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Abstract Proprioception, the sense of self-movement and position, is mediated by

mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive

feedback is crucial for accurate motor control, little is known about how downstream circuits

transform limb sensory information to guide motor output. Here we investigate neural circuits in

Drosophila that process proprioceptive information from the fly leg. We identify three cell types

from distinct developmental lineages that are positioned to receive input from proprioceptor

subtypes encoding tibia position, movement, and vibration. 13Ba neurons encode femur-tibia joint

angle and mediate postural changes in tibia position. 9Aa neurons also drive changes in leg

posture, but encode a combination of directional movement, high frequency vibration, and joint

angle. Activating 10Ba neurons, which encode tibia vibration at specific joint angles, elicits pausing

in walking flies. Altogether, our results reveal that central circuits integrate information across

proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse

behaviors, including reflexive control of limb posture and detection of leg vibration.

Introduction
Mechanosensory neurons provide feedback essential for maintaining stable locomotion through

unpredictable environments. A subset of these neurons, the proprioceptors, create an internal repre-

sentation of body state by monitoring joint angles, joint stresses and strains, and muscle length and

tension (Proske and Gandevia, 2012). Sensory feedback from proprioceptors contributes to many

behaviors, including regulation of body posture (Hasan and Stuart, 1988; Zill et al., 2004), coordi-

nation of goal-directed movement (Büschges, 2005; Lam and Pearson, 2002), locomotor adapta-

tion (Bidaye et al., 2018; Dickinson et al., 2000), and motor learning (Isakov et al., 2016;

Takeoka and Arber, 2019).

In both invertebrates and vertebrates, proprioceptors encode diverse features of body kinematics

(Tuthill and Azim, 2018). For example, muscle spindles, which are proprioceptive sensory organs

embedded in vertebrate skeletal muscles, encode both muscle fiber length and contraction velocity

(Hunt, 1990). A functionally analogous structure, the femoral chordotonal organ (FeCO), is housed

within the femur of the insect leg (Field and Matheson, 1998; Figure 1A). The FeCO is the largest

proprioceptive organ in the fruit fly, Drosophila melanogaster (Meigen, 1830), and its 152 neurons

can be divided into at least three anatomically distinct subtypes: the claw, hook, and club neurons

(Kuan et al., 2020; Mamiya et al., 2018). Each subtype encodes different kinematic features of the

femur-tibia joint: claw neurons encode tibia position (flexion or extension; Figure 1C), hook neurons

encode directional tibia movement (flexion or extension; Figure 1D), and club neurons encode tibia

vibration and bidirectional movement (Figure 1E). Experimental manipulation of the FeCO in several
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Figure 1. Transformation of leg proprioceptive signals from sensory to central neurons. (A) Left: Confocal image of the prothoracic (front) leg showing

the location of the femoral chordotonal organ (FeCO) cell bodies and dendrites (magenta). Blue: cuticle auto-fluorescence. Right: confocal image of

FeCO neurons in the fly ventral nerve cord (VNC). Blue: neuropil stain (nc82); Magenta: FeCO axons. (B) Experimental setup for two-photon calcium

imaging from VNC neurons while controlling and tracking the femur-tibia joint. A steel pin was glued to the tibia, painted black, and moved via a

magnet mounted on a servo motor. The tibia was vibrated by a piezoelectric crystal fixed to the magnet. Right: an example frame from a video used to

track joint angle. (C–H) Calcium signals from FeCO sensory neurons or central neurons in response to swing movements of the femur-tibia joint. Top

left: anatomy (magenta or green) of each cell type in the prothoracic VNC (blue: nc82). The dashed white box indicates the recording region. Bottom

left: GCaMP6f fluorescence within the recording region during an example trial. The pixels comprising each region of interest are outlined. Right:

changes in GCaMP6f fluorescence (DF/F) during femur-tibia swing movements. The thicker line is the response average (n=10, 13, 14, 4, 6, 6). (I–K)

Overlay of sensory axons (magenta) and central neurons (green). Data in C–E were reproduced with permission from Mamiya et al., 2018. All VNC

images were aligned using the Computational Morphometry Toolkit (Jefferis et al., 2007).

Figure 1 continued on next page
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insect species has revealed its importance during behaviors like walking and targeted reaching

(Bässler, 1988; Field and Burrows, 1982; Mendes et al., 2013; Page and Matheson, 2009).

In contrast to the sensory neurons, nothing is known about how leg proprioceptive signals are

combined or transformed by downstream circuits in the adult Drosophila central nervous system.

Work in other species has shown that proprioceptors synapse directly onto both motor neurons and

complex networks of central neurons in the vertebrate spinal cord or invertebrate ventral nerve cord

(VNC; Bässler, 1993; Proske and Gandevia, 2012). Central circuits integrate proprioceptive infor-

mation across different modalities, muscles, or limbs, and in some cases, integrate proprioceptive

information with descending motor commands (Jankowska, 1992; Windhorst, 2007; Bur-

rows, 1996). Ultimately, understanding the role of sensory feedback in motor control will require

knowledge about how central neurons transform inputs from limb proprioceptors, as well as their

subsequent effect on motor circuits.

Studying the sense of proprioception presents two major challenges. First, proprioception is mul-

timodal: proprioceptors found at the same location in the body can detect different mechanical fea-

tures produced by self-movement, such as muscle velocity, muscle tension, or joint position

(Proske and Gandevia, 2012). It is unclear to what degree signals from these diverse proprioceptors

are combined to form a composite representation of the body, or whether they are even encoded

within a common coordinate system. Additionally, proprioception faces strict constraints on process-

ing speed: in nimble-footed animals like flies, central circuits may have less than 30 ms to process

proprioceptive information in between successive steps (DeAngelis et al., 2019). Perhaps as a

result, proprioceptive and motor circuits are heavily intermingled: many primary and second-order

sensory neurons are also premotor neurons that synapse onto motor neurons (Arber, 2012;

Büschges and Gruhn, 2007). The lack of clear hierarchical structure within the spinal cord and VNC

has made it challenging to identify general organizational principles of central proprioceptive

processing.

To better understand how central circuits process proprioceptive information, we examined how

sensory signals from the fly FeCO are transformed by downstream neurons in the VNC. We first

used an anatomical screen to identify three neuronal cell types positioned to receive input from at

least one of the major FeCO subtypes. We then characterized how each cell type encodes femur-

tibia joint kinematics by recording their activity during controlled leg manipulations. Finally, to

understand the role of these neurons in motor control, we optogenetically activated each cell type

while tracking fly behavior. Our results reveal that, even at this early stage of sensory processing,

information from different FeCO subtypes is combined to form diverse, complex representations of

tibia movement and position that underlie a range of behaviors, including postural reflexes and

vibration sensing.

Results
The Drosophila VNC consists of ~20,000 neurons (Bates et al., 2019) that arise from 30

segmentally repeated neuroblasts, each of which divides to form an ‘A’ and ‘B’ hemilineage

(Truman et al., 2010). Developmental lineages are an effective means to classify neuronal cell types:

neurons within a hemilineage are morphologically similar (Harris et al., 2015; Mark et al., 2019),

express the same transcription factors (Allen et al., 2020; Lacin and Truman, 2016), and release the

same primary neurotransmitter (Lacin et al., 2019). Despite these common features, each hemiline-

age may be composed of many cell types (Harris et al., 2015; Lacin et al., 2020), and it remains an

open question to what extent neurons within a hemilineage exhibit similar connectivity or function.

We screened a panel of hemilineage-specific split-Gal4 lines for VNC neurons whose dendrites

overlap with the axons of FeCO proprioceptors (Figure 1A). We computationally aligned VNCs with

Figure 1 continued

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Transformation of leg proprioceptive signals by 13Ba, 9Aa, and 10Ba cells in the fly VNC.

Figure 1—video 1. In vivo calcium imaging from central neurons while manipulating the femur-tibia joint.

https://elifesciences.org/articles/60299#fig1video1
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GFP expression in sensory and central neurons to assess putative connectivity. Based on this analysis,

we focused our efforts on three driver lines that label specific central cell types: (1) a population of

GABAergic neurons from the 13B hemilineage (13Ba neurons; Figure 1F and Figure 1—figure sup-

plement 1A) that are positioned to receive input from position-tuned claw proprioceptors, (2) a

population of GABAergic neurons from the 9A hemilineage (9Aa neurons; Figure 1G and Figure 1—

figure supplement 1B) that are positioned to receive input from directionally tuned hook proprio-

ceptors, and (3) a population of cholinergic neurons from the 10B hemilineage (10Ba neurons;

Figure 1H and Figure 1—figure supplement 1C) that are positioned to receive input from vibra-

tion-sensitive club proprioceptors. These three cell types are not the only central neurons whose

dendrites overlap with FeCO axons – however, they were the top three candidates based on light-

level anatomy.

The anatomy of each cell type suggests that they receive input from specific leg proprioceptor

subtypes. To test this, we expressed the genetically encoded calcium indicator GCaMP6f in each

central neuron population. We then recorded calcium activity in vivo via two-photon calcium imaging

while using a magnetic control system to manipulate the femur-tibia joint (schematized in Figure 1B,

from Mamiya et al., 2018). We applied three classes of mechanical stimuli to the tibia: swing

(Figure 1C–H and Figure 1—figure supplement 1D,G, and J), ramp-and-hold (Figure 1—figure

supplement 1E,H, and K), and vibration (Figure 1—figure supplement 1F,I, and L).

The calcium responses of each cell type supported our hypothesis that the different populations

of VNC neurons process signals from distinct subtypes of FeCO sensory neurons (Figure 1—video

1). Similar to extension-tuned claw neurons, 13Ba neurons tonically increased their calcium activity

during tibia extension (Figure 1C and F and Figure 1—figure supplement 1D and E) and were not

sensitive to tibia vibration (Figure 1—figure supplement 1F). Similar to flexion-tuned hook neurons,

9Aa neurons increased their calcium activity during tibial flexion and to a lesser degree during tibial

extension (Figure 1D and G and Figure 1—figure supplement 1G and H). However, unlike flexion-

tuned hook neurons, 9Aa neurons also exhibited large increases in calcium activity during high fre-

quency tibia vibration (Figure 1—figure supplement 1I), suggesting that they also integrate signals

from vibration-sensitive club neurons. Similar to club neurons, 10Ba neurons transiently increased

their activity during tibia extension, flexion, and vibration (Figure 1E and H and Figure 1—figure

supplement 1J–L). Overall, while we lack direct evidence that FeCO sensory neurons provide mono-

synaptic input to these central neurons, the anatomical proximity and tuning of each cell type are

consistent with the hypothesis that they encode tibial movement via input from the FeCO.

13Ba neurons linearly encode tibia position via tonic changes in
membrane potential

Each of the three cell types is comprised of mul-

tiple neurons per VNC segment. To assess the

heterogeneity of encoding within a cell type, we

recorded the activity of single neurons using in

vivo whole-cell patch clamp electrophysiology

(Figure 2A). Whole-cell recordings also enabled

us to resolve faster time-scale dynamics and

determine the contribution of inhibitory inputs,

providing insights into the transformations that

occur between sensory and central neurons.

Whole-cell recordings from individual 13Ba

neurons revealed little heterogeneity across

cells. All 13Ba cells lacked detectable action

potentials (Figure 2D). As suggested by the

population-level calcium imaging, the membrane

potential of individual 13Ba cells provides a con-

tinuous readout of tibial position: each cell

depolarizes when the tibia is extended and

hyperpolarizes when the tibia is flexed

(Figure 2E and F, Video 1). Aside from a small

transient depolarization following joint extension

Video 1. Whole-cell recordings during controlled

movements of the femur-tibia joint. The video shows

example whole-cell recordings during controlled

movements of the femur-tibia joint for 13Ba, 9Aa, and

10Ba cells.

https://elifesciences.org/articles/60299#video1
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(Figure 2E), the responses of 13Ba to movement of the femur-tibia joint were remarkably tonic (i.e.,

non-adapting) at steady state. These properties were stereotyped across all cells, though there was

some cell-to-cell variability in the magnitude of membrane potential fluctuations, perhaps due to var-

iability in recording quality.

The response tuning of single 13Ba neurons was similar to that observed with population-level

calcium imaging of extension-tuned claw sensory neurons (Mamiya et al., 2018). 13Ba activity

increased only when the tibia was extended past ~90˚ (Figure 2F and G), and the steady-state mem-

brane potential at a given tibia position was greater when the tibia was extended to reach that posi-

tion than when the tibia was flexed (Figure 2G). This phenomenon, commonly referred to as

hysteresis, could introduce ambiguity for downstream neurons that rely on a representation of abso-

lute leg angle. The degree of hysteresis that we observed (Figure 2H) is comparable to what has

been previously reported for claw neurons (Mamiya et al., 2018).
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Figure 2. 13Ba neurons encode tibia position via tonic changes in membrane potential. (A) The experimental setup from Figure 1B was modified for

whole-cell electrophysiology. (B) Confocal image of 13Ba neurons (green) in the prothoracic ventral nerve cord. (C) Morphology of two 13Ba neurons

reconstructed after filling with Neurobiotin. (D) Voltage responses to current injection from an example 13Ba recording. (E) Whole-cell current clamp

recordings during the indicated swings of the femur-tibia joint. Each trace is the average response of a cell to three presentations of the same

movement. An example trace is highlighted in blue (left: n = 19; right: n = 23). (F) Current clamp recordings during ramp-and-hold movements of the

femur-tibia joint. (left: n = 10; right: n = 15) (G) Steady-state activity (average ± SEM) at different joint angles during flexion (orange) or extension (green)

measured from ramp-and-hold trials (tibia began fully flexed). Steady-state responses were measured during the middle second of each 3 s step.

Individual traces were normalized to the same maximum amplitude. (H) Hysteresis (difference between the response to flexion and extension (G),

average ± SEM) of the steady-state response plotted in G.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Pharmacological manipulation of synaptic inputs to 13Ba neurons.

Agrawal et al. eLife 2020;9:e60299. DOI: https://doi.org/10.7554/eLife.60299 5 of 32

Research article Neuroscience

https://doi.org/10.7554/eLife.60299


We used pharmacological manipulations to investigate the nature of presynaptic inputs to 13Ba

neurons. Bath application of tetrodotoxin (TTX) to the VNC prevents action potential propagation in

leg mechanosensory neurons (Tuthill and Wilson, 2016). As expected, TTX abolished activity in

13Ba neurons during tibia movement (Figure 2—figure supplement 1A). FeCO sensory neurons

release the neurotransmitter acetylcholine (Mamiya et al., 2018), and so we would expect that

application of acetylcholine receptor antagonists (methyllycaconitine [MLA], an antagonist of nico-

tinic receptors, or atropine, an antagonist of muscarinic receptors) would also block 13Ba activity.

Surprisingly, both MLA and atropine had only subtle effects on 13Ba encoding and never completely

abolished 13Ba activity (Figure 2—figure supplement 1B and C). This result suggests that either

13Ba neurons are coupled to claw sensory neurons via gap junctions, or that MLA and atropine only

partially block cholinergic synaptic input from claw neurons.

When the femur-tibia joint moves from an extended to a flexed position, the membrane potential

of 13Ba neurons hyperpolarizes to a new steady state. This hyperpolarization could be due to an

increase in inhibitory input, a decrease in excitatory input, or a combination of both. Application of

picrotoxin, an antagonist of the inhibitory neurotransmitter receptors, GABAa and GluCl (Liu and Wil-

son, 2013; Wilson and Laurent, 2005), had no effect on 13Ba activity (Figure 2—figure supple-

ment 1D), suggesting that 13Ba neurons do not receive inhibitory input via GABAa or GluCl
receptors. Inhibition of 13Ba neurons may instead occur through GABAb receptors that are not

blocked by picrotoxin, though GABAb-mediated conductances are slower (Wilson and Laurent,

2005) and therefore unlikely to be involved in encoding rapid joint-angle changes. Further evidence

that the hyperpolarization of 13Ba neurons is not mediated by an inhibitory input comes from

experiments measuring responses to tibia movement after injecting current to shift the cell’s resting

membrane potential (Figure 2—figure supplement 1E and F). Depolarizing the cell by injecting

positive current through the patch pipette shifts the membrane potential toward the equilibrium

potential for excitation, reducing the driving force for excitatory synaptic input while increasing the

driving force for inhibitory synaptic input. Hyperpolarizing the cell by injecting negative current has

the opposite effect. We found that when 13Ba cells were depolarized, the change in membrane

potential during both extension and flexion decreased (Figure 2—figure supplement 1E), suggest-

ing that the proprioceptive responses of 13Ba neurons are mediated by increases and decreases in

excitatory input. In summary, 13Ba cells are a relatively homogeneous class of neurons that receive

excitatory input from extension-sensitive claw neurons, perhaps via mixed chemical and electrical

synapses.

Activation of 13Ba neurons causes tibia flexion
Our measurements of 13Ba activity demonstrate that these neurons encode extension of the femur-

tibia joint. Their tonic, non-adapting responses suggest a role in encoding, and potentially control-

ling, posture of the femur-tibia joint. To test this hypothesis, we optogenetically activated 13Ba neu-

rons in tethered, headless flies. We expressed the light-gated cation channel CsChrimson

(Klapoetke et al., 2014) in 13Ba neurons and used a green laser focused on the ventral thorax at

the base of the left front (L1) leg to activate neurons in the left prothoracic VNC (Figure 3A and B).

Because we were interested in whether these neurons drive reflexive leg movements, we measured

how optogenetic activation altered movements of the three major leg joints (coxa-femur, femur-

tibia, and tibia-tarsus) in headless flies with their legs unloaded (i.e. the fly was suspended in the air;

Figure 3A) or loaded (i.e. the fly was positioned on a ball; Figure 3B). In the absence of descending

signals from the brain, decapitated flies maintain a consistent leg posture but rarely move their legs

spontaneously (Figure 3—figure supplement 1A and B). In both loaded and unloaded flies, activa-

tion of 13Ba neurons caused a slow extension of the coxa-femur joint and flexion of the femur-tibia

joint; this movement was absent during trials without a laser stimulus (Figure 3C and D and Fig-

ure 3—video 1). Prior experiments using the same behavioral setup demonstrated that a laser stim-

ulus in the absence of CsChrimson does not cause leg movement in headless flies (Azevedo et al.,

2020). During some trials we also observed a lateral movement of the middle left (L2) leg (Figure 3—

figure supplement 1A and B and Figure 3—video 1). The movement of both joints was larger in

unloaded flies, whereas the lateral movement of L2 was more likely to occur in loaded flies. For

those flies that flexed their femur-tibia joint, the change in joint angle (Figure 3E and F and Fig-

ure 3—figure supplement 1C and D) and likelihood of flexion (Figure 3G and H) did not vary with

initial joint position. Thus, despite systematic differences in initial joint positions of loaded and
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unloaded flies (Figure 3—figure supplement 1E and F), we hypothesize that the distinct responses

to optogenetic stimulation were due to the activity of other proprioceptors, such as campaniform

sensilla, that are activated by leg loading (Zill et al., 2004). Overall, our results suggest that 13Ba

neurons mediate slow postural leg movements in response to limb perturbations detected by the

FeCO. Such leg movements are similar to resistance reflexes caused by manipulation of the FeCO in

other insects (Field and Matheson, 1998).

9Aa cells exhibit cell-to-cell diversity in their encoding of tibial flexion
The anatomy of 9Aa neurons suggests that they receive input from the directionally tuned hook neu-

rons (Figure 4A and B). Whole-cell recordings confirmed this hypothesis, but also revealed unex-

pected levels of heterogeneity in the 9Aa population. Each 9Aa cell we recorded from responded
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Figure 3. Optogenetic activation of 13Ba neurons causes flexion of the femur-tibia joint. (A and B) Schematic (left) and example frame (right) illustrating

optogenetic activation of 13Ba neurons in headless flies either suspended from a tether (legs unloaded, A) or positioned on a ball (legs loaded, B). A

green laser (530 nm) is focused at the coxa-body joint of the fly’s left front leg (outlined in yellow) and all leg joints are monitored with high-speed

video. Yellow arrows illustrate the left middle leg’s lateral movements. Top row of panels: legs unloaded; Bottom row: legs loaded. (C and D) Average

change in joint angle (± SEM) of the coxa-femur (purple/black), femur-tibia (orange/dark gray), or tibia-tarsus (blue/light gray). Colored traces are from

trials with a 720 ms laser stimulus (as indicated by the green bracket), and the black and gray traces are from trials with no laser stimulus. Asterisks mark

those leg joints that demonstrated a significant change in joint angle when the laser was on compared to the no-laser trials (*p<0.05, bootstrapping

with false discovery rate correction). Fly is either unloaded (C, n = 4 flies) or loaded (D, n = 7 flies). (E and F) Average change in the femur-tibia joint

angle during laser stimulation grouped by initial joint angle. Only trials in which the fly flexed the tibia are included. Fly is either unloaded (E, n = 30

trials) or loaded (F, n = 19 trials). None of the groups was significantly different from one another (p<0.05, one-way ANOVA with Tukey–Kramer

correction for comparisons across multiple populations). (G-H) Probability that we observed a femur-tibia flexion across all trials. Bars are color coded

according to initial joint angle as in E and F. G: n = 43 trials, F: n = 74 trials.

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure supplement 1. Optogenetic activation of 13Ba neurons causes movement of the L1 and L2 legs.

Figure 3—video 1. Optogenetic activation of 13Ba neurons in headless flies.

https://elifesciences.org/articles/60299#fig3video1
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current injection from an example 9Aa recording. Detected spikes are indicated above the voltage traces. Inset shows example spikes, enlarged for

clarity. (D) Whole-cell current clamp recordings during tibia swing. Each trace is the averaged response to three stimulus presentations. Two example

traces are highlighted in purple and magenta (top: n = 35, bottom: n = 27). (E) Example whole-cell current clamp recordings from three cells during fast

(720˚s�1) and slow (240˚s�1) swings. Each pair of traces is recorded from a single cell. (F) Peak firing rates (averaged across three stimulus presentations)

for different flexion speeds (**p<0.005, Wilcoxon matched-pairs signed-rank test). (G) For each cell, the peak firing rate when the tibia was flexed

relative to when the tibia was extended. Points along the dashed line would represent cells that are equally sensitive to both directions of movement.

Points found below the dashed line are tuned for flexion. (H) Pairs of 9Aa cells in the same fly have distinct responses to the same 720˚s�1 swing

movement.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. 9Aa cells are a heterogenous population of neurons that encode tibial flexion.
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to tibia movement through changes in membrane potential and action potential firing rate

(Figure 4C and D). Although individual neurons had consistent tuning across the duration of a

recording, each 9Aa cell had slightly different response tuning. The only consistent properties of

9Aa neurons were their directional and speed tuning: subthreshold and spiking activity were largest

during fast, flexing swing movements (Figure 4E–G Figure 4—figure supplement 1, and Video 1).

Other properties were more variable. For example, some cells were inhibited by tibial extension

(Figure 4E, left), other cells were excited by tibial extension (Figure 4E, middle and right), and

some cells were also tonically depolarized when the tibia was held flexed (Figure 4E, right, S3B).

This latter observation suggests that some 9Aa cells receive direct or indirect inputs from position-

sensitive claw neurons. We confirmed that the diversity in 9Aa encoding was not simply due to fly-

to-fly variability by recording from two 9Aa neurons in the same fly (Figure 4H).

Pharmacology experiments suggest that 9Aa cells receive both inhibitory and excitatory inputs.

Similar to 13Ba cells, TTX blocked 9Aa encoding of leg movement (Figure 4—figure supplement

1D). However, unlike 13Ba cells, MLA also blocked proprioceptive responses in 9Aa neurons (Fig-

ure 4—figure supplement 1E), indicating that 9Aa activity requires acetylcholine release from

FeCO sensory neurons. In several neurons that were hyperpolarized by tibial extension, picrotoxin

application abolished the hyperpolarization of membrane potential, suggesting that GABAergic inhi-

bition contributes to the encoding of tibial extension (Figure 4—figure supplement 1F).

Whole-cell recordings confirmed that 9Aa cells also respond to high frequency tibia vibration

(Figure 5). Because hook neurons are not sensitive to tibia vibration (Mamiya et al., 2018), this

observation suggests that 9Aa cells receive direct or indirect input from vibration-sensitive club neu-

rons. Again, we found cell-to-cell heterogeneity in 9Aa vibration encoding. Some cells were inhib-

ited by lower frequency vibration, and as a result, more sharply frequency-tuned (Figure 5A). Cells

also varied in their rates of adaptation: some exhibited a sustained vibration response (Figure 5B)

whereas others adapted quickly after vibration onset (Figure 5A). Nevertheless, every 9Aa cell was

maximally depolarized by 1600–2000 Hz vibrations, and response magnitude increased at higher

vibration amplitudes (Figure 5C). During a small number of recordings, MLA application abolished

the vibration response (Figure 5D), suggesting that 9Aa vibration encoding also requires acetylcho-

line release from FeCO sensory neurons. Picrotoxin application abolished inhibitory responses to

lower frequency vibration (Figure 5E). Picrotoxin application during these few recordings also

reduced the amplitude of 9Aa responses to high frequency vibration. This decrease may be caused

by a reduced excitatory conductance after picrotoxin depolarized the resting membrane potential.

Thus, in addition to direction-tuned inputs from FeCO hook neurons, 9Aa cells also receive vibra-

tion-sensitive inputs from FeCO club neurons.

VNC hemilineages contain multiple cell types with diverse projection patterns (Harris et al.,

2015). Most of our recordings from 9A neurons targeted just one 9A cell type, the 9Aa cells. How-

ever, twice when recording from the driver line labeling 9Aa neurons, we recorded from a cell that

was morphologically and physiologically distinct. This cell, which we refer to as 9Aa2, has a cell body

located within the same cluster as other 9A neurons, but its neurites extend anteriorly, similar to

claw axons (Figure 5—figure supplement 1C). 9Aa2 cells have larger spikes than 9Aa cells (>2 mV),

and they encode flexed tibial positions via tonic changes in membrane potential and firing rate (Fig-

ure 5—figure supplement 1A and B). 9Aa2 cells did not respond to tibial vibration (Figure 5—fig-

ure supplement 1D), and MLA application mostly blocked their responses to tibia movement

(Figure 5—figure supplement 1E). This result suggests that the 9A hemilineage broadly integrates

sensory input from the FeCO, and different cell types within the 9A hemilineage receive input from

different FeCO sensory neurons.

Activation of 9Aa neurons causes extension of the tibia-tarsus and
femur-tibia joints
Our recordings revealed that 9Aa neurons encode tibia flexion and high-frequency vibration. We

next tested if, like 13Ba neurons, optogenetic activation of 9Aa neurons in the left prothoracic VNC

(Figure 6A and B) would cause leg movements in headless flies. Optogenetic activation of 9Aa neu-

rons produced small extensions of the tibia-tarsus and femur-tibia joints in headless flies standing on

a ball (legs loaded; Figure 6C and D and Figure 6—video 1). We tested a second split-Gal4 line

that also labels 9Aa cells (9Aa-L2-Gal4; Figure 6—figure supplement 1), and observed similar

extensions of the femur-tibia and tibia-tarsus joints (Figure 6—figure supplement 1B and C). Both
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Figure 5. 9Aa neurons encode high frequency tibia vibration. (A and B) Example whole-cell current clamp

recordings from two 9Aa cells during a 0.1 mm tibia vibration. The shaded region indicates the duration of the

vibration stimulus. (C) The change in membrane potential during the first 500 ms of vibration across amplitudes

and frequencies. Each point is the averaged response of a cell to three stimulus presentations (from left to right, n

= 10, 15, 16). (D and E) The change in membrane potential during the first 500 ms after vibration onset before

(purple) and after (red) application of an antagonist of nicotinic acetylcholine receptors, MLA (1 mM, D), or before

(purple) and after (red) application of the GABA a and GluCl antagonist, picrotoxin (100 mM, E). The inset in E

shows the resting membrane potential before (purple) and after (red) application of picrotoxin. Picrotoxin

application depolarized the membrane potential in the majority of cells (n = 7).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. 9Aa2 neurons encode flexed tibia positions.
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driver lines may also label one or more 9Aa2 cells, meaning we may be activating other 9A

cell types. However, calcium imaging, electrophysiology, and GFP expression all suggest that 9Aa

are the predominant cells labeled by both driver lines. As with 13Ba neurons, the differences we saw

between loaded and unloaded flies could be due to the activity of other proprioceptors activated by

leg loading, or because of systematic differences in initial leg posture (Figure 6—figure supplement

1D and E). Compared to the 13Ba neurons, the leg movements caused by 9Aa activation were

smaller and more variable. Thus, while both neural populations likely mediate postural adjustments

in response to limb perturbations detected by the FeCO, 9Aa neurons may do so in a context-

dependent manner, for example to produce small corrective movements during walking.

10Ba neurons integrate information about tibia vibration and position
10Ba neurons are anatomically positioned to receive input from the axons of FeCO club sensory

neurons in the VNC (Figure 7A and B). Each 10Ba neuron innervates multiple VNC segments, and a

subset of 10Ba cells project up into the central brain, where they innervate the antennal motor and

mechanosensory center (AMMC). We used whole-cell patch-clamp electrophysiology to record the
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Figure 6. Optogenetic activation of 9Aa neurons causes extension of the tibia-tarsus. (A and B) Schematic of

optogenetic activation of 9Aa neurons (using 9Aa-Gal4) in headless flies either suspended from a tether (legs

unloaded, A) or positioned on a spherical treadmill (legs loaded, B). A green laser (530 nm) is focused at the coxa-

body joint of the fly’s left front leg. (C and D) Change in joint angle after 720 ms during trials in which the laser

was on (purple, orange, and blue) or off (black). Each column is data from a single fly. Left: coxa-femur joint;

Middle: femur-tibia joint; Right: tibia-tarsus joint. The fly was either unloaded (C, n = 6 flies) or loaded (D, n = 6

flies). *p<0.05, **p<0.005, bootstrapping with false discovery rate correction.

The online version of this article includes the following video and figure supplement(s) for figure 6:

Figure supplement 1. Optogenetic activation of 9Aa neurons using another split-Gal4 line causes a similar

extension of the femur-tibia and tibia-tarsus.

Figure 6—video 1. Optogenetic activation of 9Aa neurons in headless flies.

https://elifesciences.org/articles/60299#fig6video1
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membrane potential of 10Ba neurons with cell bodies in the T1 segment. In our recordings, current

injection failed to evoke identifiable action potentials (Figure 7C), though we did occasionally

observe spike-like events. Because these events only occurred in a subset of recordings, we instead

analyzed changes in the membrane potential of 10Ba neurons during tibial movements.

Figure 7. 10Ba neurons encode bidirectional tibia motion and tibia vibration in a position-dependent manner. (A) Confocal image of 10Ba neurons

(green) in the ventral nerve cord (VNC). (B) 10Ba morphology reconstructed after filling with Neurobiotin. (C) Voltage responses to current injection

from an example recording. (D) Whole-cell current clamp recordings during tibia swing movements. Each trace is the average response to three

stimulus repetitions. An example trace is highlighted in orange (top: n = 18, bottom: n = 18). (E) Responses to a 0.1 mm vibration stimulus (n = 12 cells).

The gray box indicates when the vibration stimulus was applied. An example response is highlighted in dark orange. (F) The change in membrane

potential during the first 500 ms after vibration onset. Each point is the averaged response to three stimulus repetitions. Two cells with different

frequency tuning are highlighted in different shades of orange (left to right, n = 9, 13, 13). (G) Example 10Ba recording demonstrating how the

responses of a single 10Ba neuron to the same movement stimulus depend on the tibia’s position. The tibia began either extended (green) or flexed

(orange) and was then oscillated with an amplitude of 20˚ at four different angular velocities. Responses from the slowest (40˚s�1) and fastest (320˚s�1)

oscillation are shown. The phase of the oscillation at which a 10Ba cell is maximally depolarized when the tibia began either flexed (orange) or

extended (green) (n = 9, **p<0.005, Wilcoxon matched-pairs signed-rank test).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. 10Ba cells encode bidirectional tibia movements and tibia vibration.
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Consistent with our hypothesis that 10Ba neurons are downstream of FeCO club neurons, individ-

ual cells were transiently depolarized by tibia movements in both directions (Figure 7D, Figure 7—

figure supplement 1B–C, and Video 1). Additionally, most 10Ba neurons were tonically hyperpolar-

ized when the tibia was fully flexed and transiently hyperpolarized when the tibia was fully extended

(Figure 7D). Thus, in addition to movement-sensitive excitatory inputs, 10Ba cells also receive posi-

tion-tuned inhibition.

Like club sensory neurons, we found that 10Ba neurons are sensitive to low amplitude and high

frequency vibration of the tibia. Interestingly, different 10Ba cells were tuned to different ranges of

vibration frequency (Figure 7E and F). As vibration amplitude increased, frequency tuning broad-

ened (Figure 7F, light orange) or shifted (Figure 7F, dark orange). 10Ba cells are so sensitive that

they responded to vibration caused by the saline perfusion system (Figure 7—figure supplement

1A, left inset). This perfusion response was absent when the tibia was flexed (Figure 7—figure sup-

plement 1A, right inset), suggesting that position-dependent inhibition of 10Ba neurons is sufficient

to suppress vibration encoding. Thus, leg position may modulate flies’ ability to sense substrate

vibration via the FeCO.

Tibia position also modulated the sensitivity and timing of 10Ba activity during larger amplitude

movements. When we applied an identical 20˚ triangle-wave oscillation to the tibia starting at either

an extended (~145˚) or flexed (~20˚) position, tibia position affected both the amplitude and phase

of the resulting membrane potential oscillations (Figure 7G and H). This phase shift decreased as

the oscillation frequency increased, and disappeared during movements faster than 320˚s�1. As a

result, the effect of tibia position on the timing of 10Ba activity may only be significant during slower

movements like grooming or targeted reaching. During faster movements like walking, tibia position

would primarily modulate the amplitude of 10Ba activity, not its timing.

Finally, pharmacology experiments suggest that 10Ba neurons, like 13Ba neurons, may be electri-

cally coupled to upstream FeCO sensory neurons. Application of acetylcholine antagonists (MLA or

atropine) was not sufficient to disrupt 10Ba encoding of tibia swing (Figure 7—figure supplement

1E and F) or tibia vibration (Figure 7—figure supplement 1H). Application of picrotoxin abolished

the tonic hyperpolarization present during tibia flexion for some cells (Figure 7—figure supplement

1G), suggesting that 10Ba neurons receive inhibitory inputs. Application of picrotoxin also

decreased responses to vibration and abolished the vibration offset response (Figure 7—figure sup-

plement 1I). In summary, 10Ba neurons are intersegmentally projecting central neurons that encode

tibia movement and vibration via input from club sensory neurons. Their vibration sensitivity is gated

by inhibition that depends on the position of the tibia.

10Ba neurons drive pausing behavior in walking flies
10Ba neurons are sensitive to leg movements detected by the FeCO, but optogenetically activating

10Ba neurons in headless flies did not reliably evoke leg movement (data not shown). This result

suggests that, unlike 9Aa and 13Ba neurons, 10Ba neurons do not modulate leg postural

adjustments.

Behavioral studies of walking flies demonstrate that vibration of the substrate can cause flies to

stop walking (Fabre et al., 2012; Howard et al., 2019). To determine if 10Ba neurons could drive

this pausing behavior, we optogenetically activated 10Ba neurons in tethered, intact flies walking on

a spherical treadmill (Figure 8A). As with headless flies, we used a green laser focused on the base

of the left front leg to activate neurons in the left prothoracic VNC. As an optogenetic control, we

used flies that expressed only the Gal4 activation domain but not the DNA-binding domain (split-

half(SH)-Gal4). These flies have a similar genetic background as the split-Gal4 lines labeling the VNC

interneurons, but they lack expression of a functional Gal4 protein or CsChrimson. Comparing con-

trol flies and CsChrimson-expressing flies allowed us to distinguish behavioral responses that were

due to a reaction to the laser (which is within the spectral range of the fly’s vision) from those due to

optogenetic activation.

Activating 10Ba neurons in walking flies consistently led to flies slowing or stopping after about

200 ms, regardless of the length of the laser stimulus (Figure 8B–D, Figure 8—figure supplement

1A, and Figure 8—video 1). Although control flies also sometimes paused during the stimulus

period, flies with activated 10Ba neurons paused earlier and more frequently (Figure 8D). Activating

13Ba also caused flies to slow (Figure 8B and Figure 8—figure supplement 1B and C), likely due to

movement of the front leg, which interrupted walking. Despite their vibration sensitivity, activating
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Figure 8. Optogenetic activation of 10Ba neurons causes flies to freeze and stop walking. (A) Schematic of optogenetic activation of 10Ba neurons in

tethered flies walking on a spherical treadmill. The treadmill and fly are tracked using high-speed cameras, and an LED display presents visual patterns

that encourage walking. A green laser (530 nm) is focused on the coxa of the fly’s left front leg. (B) Difference in speed during the 200 ms preceding the

start of the stimulus period compared to a 200 ms window beginning after the start of the stimulus period, as indicated by the brackets in C (*p<0.05,

bootstrapping with false discovery rate correction; 0 ms: Control: n = 6 flies; 10Ba: n = 10 flies; 13Ba: n = 7 flies; 9Aa: n = 7 flies; 360 ms: Control: n = 8

flies; 10Ba: n = 10 flies; 13Ba: n = 8 flies; 9Aa: n = 6 flies; 720 ms: Control: n = 13 flies; 10Ba: n = 11 flies; 13Ba: n = 13 flies; 9Aa: n = 11 flies). (C)

Average treadmill forward velocity (± SEM) of walking flies during no laser trials (left) or trials with a 360 ms (middle) or 720 ms (right) laser stimulus.

Green boxes indicate the duration of optogenetic stimulation. Black brackets indicate the pre- and post-laser onset time periods used to compare the

effect of activation between control and interneuron lines in B. (D) Cumulative probability of a fly stopping (velocity <0.3 cm/s) during trials with no laser

or trials with a 360 ms or 720 ms laser stimulus (0 ms: Control: 25 trials, 10Ba: 24 trials; 360 ms: Control: 25 trials, 10B: 19 trials; 720 ms: Control: 42 trials,

10Ba: 24 trials). (E) Schematic of the three central neuron populations (13Ba, 9Aa, and 10Ba) and their sensory inputs as determined by our

experiments.

The online version of this article includes the following video and figure supplement(s) for figure 8:

Figure 8 continued on next page
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9Aa neurons had no effect on flies’ walking velocity (Figure 8B, and Figure 8—figure supplement

1B and C).

Overall, our physiology and behavior data indicate that 10Ba neurons trigger pausing in response

to tibia vibration detected by the FeCO. Thus, we propose that vibration-detecting club FeCO neu-

rons and their downstream partners, the 10Ba neurons, may comprise a pathway for sensing exter-

nal substrate vibration. However, 9Aa neurons, which drive reflexive leg movements but not

pausing, also respond to tibia vibration. This result suggests that encoding of tibia vibration by club

neurons contributes to both exteroceptive and proprioceptive mechanosensory processing.

Discussion
Understanding the role of proprioceptive feedback in motor control requires knowledge about how

central neurons transform inputs from limb proprioceptors and their subsequent effect on motor cir-

cuits. In this study, we found that proprioceptive information from diverse limb proprioceptors is

relayed to central neurons in the Drosophila VNC that process these signals in parallel (Figure 8E).

Some neurons, like 13Ba, encode only a single kinematic feature, tibia extension, presumably via

input from the extension-sensitive claw neurons, whereas other neurons, like 9Aa and 10Ba neurons

encode complex combinations of tibia movement, high frequency vibration, and tibia position, pre-

sumably via inputs from multiple proprioceptor subtypes. These central neurons contribute to a

range of behaviors, including postural reflexes and vibration sensing, which depend on the animal’s

behavioral context. Overall, our results suggest that the logic of sensory integration in second-order

proprioceptive circuits may be best understood with respect to their motor function.

Comparison with proprioceptive circuits in other insects
Neurons similar to 9Aa or 13Ba neurons have been identified in other insects (Burrows, 1988; Bur-

rows, 1996; Büschges, 1990). For example, the nonspiking I1 and I2 neurons in the stick insect

encode femur-tibia joint position in a manner similar to 13Ba neurons (Büschges, 1990) and local

spiking neurons in the locust encode a mixture of joint flexion and position similar to 9Aa neurons

(Burrows, 1988). However, it is difficult to determine whether these populations are homologous

based only on their physiology or anatomy. FeCO sensory neurons vary from species to species in

their number, mechanosensory sensitivity, and axonal projections (Collin, 1985; Mamiya et al.,

2018; Matheson, 1992b). Additionally, due to differences in size, leg shape, walking gait, and eco-

logical niche, central integration of proprioceptive information may be species-specific

(Büschges and Wolf, 1995; Field and Matheson, 1998). Although there exist many compelling sim-

ilarities between our results and those in larger orthopteran insects, we cannot currently make clear

conclusions about cell-type homology. Nevertheless, it will be interesting to see if, as in the stick

insect and locust, activity of nonspiking neurons such as 13Ba in Drosophila can reset walking phase

(Büschges, 1995) or adjust the gain of local reflexes (Laurent and Burrows, 1989).

A developmental framework for identifying functional subunits in the
insect VNC
In vertebrates, knowledge of developmental lineages has provided a useful framework for under-

standing the physiology and function of neurons in the spinal cord (Catela et al., 2015; Jes-

sell, 2000; Lu et al., 2015). We have undertaken a similar approach, beginning with previously

described lineage maps of the Drosophila VNC (Harris et al., 2015; Shepherd et al., 2016) to iden-

tify central neurons that are positioned to receive sensory information from the FeCO. We then built

genetic driver lines to label these neurons. Because we still lack quantitative data on the numbers of

cells or cell types within each hemilineage, it is unclear what proportion of a given cell type is cap-

tured by each driver line. Nevertheless, as has been observed in other species (Shepherd and

Figure 8 continued

Figure supplement 1. Optogenetic activation of 10Ba neurons causes flies to freeze and stop walking.

Figure 8—video 1. Optogenetic activation of 10Ba neurons in walking flies.

https://elifesciences.org/articles/60299#fig8video1
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Laurent, 1992; Thompson and Siegler, 1991), we found that neurons from the same hemilineage

possess similarities in their neurophysiological properties, encoding of tibial kinematics, and putative

connections with upstream FeCO neurons. Thus, knowledge of a cell’s developmental origins can be

a powerful means to identify functional microcircuits within the fly VNC.

Drosophila is a holometabolous insect that undergoes metamorphosis, changing from a larva to

an adult fly. These two life stages look and behave differently, but their nervous systems are gener-

ated by the same segmental array of neuroblasts (Harris et al., 2015; Lacin and Truman, 2016).

Neurons arising from the same neuroblast produce a similar set of molecules and innervate similar

nerve tracts in both larvae and adults (Birkholz et al., 2015; Lacin and Truman, 2016) – are they

also functionally similar? Several central neurons in the larval VNC, such as the Basin neurons, have

been implicated in relaying mechanosensory or proprioceptive input to motor circuits

(Heckscher et al., 2015; Jovanic et al., 2016; Mark et al., 2019; Ohyama et al., 2015; Zarin et al.,

2019). Basin neurons, like adult 9A neurons, descend from lineage nine and receive inputs from lar-

val chordotonal neurons – do adult 9A neurons also receive nociceptive input or synapse onto motor

neurons? Such comparisons will yield insight into how central circuits for proprioception are repur-

posed following metamorphosis.

Beyond understanding how neural function is conserved across metamorphosis, understanding

the relationship between hemilineage identity and circuit function will also reveal how neural circuits

are conserved across evolution. The organization of neuroblasts that gives rise to the insect VNC has

undergone little change over 350 million years of insect evolution (Lacin and Truman, 2016;

Thomas et al., 1984; Truman and Ball, 1998) and homologous neuroblasts and their resulting line-

ages have been identified in insects as diverse as silverfish, grasshoppers, and Drosophila (Jia and

Siegler, 2002; Thomas et al., 1984; Truman and Ball, 1998; Witten and Truman, 1998). Connect-

ing neurons’ functions with their developmental origin in different species will yield a powerful

framework for studying the evolution of sensorimotor circuits, revealing the essential bauplan under-

lying flexible, fast motor control.

Central integration of proprioceptive sensory information
We found that VNC neurons integrate mechanosensory signals from proprioceptor subtypes that

encode distinct features of leg joint kinematics. Convergence of multiple kinematic features has also

been described in second-order neurons in other mechanosensory systems. For example, aPN3 neu-

rons, a class of neurons downstream of the Johnston’s organ (JO) in the fly antenna, encode anten-

nal vibrations only at specific antennal positions, similar to 10Ba neurons (Chang et al., 2016;

Patella and Wilson, 2018). Second-order neurons within the mammalian vestibular nuclei include

cells that encode head-rotational movements (via inputs from the semi-circular canal), head-transla-

tional movements (via inputs from the otolith), or both rotations and translations (Dickman and

Angelaki, 2002; Goldberg, 2000). The continuum from unimodal to complex, multimodal encoding

is thought to facilitate the vestibular nuclei’s role in multiple behaviors, including vestibular-ocular

reflexes and disambiguating translational motion from gravitational accelerations (Angelaki and

Cullen, 2008; Green and Angelaki, 2010; Green et al., 2005). Similarly, the range of second-order

neurons that we found in the VNC are likely shaped by the constraints of processing speed and

need for motor flexibility.

Each VNC cell type we analyzed had a different degree of functional heterogeneity across individ-

ual neurons. 9Aa neurons, in particular, demonstrated high cell-to-cell variability in their response

tuning. These diverse response profiles could result from different mixtures of inhibitory and excit-

atory synaptic inputs, similar to what has been observed in aPN3 neurons in the Drosophila antennal

mechanosensory circuit (Chang et al., 2016). By mixing inhibitory and excitatory inputs in different

ratios from different populations of sensory neurons, individual aPN3 neurons demonstrate diverse

tuning profiles with sensitivity for different stimulus features. From an information coding perspec-

tive, such heterogeneous populations could enable continuous representation of multi-modal stimu-

lus spaces, and encode increased information as a population (Azarfar et al., 2018). Functional

heterogeneity within a cell type has not been systematically analyzed in second-order proprioceptive

neurons of larger insects (Burrows, 1996), likely due to the inability to unambiguously assign cell-

type identity when recording from unlabeled neurons.

Agrawal et al. eLife 2020;9:e60299. DOI: https://doi.org/10.7554/eLife.60299 16 of 32

Research article Neuroscience

https://doi.org/10.7554/eLife.60299


Neural representation of tibia position
Tibia position is encoded by approximately 25 claw sensory neurons per leg, each of which is tuned

to a narrow range of femur-tibia joint angles (Mamiya et al., 2018). Claw neurons can be separated

into two subtypes encoding either flexed (0–90˚) or extended (90–180˚) tibia angles. 13Ba neurons,

based on their anatomy and activity, are likely downstream of extension-sensitive claw neurons

(Figures 1 and 2) and the 9Aa2 neurons are a complementary population of inhibitory neurons that

receive inputs from flexion-sensitive claw neurons (Figure 4—figure supplement 1). Unlike move-

ment-encoding 9Aa or 10Ba neurons, these position-encoding central neurons encode information

from only a single FeCO subtype, suggesting that movement information is immediately contextual-

ized by position information, whereas position information can be transmitted independently. Per-

haps as a result, optogenetic activation of 13Ba neurons consistently caused leg movements,

whereas the effect of 9Aa activation was more variable.

We also found that 13Ba and claw neurons exhibit a similar degree of hysteresis: the steady-state

membrane potential at a given tibia position from 90 to 180˚ was about 20% greater when the tibia

was extended to reach that position than when it was flexed (Figure 2G). Proprioceptive hysteresis

is found in many vertebrate and invertebrate mechanosensory systems (Grigg and Greenspan,

1977; Lennerstrand, 1968; Matheson, 1992a; Ridgel et al., 2000). However, it is unclear if hystere-

sis causes problematic ambiguities for downstream circuits that require an accurate readout of tibia

angle, or if it is a useful feature, perhaps compensating for the nonlinear properties of muscle activa-

tion in short sensorimotor loops (Zill and Jepson-Innes, 1988). Non-spiking central neurons in

locusts (Siegler, 1981a) and stick insects (Büschges, 1990) also exhibit hysteresis, and the effects of

hysteresis can be seen in leg motor neuron activity (Field and Burrows, 1982; Siegler, 1981b).

These data suggest that hysteresis is preserved within central circuits, and our results show that the

same is true in Drosophila.

Behavioral function of central proprioceptive neurons
Activating both 13Ba and 9Aa neurons caused flies to move their legs, suggesting that these two

populations mediate leg postural reflexes in response to perturbations detected by the FeCO. Such

reflexes are important to stabilize posture by maintaining joint position, and work in other insects

has shown that they are mediated via pathways between the FeCO and leg motor neurons (Bur-

rows, 1996; Büschges, 1990). Motor neurons controlling the fly tibia are organized according to a

hierarchical gradient of cellular size and electrical excitability that enables motor neurons controlling

weak, slow movements to be recruited first, followed by neurons that control progressively stronger,

faster movements (Azevedo et al., 2020). We found that 13Ba activation caused generally larger

leg movements than 9Aa activation. While this distinction could be due to differences in how

strongly we were able to excite either population, it may also suggest that 13Ba and 9Aa cells pro-

vide input to cells at different levels of the motor neuron hierarchy. 13Ba neurons could provide

input to higher gain intermediate or fast motor neurons, whereas 9Aa neurons may provide input to

only low gain, slow motor neurons.

In contrast to 9Aa and 13Ba neurons, activating 10Ba neurons did not produce reflexive leg

movements. Instead, 10Ba neurons drive pauses in walking behavior. Previous behavioral experi-

ments found that flies will stop walking when they sense the ground vibrating (Fabre et al., 2012;

Howard et al., 2019) – 10Ba neurons may mediate this stopping via vibration-sensitive inputs from

the FeCO. If true, this would imply that the FeCO functions as both a proprioceptive and exterocep-

tive organ. This finding is consistent with work in stick insects and locusts that also found that vibra-

tion-tuned FeCO neurons do not contribute to postural reflexes (Field and Pflüger, 1989;

Kittmann et al., 1996; Stein and Sauer, 1999), and instead mediate startle responses to substrate

vibration (Friedel, 1999; Stritih Peljhan and Strauß, 2018; Takanashi et al., 2016). Similar mecha-

noreceptors that primarily sense substrate vibrations are also found in the limbs of rodents

(Prsa et al., 2019).

A subset of 10Ba neurons send ascending projections to the brain, where they innervate the

wedge (Figure 1—figure supplement 1C), a region that encodes auditory information from the

antennae (Patella and Wilson, 2018). These ascending projections raise the possibility that vibration

signals from 10Ba neurons are integrated with vibration signals from the antennae. Although the

purpose of this integration is not yet clear, one possibility is that leg vibration could sensitize flies to
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other auditory stimuli. Interestingly, however, vibration encoding by the FeCO is not purely extero-

ceptive: activating vibration-sensitive 9Aa neurons did not cause walking flies to pause, but did

cause flies to extend the tibia-tarsus joint. Thus, vibration coding in the FeCO may be used for both

exteroceptive detection of substrate vibration and for proprioceptive feedback control of limb

movement.

Summary
In this study, we identify and describe the physiology, activity, and behavioral function of three pop-

ulations of central neurons that are positioned to receive synaptic input from proprioceptive sensory

neurons in the fly leg. While these cell types represent only a subset of the neurons that are down-

stream of the FeCO, they provide valuable insights into how proprioceptive sensory information is

integrated by central neurons to influence locomotion and motor control. Already, even at the earli-

est stages of sensory processing, proprioceptive signals from the FeCO diverge to multiple neuron

types with distinct behavioral roles.

What is the significance of the specific representations of femur-tibia joint kinematics encoded by

these central neurons? Answering this question will ultimately require understanding how the out-

puts of these neurons feed into motor circuits. Drosophila is a uniquely powerful model system for

this kind of circuit dissection: recent efforts have identified and mapped the majority of leg motor

neurons (Azevedo et al., 2020; Baek and Mann, 2009; Brierley et al., 2012) and leg sensory neu-

rons (Kuan et al., 2020; Mamiya et al., 2018; Tsubouchi et al., 2017; Tuthill and Wilson, 2016).

Additionally, serial-section electron microscopy of the VNC will enable synapse-resolution recon-

struction of the sensorimotor connectome (Maniates-Selvin et al., 2020). This solid anatomical

framework, coupled with detailed functional investigations of VNC cell types such as the one under-

taken in this study, will deepen our understanding of the fundamental computations underlying

proprioception.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic
reagent
(D. melanogaster)

‘w[1118]; P{JFRC7-
20XUAS-IVS-
mCD8::GFP}attp40’

Other FBrf0212432 ‘Barret Pfeiffer,
Janelia Farm, HHMI’

Genetic
reagent
(D. melanogaster)

‘P{iav-Gal4.K}3’ Bloomington
Drosophila
Stock Center

‘RRID:BDSC_52273’

Genetic
reagent
(D. melanogaster)

‘P{GMR73D10-
GAL4}attP2’

Bloomington
Drosophila
Stock Center

‘RRID:BDSC_39819’

Genetic reagent
(D. melanogaster)

‘P{20xUAS-IVS-
GCaMP6f} attP40;
P{w[+mC]=UAS tdTom.S}3’

Other N/A ‘Gift from Peter
Weir and Michael
Dickinson’

Genetic reagent
(D. melanogaster)

‘P{GMR21D12-
GAL4}attP2’

Bloomington
Drosophila
Stock Center

‘RRID:BDSC_48946’

Genetic reagent
(D. melanogaster)

‘P{GMR64C04-
GAL4}attP2’

Bloomington
Drosophila
Stock Center

‘RRID:BDSC_39296’

Genetic reagent
(D. melanogaster)

‘P{28A12-p65.AD}
attp40; P{VT000606-
GAL4.DBD}attP2’

Other N/A ‘James Truman
and
David Shepherd’

Genetic reagent
(D. melanogaster)

‘P{52E12-p65.AD}
attp40; P{VT044946-
GAL4.DBD}attP2’

Other N/A ‘James Truman and
David Shepherd’

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

‘P{VT043132-
p65.AD}
attp40;
P{VT045623-
GAL4.DBD}attP2’

Other N/A ‘James Truman and
David Shepherd’

Genetic reagent
(D. melanogaster)

‘P{25G05-
GAL4}attP2’

Bloomington
Drosophila
Stock Center

‘RRID:BDSC_49137’

Genetic reagent
(D. melanogaster)

‘w[1118];
P{10A07-p65.
AD} attp40’

Bloomington
Drosophila
Stock Center

‘RRID:BDSC_69465’

Genetic reagent
(D. melanogaster)

‘P{y[+t7.7]
w[+mC]=20 XUAS-IVS-
CsChrimson.
mVenus}attP2’

Bloomington
Drosophila
Stock Center

‘RRID:BDSC_55136’

Genetic reagent
(D. melanogaster)

‘w[1118];
P{VT014013-
p65.AD} attp40;
P{30A10-GAL4.
DBD}attP2’

Other N/A ‘James Truman
and David
Shepherd’

Antibody nc82 (mouse
monoclonal)

Developmental
Studies
Hybridoma
Bank

‘RRID:AB_2314866’ ‘(1:50)’

Antibody Anti-CD8 (rat
monoclonal)

Thermo
Fisher Scientific

‘RRID:AB_10392843’ ‘(1:50)’

Antibody Goat anti-rat
secondary
antibody,
Alexa Fluor 488
conjugate

Thermo
Fisher Scientific

‘RRID:AB_2534074’ ‘(1:250)’

Antibody Goat anti-mouse
secondary
antibody,
Alexa Fluor
633 conjugate

Invitrogen ‘RRID:AB_141431’ ‘(1:250)’

Chemical
compound,
drug

MLA Tocris TOCRIS_1029 ‘(1 mM)’

Chemical
compound,
drug

Atropine sulfate Sigma-Aldrich 1045009 ‘(20 mM)’

Chemical
compound,
drug

TTX Abcam ab120055 ‘(1 mM)’

Chemical
compound,
drug

Picrotoxin Sigma-Aldrich P1675 ‘(100 mM)’

Software,
algorithm

MATLAB Mathworks ‘RRID:SCR_001622’

Software,
algorithm

FIJI ‘PMID:22743772’ ‘RRID:SCR_002285’

Software,
algorithm

Fictrac ‘DOI:10.1016/
j.jneumeth.
2014.01.010’

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

Computational
Morphometry
Toolkit

Neuroimaging
Informatics Tools
and Resources
Clearinghouse

‘https://www.
nitrc.org/projects/
cmtk/’

Software,
algorithm

ScanImage 5.2 Vidrio Technologies ‘RRID:SCR_014307’

Other Streptavidin-
Alexa Fluor

Thermo
FisherScientific

‘FISHER: S11226’ ‘(1:250)’

Other Green CST
DPSS laser

Besram
Technology, Inc

‘(532 nm)’

Fly husbandry
Drosophila were raised on cornmeal agar food on a 14 hr dark/10 hr light cycle at 25˚C. Females

flies, 1–3 days post eclosion, were used for all electrophysiology experiments. Female flies, 4–8 days

post eclosion, were used for all in vivo calcium imaging experiments. For tethered behavior experi-

ments, both male and female flies, between 2 and 10 days post-eclosion, were used. For experi-

ments involving optogenetic reagents (CsChrimson), adult flies were placed on cornmeal agar with

all-trans-retinal (35 mM in 95% EtOH, Santa Cruz Biotechnology) for 24 hr prior to the experiment.

Vials were wrapped in foil to reduce optogenetic activation during development.

Fly preparation for in vivo two-photon calcium imaging or
electrophysiology
To gain optical access to the VNC while moving the tibia, we used one of two previously described

fly holders: for calcium imaging experiments, we used the holder as described by Mamiya et al.,

2018, whereas for electrophysiology experiments, we used the holder as described by Tuthill and

Wilson, 2016; Figure 1B. Flies were anesthetized on ice and then positioned ventral side up, with

the head glued to the upper side of the fly holder using UV-cured glue (Bondic or Kemxert 300). We

further glued the ventral side of the thorax onto the hole and on the bottom side of the holder, we

glued down the femur of the experimental leg (the right prothoracic leg for the majority of experi-

ments, unless otherwise indicated) so that we could control the femur-tibia joint angle by moving

the tibia. When gluing the femur, we held it at a position where the movement of the tibia during

the rotation of the femur-tibia joint was parallel to the plane of the fly holder. To eliminate mechani-

cal interference, we glued down all other legs. We also pushed the abdomen to the left side and

glued it at that position, so that the abdomen did not block tibia flexion. To position the tibia using

the magnetic control system described below, we cut a small piece of insect pin (length ~1.0 mm,

0.1 mm diameter; Living Systems Instrumentation) and glued it onto the tibia and the tarsus of the

right prothoracic leg. To enhance contrast and improve tracking of the tibia/pin position, we painted

the pin with either black India ink (for calcium imaging experiments, Super Black, Speedball Art

Products) or white acrylic paint (for electrophysiology experiments, Liquitex heavy body acrylic, tita-

nium white). After immersing the ventral side of the preparation in extracellular fly saline (recipe

below), we removed the cuticle above the prothoracic segment of the VNC and took out the diges-

tive tract to reduce the movements of the VNC. We also removed fat bodies and larger trachea to

improve access to the leg neuropil. The perineural sheath under the hole was removed for electro-

physiological recordings but left intact for calcium imaging. Fly saline contained 103 mM NaCl, 3

mM KCl, 5 mM TES, 8 mM trehalose, 10 mM glucose, 26 mM NaHCO3, 1 mM NaH2PO4,1.5 mM

CaCl2, and 4 mM MgCl2 (pH 7.1, osmolality adjusted to 270–275 mOsm). Recordings were per-

formed at room temperature.

Image acquisition using a two-photon excitation microscope
We used a modified version of a custom two-photon microscope previously described in detail

(Euler et al., 2009). For the excitation source, we used a mode-locked Ti/sapphire laser (Mira 900 F,
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Coherent) set at 930 nm and adjusted the laser power using a neutral density filter to keep the

power at the back aperture of the objective (40�, 0.8 NA, 2.0 mm wd; Nikon Instruments) below

~25 mW during the experiment. We controlled the galvo laser scanning mirrors and the image acqui-

sition using ScanImage software (version 5.2) within MATLAB (MathWorks). To detect GCaMP6f and

tdTomato fluorescence, we used an ET510/80M (Chroma Technology Corporation) emission filter

(GCaMP6f) and a 630 AF50/25R (Omega optical) emission filter (tdTomato) and GaAsP photomulti-

plier tubes (H7422P-40 modified version without cooling; Hamamatsu Photonics). We acquired

images (256 � 120 pixels or 128 � 240 pixels) at 8.01 Hz. At the end of the experiment, we acquired

a z-stack of the labeled neurons to confirm the recording location.

Image processing and calculating DF/F
We performed all image processing and analyses using scripts written in MATLAB (MathWorks)

(https://github.com/sagrawal/InterneuronAnalysis). After acquiring the images for a trial, we first

applied a Gaussian filter (size 5 � 5 pixel, s = 3) and aligned each frame to a mean image of the trial

using a sub-pixel registration algorithm (Guizar-Sicairos et al., 2008) (registered to ¼ pixel). For

alignment of images, we used the red channel tdTomato fluorescence, which should not change as a

function of calcium. tdTomato fluorescence remained stable over the course of each experiment

(data not shown), indicating that movement artifacts were absent or small. For detecting calcium sig-

nals, we chose pixels whose mean GCaMP6f fluorescence was above a set threshold (see

Figure 1C–H for examples). For calculating the GCaMP6f fluorescence change relative to the base-

line (DF/F), we used the lowest average fluorescence level in a 10-frame window as the baseline fluo-

rescence during that trial.

CNS electrophysiology
Cell bodies were visualized using an 850 nm IR LED (M850F2, ThorLabs) and a 40� water-immersion

objective (Nikon) on an upright fluorescence microscope (SOM, Sutter Instruments). Extracellular

saline was bubbled with 95% O2/5% CO2. The internal solution for whole-cell recordings was com-

posed of (in mM) 140 KOH, 140 aspartic acid, 10 HEPES, 2 mM EGTA, 1 KCl, 4 MgATP, 0.5 Na3GTP,

13 Neurobiotin, with pH adjusted using KOH to 7.2 and osmolality adjusted to 268 mOsm. Whole-

cell patch pipettes were pulled with a P-97 linear puller (Sutter Instruments) from borosilicate glass

(OD 1.5 mm, ID 0.86 mm) to have approximately 8–12 MOhm resistance. Whole-cell patch-clamp

recordings were targeted to GFP-labeled cell bodies in the prothoracic region of the VNC. We used

a Multiclamp 700A amplifier (Molecular Devices) for all recordings. Data were low-pass filtered at 5

kHz before they were digitized at 20 kHz by a 16 bit A/D converter (Axon Digidata 1400A, Molecular

Devices Co) and acquired in AxoScope 10.7 (Molecular Devices). Stable recordings were typically

maintained for 1–2 hr. Analysis of electrophysiology data was performed with custom scripts written

in MATLAB (MathWorks). The liquid junction potential for the whole cell recordings was �12 mV

(Gouwens and Wilson, 2009). We corrected the membrane voltages reported in the paper by post-

hoc subtraction of the junction potential.

Moving the tibia/pin using a magnetic control system
We used a previously described magnetic control system (Mamiya et al., 2018) to manipulate the

femur/tibia joint angle. To move the tibia/pin to different positions, we attached a rare earth magnet

(1 cm height � 5 mm diameter column) to a steel post (M3 � 20 mm flat head machine screw) and

controlled its position using a programmable servo motor (SilverMax QCI-X23C-1; Max speed

533,333˚/s, Max acceleration 83,333.33˚/s2, Position resolution 0.045˚; QuickSilver Controls). To

move the magnet in a circular trajectory centered at the femur-tibia joint, we placed the motor on a

micromanipulator (MP-285, Sutter Instruments) and adjusted its position while visually inspecting the

movement of the magnet and the tibia using the tibia tracking camera described below. For each

trial, we controlled the speed and the position of the servo motor using QuickControl software

(QuickSilver Controls). During all trials, we tracked the tibia position (as described below) to confirm

the tibia movement during each trial. Because it was difficult to fully flex the femur-tibia joint without

the tibia/pin and the magnet colliding with the abdomen, we only flexed the joint up to ~18˚. We set

the acceleration of the motor to 72,000˚/s2 for all ramp and hold and swing movements. Movements
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of the tibia during each trial varied slightly due to several factors, including the length of the mag-

netic pin and the positioning of the tibia and motor.

Tracking the femur-tibia joint angle during electrophysiology and
imaging experiments
To track the position of the tibia, we illuminated the tibia/pin with an 850 nm IR LED (M850F2, Thor-

Labs) and recorded video using an IR sensitive high-speed video camera (Basler Ace A800-510um,

Basler AG) with a 1.0� InfiniStix lens (94 mm wd, Infinity). The camera used in the calcium imaging

prep was further equipped with a 900 nm short pass filter (Edmund Optics) to filter out the two-pho-

ton laser light. In order to synchronize the tibia movement with the recorded cell activity, the camera

exposure signal was acquired at 20 kHz. To track the tibia angle, we identified the position of the

painted tibia/pin against the contrasting background by thresholding the image. We then approxi-

mated the orientation of the leg as the long axis of an ellipse with the same normalized second cen-

tral moments as the thresholded image (Haralick and Shapiro, 1992).

Vibrating the tibia using a piezoelectric crystal
To vibrate the tibia at high frequencies, we moved the magnet using either a piezoelectric crystal

(calcium imaging prep, PA3JEW, Max displacement 1.8 mm; ThorLabs) or a preloaded piezoelectric

actuator (patch-clamp electrophysiology prep, P-841.40, Physik Instrumente). To control the move-

ment of the piezo, we generated sine waves of different frequencies in MATLAB (sampling frequency

10 kHz) and sent them to the piezo through a single channel open-loop piezo controller (calcium

imaging prep: Thorlabs; electrophysiology prep: Physik). Piezo-induced tibia movements during the

calcium imaging prep were calibrated as described by Mamiya et al., 2018. Piezo-induced move-

ments during the electrophysiology prep were calibrated using the amplitude measured by the pie-

zo’s internal sensor. For each stimulus, we presented 4 s of vibration two to three times with an

inter-stimulus interval of 8 s. We averaged the responses within each fly before averaging across

flies.

Spike detection from whole-cell recordings
To detect spikes in current clamp recordings of membrane potential, we applied the following analy-

sis steps to our records of membrane voltage: (1) filter, (2) identify events with large peaks above a

threshold, (3) compute a distance from a template for each event, (4) compute the amplitude of the

voltage deflection associated with the filtered event, (5) select spikes by thresholding events based

both on the distance to the filtered template (<threshold) and on the amplitude of the spike in the

voltage record (>threshold). The parameter space for each of these steps was explored in an interac-

tive spike detection interface which can be found at https://github.com/tony-azevedo/spikeDetec-

tion. Further details regarding the spike detection algorithm can be found in Azevedo et al., 2020.

Immunohistochemistry and anatomy
For confocal imaging, we crossed flies carrying the Gal4 driver to flies carrying pJFRC7-20XUAS-IVS-

mCD8::GFP and dissected the VNC out of the thorax in Drosophila saline. We first fixed the VNC in

a 4% paraformaldehyde PBS solution for 15 min and then rinsed the VNC in PBS three times. We

next put the VNC in blocking solution (5% normal goat serum in PBS with 0.2% Triton-X) for 20 min,

and then incubated it with a solution of primary antibody (anti-CD8 rat antibody 1:50 concentration;

anti-brp mouse for nc82 neuropil staining; 1:50 concentration) in blocking solution for 24 hr at room

temperature. At the end of the first incubation, we washed the VNC with PBS with 0.2% Triton-X

(PBST) three times, and then incubated the VNC in a solution of secondary antibody (anti-rat-Alexa

488 1:250 concentration; anti-mouse-Alexa 633 1:250 concentration) dissolved in blocking solution

for 24 hr at room temperature. Finally, we washed the VNC in PBST three times and then mounted it

on a slide with Vectashield (Vector Laboratories). Following electrophysiology recordings, we dis-

sected the VNC and brain and followed the procedure described above, but included streptavidin

AlexaFluor conjugate (1:250 goat anti-mouse AlexaFluor conjugate from Invitrogen) during the sec-

ondary antibody staining to visualize Neurobiotin-filled neurons. We acquired a z-stack image of the

slides on a confocal microscope (Zeiss 510).
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Cells were traced in FIJI (Schindelin et al., 2012), using the Simple Neurite Tracing plug-in

(Longair et al., 2011). For in silico overlay of the expression patterns of specific Gal4 lines

(Figure 1I–K), we used confocal stacks of each Gal4 line with neuropil counterstaining (from the

Janelia FlyLight database Jenett et al., 2012) and used the neuropil staining to align the expression

pattern in the VNC using the Computational Morphometry Toolkit (Jefferis et al., 2007; http://nitrc.

org/projects/cmtk) to a female VNC template (Bogovic et al., 2019, Janelia Research Campus,

https://www.janelia.org/open-science/jrc-2018-brain-templates).

Pharmacology
Drugs were bath applied via the saline perfusate. TTX (purchased from Abcam) was prepared as a

concentrated stock solution in sodium citrate, picrotoxin was prepared as a concentrated stock solu-

tion in aqueous NaCl (140 mM), and methyllycaconitine citrate (MLA, purchased from Sigma-Aldrich)

and atropine sulfate (Sigma-Aldrich) were prepared as stock solutions in water. Each drug was fur-

ther diluted in saline for experiments for a final concentration of 1 mM (TTX and MLA), 20 mM (atro-

pine), or 100 mM (picrotoxin). Drugs were perfused over the exposed VNC for as long as 40 min

(MLA and atropine in the case of 13Ba and 10A cell recordings) but more often for 20 min.

Fly preparation for walking experiments
Fly wings were clipped under cold anesthesia (<4 min) 24 hr before walking experiments. The fly’s

dorsal thorax was attached to a tungsten wire (0.1 mm diameter) with UV-curing glue (KOA 300,

KEMXERT). Tethered flies were food deprived for at least 3 hr prior to being placed in the arena. In

the headless preparation, the tethered flies were then decapitated under cold anesthesia and

allowed to recover for 5–10 min prior to the experiment. Intact or headless tethered flies were posi-

tioned on a hand-milled foam treadmill ball (density: 7.3 mg/mm3, diameter: 9.46 mm) that was sus-

pended on a stream of air (5 l/min) and freely rotated under the fly’s movement. The ball and fly

were illuminated by three IR lights (M850F2, ThorLabs) to improve motion tracking. In unloaded

experiments with the headless prep, we removed the spherical treadmill, leaving the flies suspended

in air. For all trials, the temperature in the chamber was maintained between 26 and 28˚C with a rela-

tive humidity of 58–65%.

Tethered behavior assay
We coaxed flies to walk on the ball by displaying visual stimuli on a semi-circular green LED display

(Reiser and Dickinson, 2008). To elicit forward walking, we displayed a single dark bar (width 30˚)

on a light background, and sinusoidally oscillated the bar at 2.7 Hz across 48.75˚ about the center of

the fly’s visual field. During periods between trials, the LED panels displayed a fixed dark stripe (30˚)

on a bright background in front of the tethered fly. To characterize the role of the motor neurons in

behaving tethered flies, we optogenetically activated genetically targeted motor neurons. A green

laser (532 nm, CST DPSS laser, Besram Technology, Inc), pulsed at 1200 Hz with a 66% duty cycle,

passed through a converging lens and a pinhole (50 mm diameter) with a resulting power of 87 mW/

mm2 at the target. It was aimed at the fly’s left prothoracic coxa-body wall joint, thus targeting the

left T1 neuromere below the cuticle. Experiments using a driver line labeling all motor neurons

(OK371-Gal4) indicated that optogenetic stimulation primarily affected neurons innervating the left

prothoracic leg (Azevedo et al., 2020), though we cannot rule out effects on other VNC neurons.

For intact fly experiments, each trial was 4 s long. We presented walking flies with the visual stim-

ulus, the flies reached a steady running speed at ~1.5 s, and the laser stimulus began at 2 s. The laser

stimulus randomly cycled through seven stimulus lengths: 0 ms, 30 ms, 60 ms, 90 ms, 180 ms, 360

ms, and 720 ms. For simplification, we primarily focus on a short stimulus (90 ms), a long stimulus

(720 ms), and the control condition (laser omitted, 0 ms). Each fly was presented each laser stimulus

six times. For headless fly experiments, we used only the longest laser stimulus length (720 ms) and

the control omitted stimulus (0 ms), such that each fly had 24 laser stimulus trials (at 720 ms) and

four control trials (no laser), randomly interleaved. Trials were separated by a 25 s period during

which video data was written to disk and the LED panels displayed a fixed, stationary stripe.
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Quantification of fly behavior
We used Fictrac (Moore et al., 2014) to calculate fly walking trajectories (position, speed, and rota-

tional velocity) from live video of the spherical treadmill’s rotation (Point Grey Firefly camera, imag-

ing at 30 Hz). Trajectories were then converted from pixels to mm using the spherical treadmill’s

diameter of 9.46 mm. Detailed fly movements and kinematics were captured from six simultaneously

triggered cameras (Basler acA800-510mm, imaging at 300 Hz) that were distributed around the fly.

Digital and analog data signals were collected with a DAQ (PCIe-6321, National Instruments) sam-

pling at 10 kHz and recorded with custom MATLAB scripts. For all experimental trials, we scored the

fly’s behavior in the 200 ms preceding the optogenetic stimulus as stationary, walking/turning,

grooming or other. Flies that took no steps for the duration of the categorization period were classi-

fied as stationary. Flies that took at least four coordinated steps over the duration of the 200 ms

period were classified as walking/turning. Trials in which the fly switched behaviors, groomed, or did

not display clear markers for walking/turning during the categorization period were classified as

other/grooming and excluded from analyses. For each headless fly trial, both unloaded and loaded,

we also scored the behavioral response to the laser stimulus during the 720 ms period following the

onset of the stimulus into categories based on the repertoire of responses.

In headless fly experiments, we manually tracked the position of the left front leg via high-speed

video during the optogenetic stimulus period. We then calculated the leg joint angles (coxa-femur,

femur-tibia, and tibia-tarsus) from the position measurements. For activation experiments in 13Ba

headless flies, we calculated the average change in the leg joint angles (coxa-femur, femur-tibia,

and tibia-tarus) over time across flies for the control (0 ms laser) and activation stimulus (720 ms

laser). We calculated the change in joint angle as the difference in the average joint angle for a 200

ms period before the laser turned and the last 200 ms period of the laser activation. For activation

experiments in 9Aa, we subtracted the joint angle during the frame immediately preceding laser

onset from the joint angle during the frame immediately following laser offset, excluding any flies

that were not stationary in the 200 ms preceding the optogenetic stimulus. We then compared this

change in joint angle during trials with a 720 ms laser stimulus with trials with a 0 ms laser stimulus

using bootstrap simulations with 100,000 random draws to compare changes in walking speed

(Saravanan and Berman, 2020). We calculated the change in joint angle over time for all trials

binned by initial joint position (e.g. Figure 3E and F) to determine if the initial position of the joint

affected the response to activation. Initial joint angles were determined from the camera frame

before the laser stimulus started. Comparisons across these different groups were accomplished

using a one-way ANOVA with Tukey–-Kramer corrections.

To calculate the maximum joint flexion that occurred due to 13Ba activation, we used all trials in

which the fly was subject to the 720 ms laser activation period and excluded flies that were not sta-

tionary during the 200 ms preceding the stimulus. Maximum joint flexion is the change in initial joint

angle (�) minus the minimum joint angle achieved during the first 500 ms of the laser activation

period.

For walking fly experiments (e.g. Figures 8 and S8), we calculated the average forward velocity

over time in the walking trials for each stimulus length, for each fly. We noticed a response in the

control flies (split-half [SH]-Gal4) to the laser light that was correlated with the laser turning off; thus,

we compared changes in speed between the control line (SH-Gal4) and each of the central neuron

lines. We first calculated the change in running speed within a genotype as the average difference in

speed between the 200 ms period preceding the laser stimulus and the 200 ms period occurring

200 ms after the laser onset (black brackets in Figure 8C). We calculated the difference between the

change in running speed for each stimulus condition in the control line and the interneuron line

(Figure 8B). We then used bootstrap simulations with 100,000 random draws to compare changes in

walking speed for a given central neuron line to the control. To quantify the pausing/stopping

behavior observed during activation of the 10Ba neurons, we generated a cumulative probability

distribution for the first instance of freezing (speed dropping below 0.3 cm/s) within the 2-s period

following the laser stimulus start for each walking trial (Figures 8D and S8C).

Statistical analyses
For electrophysiology and calcium imaging results, no statistical tests were performed a priori to

decide upon sample sizes, but sample sizes were consistent with conventions in the field. Unless
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otherwise noted, we used the nonparametric Wilcoxon matched-pairs signed-rank test. We com-

pared cell activity before and after drug application using a Wilcoxon matched-pairs signed-rank

test.

For headless fly behavior experiments, we compared changes in joint angle during trials with a

720 ms laser stimulus with trials with a 0 ms laser stimulus using bootstrap simulations with 100,000

random draws to compare changes in walking speed (Saravanan and Berman, 2020). We calculated

the change in joint angle over time for all trials binned by initial joint position (e.g. Figure 3E and F)

to determine if the initial position of the joint affected the response to activation. Initial joint angles

were determined from the camera frame before the laser stimulus started. Comparisons across these

different groups was accomplished using a one-way ANOVA with Tukey–Kramer corrections. For

walking fly experiments, we also used bootstrap simulations with 100,000 random draws to compare

changes in walking speed for a given central neuron line to the control and then compared these dif-

ferent groups using a one-way ANOVA with Tukey–Kramer corrections. We used the Benjamini–

Hochberg procedure to calculate the false-discovery-rate.

Table of genotypes

Figure 1A W[1118]; P{JFRC7-20XUAS-
IVS-mCD8::GFP} attp40/+; iav-Gal4/+

Figure 1C Left: w[1118]; P{JFRC7-20XUAS-
IVS-mCD8::GFP} attp40/+; P{GMR73D10-GAL4}attP2/+
Right: w[1118]/+; P{20xUAS-IVS-GCaMP6f}
attP40 /+; P{GMR73D10-GAL4}attP2/P{w[+mc]=UAS-tdTomato}

Figure 1D Left: w[1118]; P{JFRC7-20XUAS-IVS-
mCD8::GFP} attp40/+; P{GMR21D12-GAL4}attP2/+
Right: w[1118]/+; P{20xUAS-IVS-GCaMP6f}
attP40; P{GMR21D12-GAL4}attP2/P{w[+mc]=UAS-tdTomato}

Figure 1E Left: w[1118]; P{JFRC7-20XUAS-IVS-
mCD8::GFP} attp40/+; P{GMR64C04-GAL4}attP2/+
Right: w[1118]/+; P{20xUAS-IVS-GCaMP6f}
attP40 /+; P{GMR64C04-GAL4}attP2/P{w[+mc]=UAS-tdTomato}

Figure 1F Left: w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP}
attp40/P{28A12-p65.AD} attp40; P{VT000606-GAL4.DBD}attP2/+
Right: w[1118]; P{20xUAS-IVS-GCaMP6f}
attP40/P{28A12-p65.AD} attp40; P{VT000606-
GAL4.DBD}attP2/P{w[+mc]=UAS-tdTomato}

Figure 1G Left: w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP}
attp40/P{52E12-p65.AD} attp40; P{VT044946-GAL4.DBD}attP2/+
Right: w[1118]; P{20xUAS-IVS-GCaMP6f}
attP40/P{52E12-p65.AD} attp40; P{VT044946 -
GAL4.DBD}attP2/P{w[+mc]=UAS-tdTomato}

Figure 1H Left: w[1118]; P{JFRC7-20XUAS-IVS-
mCD8::GFP} attp40/P{VT043132-p65.AD}
attp40; P{VT045623-GAL4.DBD}attP2/+
Right: w[1118]; P{20xUAS-IVS-GCaMP6f}
attP40/P{VT043132 -p65.AD} attp40;
P{VT045623-GAL4.DBD}attP2/P{w[+mc]=UAS-tdTomato}

Figure 2 and
Figure 2—
figure supplement 1

Recordings obtained from two different
lines: w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP}
attp40/P{28A12-p65.AD} attp40; P{VT000606-
GAL4.DBD}attP2/+ w[1118]; P{JFRC7-20XUAS-
IVS-mCD8::GFP} attp40/ +; P{25G05-GAL4}attP2/+

Figure 3 and
Figure 3—
figure supplement 1

w[1118]; P{28A12-p65.AD} attp40/+;
P{VT000606-GAL4.DBD}attP2/P{y[+t7.7]
w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2

Figures 4 and 5,
Figure 4—
figure supplement 1,
and Figure 5—
figure supplement 1

w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP}
attp40/P{52E12-p65.AD} attp40;
P{VT044946-GAL4.DBD}attP2/+

Continued on next page
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Figure 6 w[1118]; P{52E12-p65.AD} attp40/+;
P{VT044946-GAL4.DBD}attP2/P{y[+t7.7]
w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2

Figure 7 and
Figure 7—
figure supplement 1

w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP}
attp40/P{VT043132-p65.AD} attp40;
P{VT045623-GAL4.DBD}attP2/+

Figure 8 Control (SH-Gal4): w[1118]; P{10A07-
p65.AD} attp40/+; P{y[+t7.7] w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2/+
10Ba-Gal4: w[1118]; P{VT043132-p65.AD}
attp40/+; P{VT045623-GAL4.DBD}attP2/P{y[+t7.7]
w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2
13Ba-Gal4: w[1118]; P{28A12-p65.AD} attp40/+;
P{VT000606-GAL4.DBD}attP2/P{y[+t7.7]
w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2
9Aa-Gal4: w[1118]; P{52E12-p65.AD} attp40/+;
P{VT044946-GAL4.DBD}attP2/P{y[+t7.7]
w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2

Figure 1—
figure supplement 1A

w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP}
attp40/P{28A12-p65.AD} attp40;
P{VT000606-GAL4.DBD}attP2/+

Figure 1—
figure supplement 1B

w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP}
attp40/P{28A12-p65.AD} attp40;
P{VT000606-GAL4.DBD}attP2/+

Figure 1—
figure supplement 1C

w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP}
attp40/P{VT043132-p65.AD} attp40;
P{VT045623-GAL4.DBD}attP2/+

Figure 1—figure supplement 1D–F w[1118]; P{20xUAS-IVS-GCaMP6f}
attP40/P{28A12-p65.AD} attp40;
P{VT000606-GAL4.DBD}attP2/P{w[+mc]=UAS-tdTomato}

Figure 1—figure supplement 1G–I w[1118]; P{20xUAS-IVS-GCaMP6f}
attP40/P{52E12-p65.AD} attp40;
P{VT044946 -GAL4.DBD}attP2/P{w[+mc]=UAS-tdTomato}

Figure 1—figure supplement 1J–L w[1118]; P{20xUAS-IVS-GCaMP6f}
attP40/P{VT043132 -p65.AD} attp40;
P{VT045623-GAL4.DBD}attP2/P{w[+mc]=UAS-tdTomato}

Figure 6—figure supplement 1 w[1118]; P{VT014013-p65.AD} attp40/+;
P{30A10-GAL4.DBD}attP2/P{y[+t7.7]
w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2

Figure 8—figure supplement 1A Control (SH-Gal4): w[1118]; P{10A07-
p65.AD} attp40/+; P{y[+t7.7] w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2/+
10Ba-Gal4: w[1118]; P{VT043132-p65.AD}
attp40/+; P{VT045623-GAL4.DBD}attP2/P{y[+t7.7]
w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2

Figure 8—figure supplement 1B and C 13Ba-Gal4: w[1118]; P{28A12-p65.AD} attp40/+;
P{VT000606-GAL4.DBD}attP2/P{y[+t7.7] w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2
9Aa-Gal4: w[1118]; P{52E12-p65.AD} attp40/+;
P{VT044946-GAL4.DBD}attP2/P{y[+t7.7] w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2
9Aa-L2-Gal4: w[1118]; P{VT014013-p65.AD} attp40/+;
P{30A10-GAL4.DBD}attP2/P{y[+t7.7] w[+mC]=20 XUAS-IVS-CsChrimson.mVenus}attP2
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Bässler U. 1988. Functional principles of pattern generation for walking movements of stick insect forelegs: the
role of the femoral chordotonal organ afferences. Journal of Experimental Biology 136:125–147.
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Field LH, Pflüger H-J. 1989. The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria)
sense organ? Comparative Biochemistry and Physiology Part A: Physiology 93:729–743. DOI: https://doi.org/
10.1016/0300-9629(89)90494-5

Friedel T. 1999. The vibrational startle response of the desert locust Schistocerca gregaria. The Journal of
Experimental Biology 202:2151–2159. PMID: 10409486

Goldberg JM. 2000. Afferent diversity and the organization of central vestibular pathways. Experimental Brain
Research 130:277–297. DOI: https://doi.org/10.1007/s002210050033, PMID: 10706428

Gouwens NW, Wilson RI. 2009. Signal propagation in Drosophila central neurons. Journal of Neuroscience 29:
6239–6249. DOI: https://doi.org/10.1523/JNEUROSCI.0764-09.2009, PMID: 19439602

Green AM, Shaikh AG, Angelaki DE. 2005. Sensory vestibular contributions to constructing internal models of
self-motion. Journal of Neural Engineering 2:S164–S179. DOI: https://doi.org/10.1088/1741-2560/2/3/S02,
PMID: 16135882

Green AM, Angelaki DE. 2010. Internal models and neural computation in the vestibular system. Experimental
Brain Research 200:197–222. DOI: https://doi.org/10.1007/s00221-009-2054-4, PMID: 19937232

Grigg P, Greenspan BJ. 1977. Response of primate joint afferent neurons to mechanical stimulation of knee joint.
Journal of Neurophysiology 40:1–8. DOI: https://doi.org/10.1152/jn.1977.40.1.1, PMID: 401873

Guizar-Sicairos M, Thurman ST, Fienup JR. 2008. Efficient subpixel image registration algorithms. Optics Letters
33:156–158. DOI: https://doi.org/10.1364/OL.33.000156, PMID: 18197224

Haralick RM, Shapiro LG. 1992. Computer and Robot Vision. Addison-Wesley.
Harris RM, Pfeiffer BD, Rubin GM, Truman JW. 2015. Neuron hemilineages provide the functional ground plan
for the Drosophila ventral nervous system. eLife 4:e04493. DOI: https://doi.org/10.7554/eLife.04493

Agrawal et al. eLife 2020;9:e60299. DOI: https://doi.org/10.7554/eLife.60299 29 of 32

Research article Neuroscience

https://doi.org/10.1002/cne.23003
https://doi.org/10.1002/cne.23003
http://www.ncbi.nlm.nih.gov/pubmed/22120935
https://doi.org/10.1007/BF00603951
https://doi.org/10.1007/BF00603951
https://doi.org/10.1093/acprof:oso/9780198523444.001.0001
https://doi.org/10.1093/acprof:oso/9780198523444.001.0001
https://doi.org/10.1002/neu.480270405
http://www.ncbi.nlm.nih.gov/pubmed/7561829
https://doi.org/10.1152/jn.00615.2004
https://doi.org/10.1152/jn.00615.2004
http://www.ncbi.nlm.nih.gov/pubmed/15738270
https://doi.org/10.1152/jn.1995.73.5.1843
http://www.ncbi.nlm.nih.gov/pubmed/7623085
https://doi.org/10.1146/annurev-cellbio-100814-125155
http://www.ncbi.nlm.nih.gov/pubmed/26393773
https://doi.org/10.1016/j.neuron.2016.09.059
https://doi.org/10.1016/j.neuron.2016.09.059
http://www.ncbi.nlm.nih.gov/pubmed/27974164
https://doi.org/10.1002/neu.480160403
https://doi.org/10.1002/neu.480160403
http://www.ncbi.nlm.nih.gov/pubmed/4031848
https://doi.org/10.7554/eLife.46409
http://www.ncbi.nlm.nih.gov/pubmed/31250807
https://doi.org/10.1126/science.288.5463.100
http://www.ncbi.nlm.nih.gov/pubmed/10753108
https://doi.org/10.1152/jn.00518.2002
http://www.ncbi.nlm.nih.gov/pubmed/12466465
https://doi.org/10.1007/s00424-008-0603-5
https://doi.org/10.1016/j.cub.2012.09.042
https://doi.org/10.1016/j.cub.2012.09.042
http://www.ncbi.nlm.nih.gov/pubmed/23103187
https://doi.org/10.1016/S0065-2806(08)60013-2
https://doi.org/10.1016/0300-9629(89)90494-5
https://doi.org/10.1016/0300-9629(89)90494-5
http://www.ncbi.nlm.nih.gov/pubmed/10409486
https://doi.org/10.1007/s002210050033
http://www.ncbi.nlm.nih.gov/pubmed/10706428
https://doi.org/10.1523/JNEUROSCI.0764-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19439602
https://doi.org/10.1088/1741-2560/2/3/S02
http://www.ncbi.nlm.nih.gov/pubmed/16135882
https://doi.org/10.1007/s00221-009-2054-4
http://www.ncbi.nlm.nih.gov/pubmed/19937232
https://doi.org/10.1152/jn.1977.40.1.1
http://www.ncbi.nlm.nih.gov/pubmed/401873
https://doi.org/10.1364/OL.33.000156
http://www.ncbi.nlm.nih.gov/pubmed/18197224
https://doi.org/10.7554/eLife.04493
https://doi.org/10.7554/eLife.60299


Hasan Z, Stuart DG. 1988. Animal solutions to problems of movement control: the role of proprioceptors. Annual
Review of Neuroscience 11:199–223. DOI: https://doi.org/10.1146/annurev.ne.11.030188.001215, PMID: 32
84440

Heckscher ES, Zarin AA, Faumont S, Clark MQ, Manning L, Fushiki A, Schneider-Mizell CM, Fetter RD, Truman
JW, Zwart MF, Landgraf M, Cardona A, Lockery SR, Doe CQ. 2015. Even-Skipped(+) Interneurons are core
components of a sensorimotor circuit that maintains Left-Right symmetric muscle contraction amplitude.
Neuron 88:314–329. DOI: https://doi.org/10.1016/j.neuron.2015.09.009, PMID: 26439528

Howard CE, Chen CL, Tabachnik T, Hormigo R, Ramdya P, Mann RS. 2019. Serotonergic modulation of walking
in Drosophila. Current Biology 29:4218–4230. DOI: https://doi.org/10.1016/j.cub.2019.10.042, PMID: 317
86064

Hunt CC. 1990. Mammalian muscle spindle: peripheral mechanisms. Physiological Reviews 70:643–663.
DOI: https://doi.org/10.1152/physrev.1990.70.3.643, PMID: 2194221

Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JK, Lu ES, Mahadevan L, de Bivort B. 2016.
Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception. The Journal of
Experimental Biology 219:1760–1771. DOI: https://doi.org/10.1242/jeb.133652, PMID: 26994176

Jankowska E. 1992. Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology 38:
335–378. DOI: https://doi.org/10.1016/0301-0082(92)90024-9, PMID: 1315446

Jefferis GS, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR, Luo L. 2007. Comprehensive maps of
Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187–
1203. DOI: https://doi.org/10.1016/j.cell.2007.01.040, PMID: 17382886

Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J, Iyer N,
Fetter D, Hausenfluck JH, Peng H, Trautman ET, Svirskas RR, Myers EW, Iwinski ZR, Aso Y, DePasquale GM,
et al. 2012. A GAL4-driver line resource for Drosophila neurobiology. Cell Reports 2:991–1001. DOI: https://
doi.org/10.1016/j.celrep.2012.09.011, PMID: 23063364

Jessell TM. 2000. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature
Reviews Genetics 1:20–29. DOI: https://doi.org/10.1038/35049541, PMID: 11262869

Jia XX, Siegler MV. 2002. Midline lineages in grasshopper produce neuronal siblings with asymmetric expression
of engrailed. Development 129:5181–5193. PMID: 12399310

Jovanic T, Schneider-Mizell CM, Shao M, Masson JB, Denisov G, Fetter RD, Mensh BD, Truman JW, Cardona A,
Zlatic M. 2016. Competitive disinhibition mediates behavioral choice and sequences in Drosophila. Cell 167:
858–870. DOI: https://doi.org/10.1016/j.cell.2016.09.009, PMID: 27720450
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