered control architecture to investigate how sensorimotor delays con-
strain robustness of walking behavior in the fruit fly, Drosophila. Motivated by the anatomical
architecture of insect locomotor control circuits, our model consists of three component layers:
a neural network that generates realistic 3D joint kinematics for each leg, an optimal controller
that executes the joint kinematics while accounting for delays, and an inter-leg coordinator.
The model generates realistic simulated walking that matches real fly walking kinematics and
sustains walking even when subjected to unexpected perturbations, generalizing beyond its
training data. However, we found that the model’s robustness to perturbations deteriorates
when sensorimotor delay parameters exceed the physiological range. These results suggest that
fly sensorimotor control circuits operate close to the temporal limit at which they can detect
and respond to external perturbations. More broadly, we show how a modular, layered model
architecture can be used to investigate physiological constraints on animal behavior.

1 Introduction

Animals as diverse as tardigrades (Nirody et al., 2021) and tapirs (Catavitello et al., 2018) use
interlimb coordination to walk through complex terrain. When a walking animal encounters an
unexpected perturbation (e.g., it is pushed or tripped), its ability to recover and sustain loco-
motion can be a matter of life and death. However, the presence of significant temporal delays
in animal sensorimotor systems establish fundamental limits on how quickly animals can respond
to external perturbations (More and Donelan, 2018). Sources of temporal delay include neural
conduction (Sterling and Laughlin, 2015), synaptic transmission (Sabatini and Regehr, 1999), and
electromechanical muscle activation (Pringle, 1978; Akiyama et al., 2010).

Sensorimotor delays pose a particular challenge for systems that rely on feedback control, be-
cause they limit the availability of up-to-date information on the state of the external environment
(Franklin and Wolpert, 2011). For example, time delays limit robust performance in feedback
control systems (Doyle et al., 2013), with model predictive control (MPC) (Garcia et al., 1989;
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Camacho and Alba, 2013; Brunton and Kutz, 2022) providing one algorithmic strategy to improve
performance while maintaining robustness. In biological systems, theoretical studies suggest that
some animals use predictive internal models to mitigate the effect of delays (More and Donelan,
2018; Li et al., 2023; Desmurget and Grafton, 2000). Limb compliance and other biomechanical
adaptations can also compensate for unexpected perturbations within a limited range and mitigate
the effect of sensorimotor delays (Daley, 2018; Ashtiani et al., 2021). However, the constraints
that sensorimotor delays impose on robust locomotion have been difficult to quantify, because it
is experimentally challenging to manipulate sensorimotor delays and observe their effects on ani-
mal locomotion (although this has been achieved in other motor systems, for example using focal
cooling in singing birds (Banerjee et al., 2021)). Computational models of locomotion do not
typically include delay as a tunable parameter, and most existing models of walking cannot sustain
locomotion in the presence of delays and external perturbations.

Flies are agile, robust walkers, and the availability of genetic and behavioral tools in Drosophila
makes them well-suited for investigating neural mechanisms of locomotor control (Deangelis et al.,
2019; Goncalves et al., 2022; Cruz and Chiappe, 2023). The fly is also the only walking animal
whose nervous system is almost completely mapped at synaptic resolution (Galili et al., 2022).
Flies walk rhythmically with a continuum of stepping patterns that range from tetrapod (where
two of six legs lift off the ground at a time) to tripod (three of six legs alternately lift off at a
time) (Deangelis et al., 2019; Mendes et al., 2013; Szczecinski et al., 2018; Wosnitza et al., 2013;
Strauss and Heisenberg, 1990; Nishii, 2000; Pratt et al., 2024). Each fly leg has five joints that move
through 7 mechanical degrees of freedom (Karashchuk et al., 2021; Lobato-Rios et al., 2022) and are
actuated by ∼18 muscles that are innervated by ∼70 motor neurons (Azevedo et al., 2022). Each
leg motor neuron is uniquely identifiable (Azevedo et al., 2022) and receives thousands of synaptic
inputs from hundreds of unique premotor neurons within the fly’s ventral nerve cord (VNC, Lesser
et al. (2023); Cheong et al. (2023)), a part of the invertebrate nervous system analogous to the
vertebrate spinal cord. The architectural features of Drosophila locomotor control — joints, leg
motor neurons, VNC — motivate the architecture of our proposed model.

Past models of insect multi-legged walking have taken three general approaches. The first
approach models legs as coupled oscillators or inverted pendula without taking into account the
mechanics of leg joints. Each leg is a single oscillator, and a network of oscillators is tuned to recre-
ate oscillatory gait from measurements of foot falls (Couzin-Fuchs et al., 2015; Proctor and Holmes,
2018); alternatively, tripod gaits are approximated by spring-loaded inverted pendula (Chun et al.,
2021). The second approach focuses on physical details of the legs and its joints. Schilling et al.
(2013) uses a decentralized reactive controller to recreate hexapod walking patterns; Goldsmith
et al. (2019) and Goldsmith et al. (2020) introduce a robotic platform; Lobato-Rios et al. (2022),
Wang-Chen et al. (2023), and Vaxenburg et al. (2024) develop virtual fly simulations in a physics
engine. Walking behavior in these models are also driven by coupled oscillators with tuned pa-
rameters that reproduce inter-leg coordination patterns; however, the underlying joint kinematics
are typically unrealistic. The third approach uses normative learning and optimization to generate
walking behaviors de novo —Ramdya et al. (2017) maximized fly walking speed by varying inter-leg
coordination with a genetic algorithm, whereas (Heess et al., 2017) maximize walking speed in both
bipedal and quadruped walkers with reinforcement learning. Normative models produce walking
with varying degrees of realism, but they require clever selection of objectives with constraints and
are computationally expensive. Further, any change in delay values would necessitate a computa-
tionally intensive retraining process. Notably, Geijtenbeek et al. (2013) include fixed sensorimotor
delays in a bipedal model, but do not explore the effect of varying delay values. Overall, existing
walking models offer kinematic or physiological accuracy, but few achieve both, and none consider
the effect of varying sensorimotor delays.
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Here, we develop a new model of fly walking with several key innovations. First, the model
is trained on high-resolution 3D joint angle data from walking flies, which has only recently be-
come possible due to new deep-learning based computer vision tools (Karashchuk et al., 2021).
Second, the model’s multi-layered architecture achieves more than the sum of its parts: specifi-
cally, a neural network model recapitulates kinematic coordination of many joints, and an optimal
controller allows the data-driven model to generalize to new scenarios (e.g. large delays and per-
turbations) without retraining. Third, the inclusion of delay as a tunable parameter allows us to
systematically investigate the quantitative relationships between sensorimotor delays and robust
walking. Fourth, we introduce a new method to quantitatively compare the kinematic similarity of
real and simulated walking. Overall, these analyses suggest that neuromuscular delays limit how
fast flies can walk while retaining robustness to unexpected perturbations. They also illustrate a
general approach of using in silico experiments in virtual animals to investigate how fundamental
physiological parameters constrain animal behavior.

2 Results

2.1 A kinematic model of fly walking that incorporates delays and accommo-
dates perturbations

We designed a walking model with three functional layers (Fig. 1B), inspired by the hierarchical
anatomical organization of the fly nervous system (Fig. 1A, Dallmann et al. (2021)). The three
layers are an inter-leg phase coordinator, a trajectory generator, and an optimal controller that
interfaces with a leg dynamics model. Each individual leg is modular and governed by its own
dynamics, optimal controller, and trajectory generator. Inter-leg coordination is accomplished by
the phase coordinator alone. In other words, the movement of each leg is not coupled to any other
leg except through the phase of its current step cycle. This modularity is inspired by the segmental
neuroanatomy of the VNC, in which each leg is controlled by distinct local premotor circuits and
pools of motor neurons (Lesser et al., 2023; Cheong et al., 2023).

Each layer in the model is an abstraction for the layer below it, such that various elements of
walking (e.g. joint control, inter-leg coordination) can be integrated through modules. Below, we
describe each modular component of our model; more details on its derivation and implementation
are elaborated in the Methods and Materials and Appendices. Although the model can turn and
side-step, our analysis focuses on forward-walking — the model is driving the fly to walk straight
in all simulations, unless otherwise stated.

2.1.1 Inter-leg phase coordinator

To coordinate multi-legged walking, we modeled the step phase of each leg as an oscillator. We
refer to the left and right legs as L1–3 and R1–3, respectively, where the front legs are L1 and R1.
The phase coupling of the six leg oscillators establishes realistic inter-leg coordination. We use a
Kuramoto oscillator model (Acebrón et al., 2005; Strogatz, 2000) to perform this coordination, as
in Proctor and Holmes (2018); equations and implementation details are in Methods and Materials.
Briefly, the phase coordinator takes the instantaneous phases ϕ from all legs as input, then outputs
the desired phases ϕd to all legs. These desired phases are synchronized across pairs of legs to
maintain a tripod coordination pattern, even when subject to unpredictable perturbations. The
phase coupling coefficient among legs is estimated from measured 3D joint kinematics of walking
flies (Karashchuk et al., 2021). Without the phase coordinator, individual trajectory generators
would generate realistic kinematics for each leg, but they would not be coordinated with each other.
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Figure 1: A layered model of fly walking that incorporates link-and-joint dynamics and
sensorimotor delays. (A) The neural systems that control walking are hierarchically organized.
The brain sends high-level commands (e.g. walking speed and direction) to the ventral nerve cord
(VNC). Approximately 70 motor neurons (MNs, Azevedo et al. (2022)) control each leg. The cell
bodies and dendrites of the MNs are in the VNC, and their axons innervate muscles in the leg.
Each leg muscle is actuated, after some delay, following activation by one or more motor neurons.
Sensorimotor circuits in the VNC also receive delayed sensory feedback via proprioceptors. (B)
Multi-layered walking model architecture. Body-world interactions are mediated by a dynamics
model. Proprioceptive feedback consists of joint angles and angular velocities (Mamiya et al.,
2018). Each leg has an optimal controller operating at 600 Hz that interfaces with the dynamics
model and a trajectory generator that generates realistic kinematics. The trajectory generator is
learned from data and operates at 300 Hz. It interfaces with the phase coordinator, a Kuramoto
oscillator that maintains inter-leg coupling. The trajectory generator and optimal controller mimic
local circuits within each leg, so they do not interact with other legs. Phase coupling is the only
information shared between all legs. (C) Dynamics model of a fly leg, derived from link-and-joint
models and Euler-Lagrange equations. (D) Schematic of model training and execution process.
Model parameters for each module are tuned independently, then the modules are assembled to
generate walking with delays and in response to unexpected perturbations.
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2.1.2 Joint kinematics trajectory generator

The trajectory generator layer is responsible for producing realistic 3D joint kinematics of each leg.
To express the relationships among all leg joint angles, we use an artificial neural network trained
to generate angle trajectories. The modular design makes it possible to train trajectory generators
separately from the inter-leg phase coordinator and optimal controller. Ultimately, the optimal
controller integrates desired angle trajectories with proprioceptive joint angle feedback to output
joint torques to the physical model of each leg.

As illustrated schematically in Fig. 1B, the inputs to the trajectory generator module are desired
leg phase ϕd, joint angles θ, joint angular velocities θ̇, and walking speed and direction of the fly.
The trajectory generator then outputs the leg phase velocity ϕ̇ and desired angular accelerations
θ̈d. This output is integrated to produce the desired angle and angular velocities {θd, θ̇d}, which
are the inputs to the optimal controller.

To train the network from data, we used joint kinematics of flies walking on a spherical treadmill,
obtained from tracking 3D joint angles with Anipose (Karashchuk et al., 2021). Details on training
approach and network properties are described in Methods and Materials. The walking speed
and direction are signals that are not generated from other modules of the model, but are instead
external inputs to the trajectory generator computed from the data; biologically, these signals
are analogous to descending signals from the fly brain. This organization is motivated by the
observation that walking velocity and direction have a substantial effect on joint angles, but they
do not have a substantial effect on parameters and outputs of the phase coordinator (e.g., phase
offsets), as substantiated in Appendix B.

After training and when assembled with the other layers of the model, the trajectory generator
receives proprioceptive information on the observed, current state of the leg {θ, θ̇}, as well as the
target desired phase ϕd from the phase coordinator. Thus, it generates a time-series of desired
angles and angular velocities for some future interval and sends this time-series θ̈d to the controller;
it also estimates the current phase ϕ̇ of the leg, which is passed to the phase coordinator.

In the absence of external perturbations, the trajectory generator produces realistic joint angles
similar to those of walking flies, as we show below. When challenged with unpredictable external
perturbations, the impact on the trajectory generator is mitigated by the optimal controller layer,
which attempts to return the actual state to the desired state. This control is possible because
the controller operates at a higher temporal frequency than the trajectory generator, so that the
controller has adequate time to reject disturbances before communicating to the trajectory gener-
ator. We emphasize that all data used to train the trajectory generator came from experimental
conditions with no external perturbations.

2.1.3 Control and dynamics

The optimal controller layer maintains walking kinematics in the presence of sensory and motor
delays and helps compensate for external perturbations. At regular intervals, the controller receives
a time-series of desired state trajectories θd from the trajectory generator layer. The controller
then produces the necessary torques τ to track this trajectory for the given leg dynamics. External
perturbations w, when present, enter through the dynamics and affect the state {θ, θ̇}; the controller
then senses the state and responds accordingly.

To design the controller, we first derived dynamical equations for each leg using link-and-joint
models (Fig. 1C), then linearized these dynamics and designed a linear quadratic regulator (LQR)
controller. This optimal controller senses the state of the leg via proprioceptive input, then deter-
mines the optimal motor output for walking. The controller makes use of internal predictive states
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to accommodate sensory and motor delays. A detailed description of the controller derivations
can be found in Methods and Materials. We note that the walking and compensation capabilities
of the overall model are not contingent upon any specific dynamics or controller formulation; any
controller that adequately tracks the trajectory generator would suffice.

2.2 The model generates realistic walking kinematics

The layered model generates realistic 3D walking kinematics when compared to real kinematic data
from walking flies (Fig. 2). Below, we provide qualitative and quantitative comparisons of joint
angles, joint angular velocities, and phases of walking both within and across legs.

2.2.1 Qualitative evaluation of joint angle time-series and videos of walking kinemat-
ics

We first qualitatively compared simulated and real kinematics by examining time-series data and
videos. In example trajectories of femur-tibia flexion angles of the right front and femur rotation
angles of the left middle legs, the simulated time-series matched the mean, frequency, and pseudo-
triangular shape of the fly data (Fig. 2A). Articulated animations of simulated and real trajectories
for comparison are shown in Videos 1, 2, and 3. Although the model and data were largely similar,
some differences stood out. For example, the simulated amplitudes were generally smaller than real
amplitudes, and the simulated trajectories tended to be more regular.

2.2.2 Comparing joint angles and angular velocities versus phase

We next sought to quantitatively compare simulated and real joint angles. Direct comparisons of
time-series trajectories are inadequate, because temporal offsets between time-series produce large
mismatches even if the time-series are similar. For instance, if we shift a time-series trajectory by
a half-cycle and compare it with itself, this will produce a large mismatch, even though the two
trajectories are identical except for a misalignment in phase.

To compare real and simulated trajectories, we computed the step-cycle phase for each time-
series and used this to plot the mean angles θ as a function of phase (Fig. 2B). Here we make the
distinction between generated phase, the per-leg phases produced by the phase coordinator of the
model, and computed phase, which can be computed for each joint from time-series data. Since we
did not have access to the generated, desired phase for real fly data, all comparisons were made
between computed phases.

When we averaged joint angles for all legs over 500 distinct walking bouts of 0.5 to 2 seconds in
duration, we found that the mean differences between real and simulated joint angles were less than
6 degrees (Fig. 2C). This difference is comparable to the uncertainty associated with markerless
tracking of 3D fly walking kinematics that we used as training data (5.56 degrees, from Karashchuk
et al. (2021)). Errors for angular velocity were higher. Aggregate differences as a function of
walking and turning velocity are shown in Appendix E.

The similarity between real and simulated data as a function of phase was consistent across
the natural range of forward walking speeds (Fig. 2B). Plots for all legs and joints are shown in
Appendices C and D. We further demonstrate the model’s capacity to simulate leg kinematics by
comparing the phase coupling of simulated joint kinematics with real walking flies, both within and
across legs, in Appendix F.
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Figure 2: Walking model simulations produce realistic joint kinematics. (A) Example
time-series of femur-tibia flexion (R1) and femur rotation (L2) for three different walking speeds:
8, 10, and 12 mm/s. Real data (orange) exhibited more variability than simulations (blue). (B)
Angle vs. computed per-leg phase of femur-tibia flexion on leg R1 and femur rotation on leg L2 for
four different walking speeds. Each plot contains data from 4 walking bouts with different initial
conditions. (C) Average differences between model simulations and data, over a range of forward
walking, turning, and side-stepping speeds over 500 distinct bouts. The dotted line (5.56 degrees)
indicates uncertainty associated with markerless 3D joint tracking (Karashchuk et al., 2021). All
simulations used a sensory delay of 10 ms and motor delay of 30 ms, based on values measured
experimentally with electrophysiology from leg sensory and motor neurons/muscles (Tuthill and
Wilson, 2016a; Azevedo et al., 2020).
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2.3 Model maintains walking under unpredictable external perturbations

When walking in natural environments, animals frequently navigate uneven or slippery terrain.
Thus, robust sensorimotor control systems must detect and respond to such unexpected perturba-
tions in order to maintain stable locomotion.

Here, we show that our model maintains realistic walking in the presence of external dynamic
perturbations, despite being trained only on data of walking without perturbations. This perfor-
mance is made possible by the combination of the trajectory generator and optimal controller in
the model. By taking advantage of proprioceptive feedback, the optimal controller compensates for
external perturbations, allowing the trajectory generator to sustain realistic joint angle trajectories.

We considered two types of perturbations: impulse and persistent stochastic. Impulse pertur-
bations are analogous to when an animal experiences a brief, unexpected force (e.g., legs slipping
on an unstable surface). We simulated impulse perturbations as a velocity that is added to all
joints at a single time (i.e., a single time step in our simulation). The magnitude of this velocity is
drawn from a normal distribution for each joint, where increasing perturbation strength increases
the mean and variance of this distribution. Persistent stochastic perturbations displace all the legs,
but not at the same time. We applied perturbations following a Poisson process with a mean rate of
10 Hz; in other words, over a period of time (1 second), for each leg at each timestep, we randomly
select whether a impulse perturbation should be applied based on a Poisson distribution. Ranges
of perturbation strengths used in our simulation correspond to estimates of biologically plausible
values (as derived in Appendix G).

To evaluate the model’s ability to walk in the presence of perturbations, we compared time-series
data before, during, and after perturbations across a range of walking speeds (Fig. 3B-C). For both
types of perturbations, joint angle trajectories were different during perturbations, but recovered
after the perturbation period ended. In the case of persistent stochastic perturbations, kinemat-
ics appeared approximately oscillatory even during perturbations, indicating that a semblance of
walking was maintained. Example animations of simulated walking bouts with perturbations are
shown in Videos 4–7.

To quantify the extent to which perturbed kinematics resemble normal, unperturbed walking,
we introduce a new quantitative metric termed kinematic similarity (KS). For a given window
of a kinematic trajectory, KS is computed by the log likelihood that it occurred in the real fly
walking data (illustrated in Fig. 4A and detailed in Methods and Materials). Briefly, we reduce the
experimental data to 2 dimensions using principal components analysis (PCA), then fit a kernel
density estimator (KDE) to the resulting distribution. We then project each bout of simulated
walking onto this subspace and evaluate the KDE model to obtain a log probability density function
estimate, which corresponds to the kinematic similarity of the simulated bout to real walking bouts
in the data. Lower values of KS mean lower similarity to data. When we applied this method
to bouts from experimental data, we found that the average KS of experimental data was -1.627.
Thus, we use KS > −1.6 as a general threshold for evaluating the realism of joint angle trajectories.

As expected, larger perturbations led to walking behaviors with lower KS, and KS was not
strongly dependent on forward walking speed (Fig. 4B-C). For persistent stochastic perturbations,
the model produced realistic joint angle trajectories (KS > −1.6) for all simulated perturbation
strengths. Impulse perturbations appeared to be more challenging for the model, as they resulted
in lower KS. From the time-series, we observed that impulse perturbations resulted in greater
instantaneous deviation from the standard waveform than persistent stochastic perturbations of
the same magnitude. This is due to the fact that impulse perturbations produce simultaneous
changes to all legs and joints, whereas persistent stochastic perturbations are spread out in time
and typically non-simultaneous.
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Figure 3: The model sustains robust walking during and following perturbations. (A)
Schematic of how perturbations are applied to the walking model. (B, C) Example time-series of
femur-tibia flexion on leg R1 and femur rotation on leg L2 for three different walking speeds (8, 10,
and 12 mm/s) before, during, and after perturbation. In panel B, an impulse perturbation of size
3.75 rad/s is applied at a single instant (dotted line), and its effects are analyzed over a brief time
window (shaded blue area). In panel C, stochastic perturbations of size 1.875 rad/s are applied
over a time window (shaded green area). Angle trajectories are visibly different during the analysis
windows, but recover afterward. Perturbation effects appear similar across speeds. All simulations
used a sensory delay of 10 ms and motor delay of 30 ms.

2.4 Effect of sensory and motor delays on walking

Temporal delays are inherent properties of sensorimotor control systems, but they are difficult to
manipulate experimentally. Therefore, we used our model to investigate how changing sensory and
motor delays affects locomotor robustness. We used measurements from the literature to estimate
physiological delays for leg sensory and motor neurons in theDrosophila leg. Our estimate of sensory
delay (5–15 ms) was based on the measured delay from spike initiation in a mechanosensory neuron
in the Drosophila femur to the peak of an excitatory postsynaptic potential in a postsynaptic VNC
neuron (Tuthill and Wilson, 2016a). Our estimate of motor delay (20–40 ms) was based on the time
between spike initiation in a tibia motor neuron cell body to the onset of muscle force production,
measured with a force probe (Azevedo et al., 2020).

Without external perturbations, the model produced realistic walking with arbitrary delays,
since the controller can effectively compensate for large delays by using predictions of joint angles
in the future. However, in the presence of external perturbations and high delay values, the model
was unable to maintain realistic walking, since it could not respond rapidly enough to unexpected
perturbations. Here we consider the composite effects of persistent stochastic perturbations with
motor and sensor delays. Similar results for impulse perturbations are included in Appendix I.

We first fixed the sensory delay at 10 ms and measured the effect of varying motor delays.
Examining the time-series data, we found that for low values of motor delay (10 ms, 20 ms), even
stronger perturbations had almost no effect (Fig. 5A). However, at higher values of motor delay,
the effects of the same perturbation became more pronounced, though the model still managed to
recover after the perturbations ended. Over a range of perturbation strengths and walking speeds,
the model maintained realistic walking (KS > −1.6) up to about 30 ms of motor delay (Fig. 5C).
This value is consistent with motor delays measured from the fruit fly leg, where the time between
motor neuron spiking to the onset of muscle force production is about 30 ms (Azevedo et al., 2020).
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Next, we fixed the motor delay at 30 ms and observed the effect of varying sensory delays.
From time-series data, we found that even at low values of sensory delay (0 ms, 5 ms), the effects of
perturbations on model output were significant (Fig. 5B). When sensory delay increased, the effects
of the perturbation became more pronounced. Over a range of perturbation strengths and walking
speeds, the model maintained realistic walking (KS > −1.6) up to about 10 ms of sensory delay
(Fig. 5D). This range is consistent with experimental estimates of delays from mechanosensory
neurons in the fly’s fly femur (Tuthill and Wilson, 2016a), although delays could be even longer for
more distal sensors. For example, a sensory neuron at the tip of the tarsus would take ∼20 ms to
travel 2 mm at an estimated conduction velocity of ∼0.3 m/s (Tuthill and Wilson, 2016a).

For any fixed set of values of motor and sensory delays, the KS of perturbed walking was not
dependent on forward walking speed. In other words, slower walking did not improve the model’s
ability to sustain walking during perturbations (Fig. 5C and D). We expand on this observation in
the Discussion.

Last, we explored combinations of values for motor and sensory delays for fixed walking speed
and perturbation strength. We observed that robust walking was not contingent on the specific
values of motor and sensory delay, but rather the sum of these two values (Fig. 5E). That is, in
order for the model to overcome a perturbation, the key parameter is the total delay between the
perturbation onset and the motor response.

In summary, we used a virtual fly model of walking to perform in silico manipulations of
sensory and motor delays, including delays exceeding physiologically-realistic values. When we
tested the model across a range of delay values, we found that the model was able to maintain
robust walking only within the physiological range. Outside of this range, the model could not
maintain walking that was kinematically similar to real flies. This finding suggests that the fly
locomotor control system operates close to the temporal limit at which it can detect and respond
to external perturbations. Thus, we propose that sensory and motor delays establish a fundamental
tradeoff between the speed and robustness of fly walking.

3 Discussion

In this paper, we developed a computational model that realistically imitates 3D joint kinemat-
ics of walking Drosophila and incorporates sensorimotor delay as a tunable parameter. We then
used the model to establish a quantitative relationship between sensorimotor delays and locomotor
robustness. We found that the model’s ability to maintain walking following external perturba-
tions significantly degrades for delay values that exceed known physiological values, suggesting that
these parameters are fundamental constraints on fly locomotion. The formulation of a modular,
multi-layered model for locomotor control makes new experimentally-testable hypotheses about
fly motor control and can also be applied to investigate limbed locomotion in other organisms.
Future extensions of the model include inclusion of premotor neural circuits from the fly connec-
tome (Lesser et al., 2023; Cheong et al., 2023) and biomechanical interactions between the limb
and the environment (Lobato-Rios et al., 2022; Wang-Chen et al., 2023; Vaxenburg et al., 2024).

3.1 Fundamental constraints on locomotion imposed by sensory and motor de-
lays

Sensory and motor delays are inextricable properties of animal locomotor systems. To study the
impact of delays on locomotor control, we developed a hierarchical walking model with explicit
inclusion of physiological delays as tunable parameters. Importantly, the model incorporates delay
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Figure 5: The model maintains robust walking under persistent stochastic perturbations
over specific ranges of motor and sensory delays. (A, B) Example time-series of femur-tibia
flexion on leg R1 and femur rotation on leg L2 under various values of motor (10, 20, 30, 40 ms)
and sensory delay (0, 5, 10, 15 ms). Perturbation effects became more noticeable with increasing
delay values. (C, D, E) Similarity of during-perturbation walking to data across delay values,
perturbation strengths, and forward speeds. For each square of the heatmap, four simulations with
different initial conditions were simulated and evaluated. At low delay values, simulated walking
maintained high similarity even under large perturbations. As perturbation strength and delays
increased, simulated walking became less similar to data; the effect was more pronounced with
increased delays. When we fixed one delay value and vary the other, the model maintained realistic
walking (KS > −1.6) up to about 30 ms of motor delay and 10 ms of sensory delay across a range of
conditions. When we allowed both motor and sensory delay to vary, the model maintained realistic
walking when the sum of the delays is no more than about 45 ms. (F) Post-perturbation walking
with motor and sensory delays. The model was unable to recover from perturbations for large
delay values. Unless otherwise stated, forward speed = 12 mm/s, and perturbation strength =
1.875 rad/s.
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while preserving behavioral realism, thus laying the groundwork for future studies on the effect of
delay on other aspects of locomotion and sensorimotor control.

Our model predicts that at the same perturbation magnitude, walking robustness decreases as
delays increase. This could be experimentally tested by altering conduction velocities in the fly, for
example by increasing or decreasing the ambient temperature (Banerjee et al., 2021). If a warmer
ambient temperature decreases delays in the fly, but fly walking robustness remains the same in
response to a fixed perturbation, this would indicate a stronger role for central control in walking
than our modeling results suggest.

Tradeoffs between energy, performance, and robustness establish fundamental constraints on
animal locomotion. It is energetically expensive to build and maintain muscles and neurons that
operate with low delay (Sterling and Laughlin, 2015). From a performance perspective, long delays
limit reaction speed and limit control robustness, which can ultimately impact animal survival
(More and Donelan, 2018). A third consideration is locomotor robustness, or the capacity to
detect and respond to external perturbations. In flies, the axons of leg motor neurons and some
proprioceptor axons are among the largest diameter cables in the leg nerve (Phelps et al., 2021),
suggesting that the speed of these systems are under selective pressure.

Our model suggests that fly walking operates in a middle ground with respect to speed and
robustness. Specifically, our model maintains normal walking for up to about 30 ms of motor delay
and 10 ms of sensory delay. These values are strikingly close to measured values from Drosophila:
30 ms from motor neuron spike to peak force production in a femur muscle (Azevedo et al., 2020)
and 6 ms from a femoral mechanosensory neuron spike to the onset of a postsynaptic response in
the VNC (Tuthill and Wilson, 2016a).

In our model, robust locomotion was constrained by the cumulative sensorimotor delay. This
result could be experimentally validated by comparing how animals with different ratios of sensory
to motor delays respond to perturbations. Alternatively, it may be possible to manipulate sensory
vs. motor delays in a single animal, perhaps by altering the development of specific neurons or
ensheathing glia (Kottmeier et al., 2020). If sensory and motor delays have significantly different
effects on walking quality, then additional compensatory mechanisms for delays could play a larger
role than we expect, such as prediction through sensory integration, mechanical feedback, or com-
pensation through central control. A rich and related topic for future exploration is the interaction
of delays with body size and behavioral ecology, as longer limbs, heavier bodies, and/or more
mechanically complex tasks may alter the tradeoffs between energetics, speed of force generation,
noise, and robust sensorimotor control (Labonte et al., 2024).

3.2 Role of proprioceptive feedback in fly walking

Our model provides insight into the role of proprioceptive feedback in fly walking, which remains
an active area of research (Dallmann et al., 2021). Models of fly walking have generally ignored the
role of feedback, relying instead on central pattern generators (Lobato-Rios et al., 2022; Szczecin-
ski et al., 2018; Aminzare et al., 2018) or metachondral waves (Deangelis et al., 2019) to model
kinematics. This assumption is in line with experimental work in cockroaches, which suggests that
these fast-running insects rely on central control and mechanical feedback, particularly at high-
speeds (Couzin-Fuchs et al., 2015; Ayali et al., 2015b). In contrast, studies in stick insects have
shown that these slow-walking animals are highly dependent on proprioceptive feedback for leg
coordination during walking (Bässler, 1977; Ayali et al., 2015a; Schilling et al., 2013).

Silencing mechanosensory chordotonal neurons alters step kinematics in walking Drosophila
(Mendes et al., 2013; Pratt et al., 2024). However, the role of leg proprioception in overcoming
external perturbations has not previously been studied in flies. In our model, which includes no
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limb compliance or other biomechanical adaptations, the fly effectively overcomes perturbations
using only proprioceptive feedback. The need for proprioception to compensate for perturbations
may be reduced when biomechanical mechanisms are present. Nonetheless, we hypothesize that
removing proprioceptive feedback would impair an insect’s ability to sustain locomotion following
external perturbations.

3.3 Predictive control is critical for responding to perturbations due to motor
delay

Sustaining realistic walking kinematics in the presence of perturbations and motor delays is a
challenging task for any model. In our model, this design criterion motivated us to develop a com-
pensatory prediction in the optimal controller formulation, based on Stenberg et al. (2022). The
controller compensates for the known motor delay by predicting future dynamics. We found that
the model was quite sensitive to the prediction horizon, i.e., how far into the future the controller
predicts. The model works best when the controller’s prediction horizon matches the motor delay
— we thus used matched values in all simulations. We experimented with altering the predic-
tion horizon to be less than the motor delay, with catastrophic consequences: the model ceased
walking and mostly produced noise (not shown). From this observation, we deduce that future
predictions are crucial in compensating for motor delays in our walking model, in agreement with
previous theoretical work on predictive or “forward” models for sensorimotor control (Desmurget
and Grafton, 2000; Li et al., 2023). We propose that fly motor circuits may encode predictions
of future joint positions, so the fly may generate motor commands that account for motor neuron
and muscle delays. Consistent with this hypothesis, Dallmann et al. (2023) recently found that de-
scending motor commands from the brain excite GABAergic interneurons in the VNC that inhibit
velocity-encoding proprioceptors. Thus, some proprioceptive feedback signals from the fly leg are
predictively suppressed during self-generated movements.

3.4 Layered model produces robust walking and facilitates local control

One key finding of our model is that robust walking in the presence of external perturbations
can emerge from a local controller in combination with a trajectory generator that is trained only
on perturbation-free walking. We did not model adaptation because compensation emerges as a
property of a tuned controller with feedback. The success of this simple, layered model suggests
that fast, robust locomotion could be maintained locally, requiring minimal plasticity within central
circuits.

Layering is a familiar concept in network architecture and hardware/software stacks (Chiang
et al., 2007) and has recently found applications as a modeling framework in biology and neuro-
science (Doyle and Csete, 2011; Nakahira et al., 2021). In our model, the complex problem of
multi-legged locomotion is broken down into three sub-problems (delayed control, joint kinematic
generation, inter-leg coordination), each of which is delegated to a different layer.

Each layer provides an abstracted interface for the layer below it, which can also be thought of
as a special case of modularity. The separation of function between layers reinforces that robust
locomotion can be produced by local (i.e. per-leg) control signals. Per-leg modules could also
be extended to control more legs, generalizing to locomotor control in isopods and millipedes.
Instead of redesigning the overall coordination and locomotor control circuits, basic duplication
and subsequent fine tuning may be sufficient.

Beyond walking, our layered model framework could be applied to other animals with distinct
locomotor strategies, including flying, swimming, slithering, and digging. The key ingredients
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required for the model are: (1) a functional inter-limb coordinator, (2) sufficient 3D kinematics
data to train a trajectory-generator layer, and (3) a controller that adequately tracks the trajectory
for some dynamical model of the animal. The dynamical model may be linearized (as we did
here) and controlled with a standard controller; other approaches include successive (per-timestep)
linearization with linear model predictive control (MPC) (Berberich et al., 2022), or fully nonlinear
control techniques (Slotine and Li, 1991).

The layered model approach also has potential applications for bio-mimetic robotic locomotion.
For simplicity, we used a linearized link-and-joint dynamical model. However, one could also
replace this dynamical model to control a hexapod robot such as in Goldsmith et al. (2019). Due
to its modular nature, the other modules (trajectory generator, inter-leg coordinator) would remain
unchanged and the resulting model could, in theory, generate 3D kinematics for bio-mimetic walking
on a robotic platform. Overall, the model can be thought of as performing a layered implementation
of imitation learning, which is a popular technique in robotics.

3.5 Towards biomechanical and neural realism

The goal of our model was to produce realistic 3D joint kinematics while incorporating sensory
and motor delays. To achieve this, the model contains several physiological simplifications. First,
our dynamics model did not allow dynamical coupling between legs through the mechanics of the
body, as the legs are only coupled neurally through the phase coordinator. However, in real bodies,
the legs are also dynamically coupled through the body and its weight distribution over the legs
(Dallmann et al., 2017). Our model also did not consider explicit leg-ground contact interactions.
Rather, interactions with the ground were implicitly taken into account by the trajectories learned
by the neural network, though they were not made explicit in the dynamics. Our goal was to mimic
the kinematic trajectory, a problem known in robotics asmotion control. However, including ground
contact interactions would require computing ground contact forces, which are currently unavailable
in the kinematics dataset we used.

In order to model ground contact forces and joint torques, force-based learning would need be
incorporated into the trajectory generator, requiring a new dataset or extrapolating force values
(e.g. via a physics-based model). Further, the controller would need to be reformulated to use
impedance control or hybrid control techniques (Buss et al., 2002; Arevalo and Garcia, 2012; Sci-
avicco and Siciliano, 2012). These approaches are commonplace in robotics to deal with dynamics
control problems, which concern both kinematic trajectories and external contact forces. The inclu-
sion of explicit leg-ground contact interactions would also make it harder for the model to recover
when perturbed, because perturbations during walking often occur upon contact with the ground
(e.g. the ground is slippery or bumpy).

A promising avenue for future investigation is integration of our controller architecture with a
virtual physics model (Lobato-Rios et al., 2022; Wang-Chen et al., 2023; Vaxenburg et al., 2024),
which would facilitate incorporation of dynamical coupling between legs, as well as leg-ground
contact interactions. The inclusion of these features may require additional coordination between
the legs, which might decrease allowable values of sensory and motor delay.

Another step toward biological realism is the incorporation of explicit proprioceptors, muscles,
tendons, and other biomechanical aspects of the exoskeleton. The proprioceptive neurons in the
femoral chordotonal organ of each fly leg encode angles and angular derivatives (Mamiya et al.,
2018). Additional proprioceptive feedback is provided by hair plate sensory neurons (limit detec-
tors) and campaniform sensilla (load sensors), which are distributed across each leg (Tuthill and
Wilson, 2016b). Thus, our use of joint state θ, θ̇, likely underestimates the resolution of proprio-
ceptive feedback to the fly motor system. We anticipate that the increased sensory resolution from
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more detailed proprioceptor models and the stability from mechanical compliance of limbs in a
more detailed biomechanical model would make the system easier to control and increase the al-
lowable range of delay parameters. Conversely, we expect that modeling the nonlinearity and noise
inherent to biological sensors and actuators may decrease the allowable range of delay parameters.

A further step towards biological realism would be to constrain the trajectory generator and
optimal controller using patterns of synaptic connectivity within sensorimotor circuits of the fly
VNC. This is now feasible using recent connectomes of the Drosophila VNC (Azevedo et al., 2022;
Takemura et al., 2023). However, many challenges remain for connectome-constrained models,
because many important physiological parameters are still unknown.

Our layered approach could be a useful framework for learning principles from closed loop
models, despite having incomplete information about the biological system. For instance, the
trajectory generator model could be replaced by a combination of a connectome simulation and
artificial neural networks, with the constraint on the artificial neural network dynamics coming from
the complete circuit generating robust walking in simulation. Future work could also incorporate
more detailed delay structures based on compartmental models of neurons from the connectome.
With increasing realism, such closed-loop models provide a promising means to investigate how
complex neural circuits interact with proprioceptive feedback to control robust locomotor behaviors.

4 Methods and Materials

4.1 Tracking joint angles of D. melanogaster walking in 3D

We obtained fruit fly D. melanogaster walking kinematics data following the procedure previously
described in Karashchuk et al. (2021). Briefly, a fly was tethered to a tungsten wire and positioned
on a frictionless spherical treadmill ball suspended on compressed air. Six cameras captured the
movement of all of the fly’s legs. Using Anipose, we tracked 30 keypoints on the fly at 300 Hz,
which are the following 5 points on each of the 6 legs: body-coxa, coxa-femur, femur-tibia, and
tibia-tarsus joints, as well as the tip of the tarsus.

To fit the model described in this paper, we extracted a subset of the tracking data when the fly
walking, as opposed to non-walking behaviors including standing, grooming, etc. To isolate bouts of
walking, we used the behavior classifier described in Karashchuk et al. (2021). We further selected
walking bouts of at least 0.5 seconds (150 video frames) in length, and where the femur-tibia flexion
angle of the left front leg had a range of at least 30 degrees.

In total, our dataset consisted of 3473 walking bouts from 45 flies total. The average length
of a walking bout was 0.877 seconds (263 frames), with 3049.7 seconds of walking total (914,909
frames).

4.2 Inter-leg phase coordinator

We model the coordination between legs as phase-coupled Kuramoto oscillators (Strogatz, 2000),
where the frequency of each oscillator is driven by the trajectory generator described in the next
section.

Specifically, the phase for a leg i is ϕi and evolves according to its derivative ϕ̇i

ϕ̇i = Fi(θi, θ̇i, v, ϕi) + α
∑
j ̸=i

sin(ϕj − ϕi − ϕ̄ij), (1)

where Fi is the trajectory generator function for leg i, α is the coupling strength, and ϕ̄ij is the
steady-state phase offset between legs i and j.
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We model the coupling across the legs as all-to-all coupling, with coupling strength α = 6.5.
We found this coupling strength best reproduced the phase coupling distributions from the real
data (as shown in Appendix F).

We estimate ϕ̄ij from the walking data by taking the circular mean over phase differences of
pairs the legs during walking bouts. We find that the phase offset across legs is not modulated across
walking speeds in our dataset (see Appendix B), so we model ϕ̄ij as a single constant independent
of speed.

4.3 Trajectory generator

A trajectory generator model was formulated for each of the six legs and fit separately to fly walking
data tracked during tethered walking without any external perturbations.

4.3.1 Model formulation

We formulate the trajectory generator as the function

(θ̈, ϕ̇) = F (θ, θ̇, v, ϕ), (2)

where θ is a vector of joint angles, θ̇ is a vector of joint angle derivatives, v is the desired walking
speed and direction, and ϕ is the phase of the leg. Initially, we explored using the trajectory
generator to directly output angles and angular velocities {θ, θ̇}; however, we found that more
realistic (i.e. similar to data) trajectories were produced when we used the trajectory generator
to output angular acceleration θ̈, which we integrated to produce the desired angle and angular
velocities. Note that v is not communicated to or from the layers above and below; instead, we
consider walking speed and direction to be given as commands descending from the brain.

To compute a trajectory given an input v and an initial ϕ, θ, and θ̇, we integrate the function
F numerically using the midpoint method (Lotkin, 1956). Following methods from Holden et al.
(2017) and Zhang et al. (2018), we represent the function F as a multilayer perceptron neural
network with 2 hidden layers of with 512 units each. We use ELU (Clevert et al., 2015) as our
nonlinearity. In total, the multilayer perceptron has 274,437 parameters for T1 legs and 272,388
parameters for T2 and T3 legs, with the slight difference in parameters due to the different number
of joint angles (dimension of θ) modeled for a given leg.

4.3.2 Training data

To train the multilayer perceptron network used to represent F , we used the fly walking data,
tracked as described in the section above. The training data consists of joint angles θ, computed θ̇
and θ̈, and walking velocity v. We estimated the walking cycle phase ϕ using a Hilbert transform
over the femur-tibia flexion angle for T1 legs, femur rotation angle for T2 legs, and coxa-femur angle
for T3 legs. For each phase, we filtered the corresponding angle using a first-order Butterworth
bandpass filter with 3 Hz and 60 Hz as critical frequencies, using the scipy library (Virtanen et al.,
2020). Then, we applied a Hilbert transform to each angle to obtain a complex waveform. We
estimate the walking cycle phase from each complex waveform by estimating the angle of each
point in the waveform.

4.3.3 Training procedure

Training the neural network representing F from data was performed in two steps, minimizing its
error in predicting one time step, then minimizing its error in predicting a short time trajectory.
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In the first step, we minimized the error of F for predicting (θ̈, ṗ) over one time step, given
the corresponding (θ, θ̇, v, p) from the training data. We minimized the mean squared error of
the prediction, normalized by the variance for each dimension. We trained our network for 300
iterations over the full training data using a batch size of 2500 training samples, using gradient
descent with the Adam algorithm (Kingma and Ba, 2017). To ensure a robust function at this step,
we applied dropout to a random 5% of the hidden units (Srivastava et al., 2014). We standardized
the input and output training data to the multilayer perceptron so that has a mean of 0 and
standard deviation of 1.

In the second step, we minimize the error of F for predicting a trajectory θ when numerically
integrated over a short time horizon in the future. Specifically, we integrate F over T = 60 steps
given initial conditions (θ, θ̇, v, p) to produce an estimated trajectory of θ̂(t). Here we minimized
the loss:

t+T∑
t

∥∥∥cos(θ̂(t))− cos(θ(t))
∥∥∥2
2
+
∥∥∥sin(θ̂(t))− sin(θ(t))

∥∥∥2
2

(3)

using gradient descent with the Adam algorithm (Kingma and Ba, 2017). During training, we clip
gradients to a norm of 10 to stabilize training.

The training was implemented using Tensorflow (Abadi et al., 2015) running on a computer
with NVIDIA GeForce RTX 2070 GPU and AMD Ryzen Threadripper 1920X 12-Core Processor.

4.4 Leg dynamics and optimal controller formulation

All techniques used for dynamics formulation are standard tools from control theory. We begin
with a link-and-joint model of the fly leg, as shown in Fig. 1C. For simplicity, we only model
joints that exhibit large ranges of movement during naturalistic walking and turning. For instance,
varying femur rotation is important to the movements of the middle legs, but the front legs exhibit
near-constant femur rotation (Karashchuk et al., 2021); thus, a femur rotation joint is included for
the middle and hind legs only. The joints included for each leg is shown in Table 1.

Table 1: Joints included for leg models

Joint Front legs Middle legs Hind legs

Body-coxa flexion ✓
Coxa rotation ✓
Coxa-femur flexion ✓ ✓ ✓
Femur rotation ✓ ✓
Femur-tibia flexion ✓ ✓ ✓

We write the Denavit-Hartenberg (DH) table of the leg model and use this to systematically
derive the Euler-Langrange matrix equations of motion:

τ = M(θ)θ̈ + C(θ, θ̇)θ̇ +B(θ)θ̇ + g(θ), (4)

where τ is the vector of joint torques; θ, θ̇, and θ̈ are vectors of joint angles, angular velocity, and
angular acceleration; M , C, B, are the inertia, Coriolis, and friction matrices, and g is the gravity
vector.
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Let us define the state to be the angles and angular derivatives q =

[
q1
q2

]
=

[
θ

θ̇

]
and input to

be torques τ . We next rearrange (4) into the form q̇ = F (q, τ), so that[
q̇1
q̇2

]
=

[
q2

−M(q1)
−1 (C(q1, q2)q2 +B(q1)q2 + g(q1))

]
+

[
0

M(q1)
−1

]
τ. (5)

To linearize this system, we choose equilibrium values q̄ and τ̄ , such that F (q̄, τ̄) = 0. In
particular, q̄1 is taken to be the average joint angles for each leg joint computed from the data. It
follows that q̄2 = 0, and τ̄ = g(q̄1) gives the desired equilibrium.

We linearized about this equilibrium point, which leads to an equation of the following form:

ẋ = Acx+Bcu, (6)

where x := q − q̄; u := τ − τ̄ ; A and B are the Jacobians with respect to q and τ , respectively. In
other words,

A =
∂F

∂q
(q̄, τ̄) (7)

B =
∂F

∂τ
(q̄, τ̄). (8)

In our code, we use the SymPyBotics toolbox (Sousa, 2013) to obtain symbolic equations for the
quantities in (4), then numerically compute Jacobian values.

Next, we rewrite the system in discrete time using a sampling interval T , which is typically
chosen to be an integer multiple of sampling interval from the data (the tracking data was acquired
every T = 1/300 seconds). In our controller simulations, we use T = 1/600 seconds. The discretized
dynamics are thus written as:

x(t+ T ) = Ax(t) +Bu(t), (9)

where A = I +AcT and B = BcT .
Finally, we perform a coordinate shift to error dynamics. This allows us to apply standard

control techniques for trajectory tracking. We define the tracking error to be y = q − qd, where qd
is the desired state, and this error obeys the following dynamics:

y(t+ T ) = Ay(t) +Bu(t) + w(t) + wtraj(t) (10a)

wtraj(t) = A(qd(t)− q̄) + q̄ − qd(t+ 1), (10b)

where w is the external perturbation. wtraj represents the effect of constantly changing trajectories
— for example, if the desired trajectory at the current time-step is some value a, and the desired
trajectory at the next time-step is some other value b, then this is equivalent to introducing a
perturbation of b − a. Error y is of dimension ny (8 for front legs, and 6 for the other legs), and
input u is of dimension nu := ny/2.

To include motor delay (known as actuation delay in controls literature) and sensory delay, we
make use of an augmented state formulations as introduced in Stenberg et al. (2022). Let the motor
delay be dmotor steps and let the sensory delay be dsense steps. Our augmented state vector z(t) is
then written as follows:

z(t) =


y(t)
f(t)
a(t)
s(t)
g(t)

 , (11)
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where y is the error from (10); f contains predicted future errors up to dmotor time steps in the
future of dimension dmotor ∗ ny; a contains motor signals from up to dmotor steps ago of dimension
dmotor ∗ nu; s contains sensing signals from up to dsense steps ago of dimension dsense ∗ ny; and g
contains information about future trajectory effects wtraj up to dmotor time steps in the future of
dimension dmotor ∗ ny.

Finally, we write the overall system in the form of

z(t+ 1) = Fz(t) +Gu(t) + waug(t), (12)

r(t) = Hz(t), (13)

where F , G, and H are formulated using A and B according to techniques described in Stenberg
et al. (2022), and waug(t) contains the perturbations from (10), appropriately rearranged and zero-
padded.

We note that u represents the motor signal, which must be delayed for some amount of timesteps
(via a) before affecting the system; similarly, the sensory signal is delayed for several timesteps (via
s) before reaching the controller via r.

To achieve effective trajectory tracking, we seek a control law under which y remains small.
This can be achieved using the Linear Quadratic Gaussian (LQG) controller (Åström and Murray,
2021) The controller is governed by the following equations:

ẑ(t+ 1) = F ẑ(t) +Gu(t) + L(r(t)−Hẑ(t)) (14)

u(t) = Kẑ(t), (15)

where ẑ is the estimate of the state, estimated via a steady-state Kalman filter; L and K are the
optimal observer and controller matrices, respectively, synthesized via discrete algebraic Riccati
equations.

4.5 Generate joint trajectories of the complete model with perturbations

The full model integrates all of the modules to generate trajectories of joint angles over time. The
phase coordinator and trajectory generators combine to compute the desired joint angles θi for each
leg i, and the controller implements them constrained by the dynamics. We run the full model at
600 Hz.

At each time step, we first update the phases of the legs ϕi based on the phase coupling equation
above. Every 2 timesteps, we update the target joint angles θ̂ using the trajectory generator model.
We run the trajectory generator F for dmotor time steps on its own, by continually integrating its
output. This future trajectory forms the basis of f , the predicted future errors used to guide the
controller.

Each time step, we run the controller and dynamics model to control the torque τ so that the
joint angles θ go towards the target joint angles θ̂. If there is a disturbance, we apply it to the
joint angles and derivatives at this point. Every 8 timesteps, we set θ̂ := θ, so that the trajectory
generator predicts an intended trajectory in line with the current state.

For the perturbation numerical experiments described in the Results, we ran all simulations
for 1800 timesteps at 600 Hz. For persistent stochastic perturbations, we applied the perturbation
from 600th timestep to 1200th timestep. For impulse perturbations, we applied a single strong
perturbation at 600th timestep.

We ran all our simulations on an Intel(R) Core(TM) i9-9940X CPU. We used GNU Parallel
(Tange, 2011) to run simulations on multiple cores simultaneously.
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4.6 Computing Kinematic Similarity (KS) by quantifying likelihood of walking
kinematics relative to ground truth

We followed a multi-step procedure in order to quantify the likelihood of the simulated walking
kinematics relative to observed distribution of walking kinematics. This procedure is schematized
in Fig. 4A.

To fit our likelihood model, we first performed Principal Components Analysis (PCA) to reduce
the tracked joint angles from our 3D kinematics data to 2 dimensions per frame. To account for the
circular nature of rotation angles, we performed PCA on the combination of sines and cosines of
each angle. Next, we used a Gaussian Kernel Density Estimation (KDE) to estimate the probability
density function of the principal components. Thus, we obtained a likelihood model for joint angle
kinematics at each frame.

We chose 2 dimensions for PCA for two key reasons. First, these 2 dimensions alone accounted
for a large portion of the variance in the data (43.1% total, with 30.5% for first component and
12.7% for second component). There was a big drop in variance explained from the first to the
second component, but no sudden drop in the next 10 components. Second, the KDE procedure
only works effectively in low-dimensional spaces, and the minimal number of dimensions needed to
obtain circular dynamics for walking is 2.

We run our model described above to produce simulated joint angle trajectories. To estimate a
likelihood of a simulated set of angles, we first projected them onto the same principal components
identified from the observed kinematics. Then, we use the KDE model to estimate the logarithmic
probability density function (log PDF) for each frame during the perturbation; we refer to this
as the kinematic similarity (KS). For persistent stochastic perturbations, we estimated mean KS
during the perturbation, from 600th timestep to 1200th timestep. For impulse perturbations, we
estimated mean KS in the transient recovery process, which we estimated to be from 610th timestep
to the 800th timestep.

4.7 Visualization of joint movement trajectories

For Video 1, we visualized the simulated and real joint movements using the biomechanical fly body
model from Vaxenburg et al. (2024). For each frame, we ran an inverse kinematics optimization
over the model angles to match the simulated or real joint positions of the fly. We did not simulate
realistic physics of the fly legs and their interactions with the ground in these visualizations. In
our data, the fly thorax was fixed and the wings were removed, so in these visualizations, we also
fixed every other degree-of-freedom in the fly model besides the 6 legs. For the remaining videos,
we visualized the joints as ball-and-stick models using matplotlib (Hunter, 2007).

4.8 Code and data availability

Code is available at https://github.com/lambdaloop/layered-walking/. The data used in this
study will be released publicly upon publication and privately by request.
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A Video captions

(Videos are available in supplemental material and also at https://drive.google.com/drive/

folders/1n_0aqYXWxkc336kTuRkFYGElNUMigItO?usp=sharing ).
Video 1: Model generates forward walking similar to real flies. Shown is an example comparison

of real and simulated fly walking kinematics, visualized on a fly model by inverse kinematics (no
further physics simulation).

Video 2: Model generates forward walking that is visually similar to data. (Top row) Example
simulated 3D pose trajectories at 8, 10, 12, and 14 mm/s forward walking (0 mm/s turning and side
speeds). (Bottom row) Example 3D pose trajectories from data at the same speeds for comparison.
Note that we fix angles joints not included in the model

Video 3: Model generates walking with nonzero rotation and side speeds visually similar to
the data. (Top row) Example simulated 3D pose trajectories of fly walking with some nonzero
side or rotation speed. Forward speed is 12 mm/s throughout. (Bottom row) Example 3D pose
trajectories from data with similar speeds.

Video 4: Model generates robust walking under impulse perturbation with varying motor delays.
Shown are example simulated 3D pose trajectories of fly walking with 10 ms sensory delay and
varying motor delays. Below are mean kinematic similarity values during the perturbation.

Video 5: Model generates robust walking under persistent stochastic perturbation with vary-
ing motor delays. Shown are example simulated 3D pose trajectories of fly walking with 10 ms
sensory delay and varying motor delays. Below are mean kinematic similarity values during the
perturbation.

Video 6: Model generates robust walking under impulse perturbation with varying sensory
delays. Shown are example simulated 3D pose trajectories of fly walking with 30 ms motor delay
and varying sensory delays. Below are mean kinematic similarity values during the perturbation.

Video 7: Model generates robust walking under persistent stochastic perturbation with varying
sensory delays. Shown are example simulated 3D pose trajectories of fly walking with 30 ms
motor delay and varying sensory delays. Below are mean kinematic similarity values during the
perturbation.
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B Velocity and phase distributions in data

Velocities in data

Rotation vs. side-step velocity in data
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Figure 6: Velocity and phase distributions in data justify selection of model simulation
parameters. (A) Cumulative distribution functions and number of frames associated with various
forward, rotation, and side-step velocities in data. Rotation (i.e. yaw) and right/left walking
peaked at 0 mm/s, while forward/backward walking achieved a sustained peak from approximately
4 mm/s to 10 mm/s. Most model-generated simulations in the paper adhered to this range. (B)
Rotation vs. side-step velocity. Each dot on the scatter plot represents a single bout from data.
Rotation velocity and side-step velocity were highly correlated with one another in data. (C) Phase
offsets between legs in data over a range of walking velocities and rotational velocities. Side-step
velocities were omitted from study since (as previously demonstrated) they were highly correlated
with rotation velocity. Phase offsets remained relatively constant over a range of forward and
rotational velocities.
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C Angle vs. phase plots for all legs and joints

These plots are supplementary to Fig. 2B.
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Figure 7: Simulated walking reproduced realistic joint angles. Angle vs. computed per-leg
phase of all joints on all legs for four different walking speeds. All simulations used a sensory
delay of 10 ms and motor delay of 30 ms, consistent with experimental values. Some oddities were
observed in real data, for instance in L3 femur flexion and R1 body-coxa flexion. The model does
not quite capture these oddities.
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D Angular velocity vs. phase plots for all legs and joints

These plots are supplementary to Fig. 2D.

Angular velocity vs. phase
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used a sensory delay of 10 ms and motor delay of 30 ms, consistent with experimental values.
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E Differences between model and data

These plots are supplementary to Fig. 2E.
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Figure 9: Simulated walking resembled data over a range of forward, turning, and side-
stepping velocities. Average differences between model simulations over 500 distinct bouts. All
simulations use a sensory delay of 10 ms and motor delay of 30 ms, consistent with experimental
values. The dotted line (5.56 degrees) indicates uncertainty associated with data collection.
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F Phase coupling within and across legs

We quantify the model’s capacity to simulate leg kinematics by comparing the phase coupling of
simulated joint kinematics with real walking flies, both within and across legs. A phase difference
probability density peak of close to zero between two joint angles means that they are strongly
coupled, whereas a broader peak means they are weakly coupled.

To assess the effectiveness of the model’s inter-leg coordination, we compared phase coupling
across legs for simulated vs. real walking. We found that the model reproduced patterns in the
data, with some exceptions. Here, a phase difference of zeros means the two legs are synchronized,
whereas a phase difference of π means the two legs move in anti-phase. Fly data showed largely
tripod coordination, so that L1-R2-L3 are synchronized with each other and also anti-phase with R1-
L2-R3. The model showed coupling properties that were qualitatively similar to coupling properties
of the data, with moderate variations in phase difference (i.e. peak location) and synchronization
strength (i.e. peak height). Some minor differences may also be due to violations of our assumption
of constant phase offset across forward walking speeds. This assumption holds true over a large
range of speeds, but breaks down at the lowest walking speeds (see Appendix B). In the model, the
phase coordinator is responsible for representing inter-leg coupling; these results suggest that the
underlying Kuramoto oscillator reproduces naturalistic coupling patterns.

Next, we examined within-leg coupling in data, where phase synchronizations between different
joints on the same leg can be both strong (e.g. L3 coxa-femur flexion to femur-tibia flexion) and
weak (e.g. R2 femur-tibia flexion to femur rotation). Despite the mirror symmetry of the fly,
within-leg coupling is not necessarily symmetric in the data — for instance, compare L2 and R2
coxa-femur flexion. All within-leg synchronizations (i.e. peaks) in data were reproduced by the
model; however, the model generally exhibited stronger synchronization (i.e. higher peaks) than
the data. In some cases (e.g. L3 femur rotation to femur-tibia flexion), the model exhibited
synchronizations that are not present in the data. Overall, the model generally exhibits stronger
within-leg coupling when compared to the data.

The trajectory generator is responsible for reproducing the per-leg inter-joint coupling, so these
results suggest that the neural network learned stronger coupling values than are present in the
data. This result is consistent with the time-series comparisons, where we observed that the model
produced more regular joint angle trajectories than the fly (Fig. 2A).
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of data. (A) Phase coupling across legs. We compared phases of representative joints across legs.
Model coupling qualitatively resembled data coupling, with moderate variations in phase difference
(i.e. peak location) and synchronization strength (i.e. peak height). A strong peak in probability
density indicates synchronization, whereas broader peaks indicate weak synchronization. A single
peak at zero on the horizontal axis indicates that the two joint phases are coupled to match;
a single peak elsewhere indicates that the two joint phases are coupled with some phase offset.
Simulations were performed over a range of forward walking, turning, and side-stepping speeds
over 500 distinct bouts. (B, C) Phase coupling within each leg. For each leg, we compared phases
between a representative joint for the leg (denoted “target” on the image) and other joints on the
leg. Gaps are present as we did not include all 5 joints for all legs in the model. All synchronizations
(i.e. peaks) in data are reproduced by the model. However, simulations generally exhibited stronger
synchronization (i.e. higher peaks).
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G Estimate of plausible stochastic perturbation values

Here we derive an estimate of the maximum plausible stochastic perturbation magnitude corre-
sponding to a sudden gust of wind. Wind force experienced by a given leg is

F =
1

2
ρv2A, (16)

where ρ, v, and A are the density of air, wind speed, and perpendicular area (to wind direction) of
the leg. The resulting acceleration is

a =
F

m
=

1

2m
ρv2A, (17)

where m is the mass of the fly.
We assume, generously, that the leg experiences the same acceleration. Since the controller op-

erates at a frequency of f , we can approximate the angular velocity (i.e. perturbation) ω generated
by the slip acceleration in one timestep for one joint on the leg as

ω =
a

fr
=

1

2mfr
ρv2A, (18)

where r is the length of the leg.
Substituting in values used in our model (m = 0.7e-6 kg, f = 600 Hz, r = 0.0015 m), and let

ρ = 1.2 kg/m3 (standard value), v = 6 m/s (corresponding to a strong 21 km/h wind), and A =
0.15e-6 m2 (corresponding to a 1.5mm by 0.1mm leg), we obtain a maximum joint perturbation
magnitude of ω = 5.1 rad/s.

H Estimate of plausible impulse perturbation values

We estimate the maximum plausible impulse perturbation corresponding to a sudden slip. Assume
that a leg steps at an angle of θ (from the vertical) onto a flat, frictionless ground. The resulting
horizontal acceleration would be

a = g tan θ, (19)

where g is acceleration due to gravity.
Assume the controller operates at a frequency of f . We can approximate the angular velocity

(i.e. perturbation) ω generated by the slip acceleration in one timestep for a joint on the leg as

ω =
a

fr
=

g tan θ

fr
, (20)

where r is the length of the leg. Plugging in values of g = 9.81 m/s2 (standard value), f = 600 Hz
(value used in the model), r = 0.0015 m (value used in the model), and θ = 45 degrees (quite a
large slip angle), we obtain a perturbation value of n ω = 10.9 rad/s.
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I Effect of sensory and motor delays on walking under impulse
perturbations

The results shown in Fig. 5 correspond to persistent stochastic perturbations. Here, we present
similar results for impulse perturbations here. Maximum values of motor and sensory delay values
remain reasonably close to known values in physiology.

BA

R
1 

fe
m

ur
-t

ib
ia

 fl
ex

io
n

Perturbed walking with motor delays

60°90°

90°

90°

90°

L2
 fe

m
ur

 r
ot

at
io

n

0.5 s 0.5 s

120°

perturbation

180°

180°

180°

180°

delay
motor

(ms)
delay

sensory

(ms)
Perturbed walking with sensory delays

5

10

15

0 90°

90°

90°

90°

5

10

15

0 180°

180°

180°

180°

sensory delay = 10ms motor delay = 30ms

20

30

40

10

20

30

40

10

60°

120°

C

(mm/s)
forward speedperturbation

strength (rad/s) (mm/s)
forward speedperturbation

strength (rad/s)

Perturbed walking with
motor delays

sensory delay = 10ms

Perturbed walking with
sensory delays

D
motor delay = 30ms

m
ot

or
 d

el
ay

(m
s)

60

40

20

0
50 10 6 10 14 18 6 10 14 18

se
ns

or
y 

de
la

y 
(m

s)

4

0

16

12

8

E Perturbed walking
with motor and
sensory delays

m
ot

or
 d

el
ay

 (
m

s)

sensory delay (ms)

0 20 40

sensory delay (ms)

0 20 40

40

20

0

values
physiological

low KS

high KS

1.8

1.4

1.0

F Post-perturbation
walking with motor
and sensory delays

50 10

Figure 11: Model generated robust walking under persistent stochastic perturbations
over select ranges of motor and sensory delays, revealing fundamental constraints
on delay values. (A, B) Example simulated time-series of femur-tibia flexion on leg R1 and
femur rotation on leg L2 under various values of motor (10, 20, 30, 40 ms) and sensory delay (0,
5, 10, 15 ms). Perturbation effects were more noticeable with increased delay values. (C, D,
E) KS of simulated during-perturbation walking to data, for various values of delay, perturbation
strength, and forward speeds. For each square of the heatmap, four simulations with different initial
conditions were simulated and evaluated. As perturbation strength and delays increased, simulated
walking became less similar to data; the effect was more pronounced with increased delays. When
we fixed one delay value and varied the other, The model maintained realistic walking (KS > −1.6)
up to about 25 ms of motor delay and 8 ms of sensory delay across a range of conditions. When
we allowed both motor and sensory delay to vary, the model maintained realistic walking when
the sum of the delays was no more than about 40 ms. (F) Post-perturbation walking with motor
and sensory delays. The model is able to recover from perturbations for very large values of delay.
Unless otherwise stated, forward speed = 12 mm/s, and perturbation strength = 5 rad/s.
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