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Abstract

Animal locomotion relies on rhythmic body movements driven by central pattern generators (CPGs):
neural circuits that produce oscillating output without oscillating input. However, the circuit structure
of a CPG for walking is not known in any animal. To identify the cells and synapses that underlie
rhythmic leg movement in walking flies, we developed dynamic simulations of the Drosophila ventral
nerve cord (VNC) connectomes. We used a computational activation screen to identify descending
neurons from the brain that drive rhythmic activity in leg motor neurons, including a command neuron
for walking (DNg100). By synthetic pruning of the VNC network, we isolated a minimal three-neuron
rhythm-generating circuit consisting of one inhibitory and two excitatory interneurons. A model of this
core CPG circuit is sufficient to generate motor rhythms, and the two excitatory neurons are necessary
in the VNC network model. Connectome simulations also predicted that parallel descending neurons
(DNb08) produce rhythmic leg movements, which we experimentally confirmed using optogenetics in
behaving flies. Our results reveal the cellular identity and synaptic structure of a putative CPG circuit
for fly walking.

Most animals move through the world using rhythmic movements, such as undulation of the body to

swim and slither, or cyclic movement of legs and wings to walk or fly. Early studies of vertebrate locomo-

tion proposed that motor rhythms are generated by sensory feedback from proprioceptors, which reflexively

trigger the next phase of the locomotor cycle [1]. However, subsequent work on cats [2], crayfish [3], and

locusts [4] demonstrated that motor rhythms persisted even after transection of sensory nerves. These

results suggested that the central nervous system can generate rhythmic activity patterns on its own, with-

out proprioceptive feedback or other rhythmic inputs. Such rhythm-generating circuits became known as

central pattern generators (CPGs). CPGs have been studied intensively in both vertebrates and inverte-

brates, where they are believed to be crucial in locomotor rhythms such as walking, flying, and swimming,

and non-locomotor rhythms such as breathing, feeding, scratching, circulation, and singing [5, 6, 7].

Different CPG circuits are known to generate rhythms using many distinct mechanisms. For example,

in the crustacean stomatogastric ganglion (STG, [8]) as well as the leech heart and swimming CPGs [9, 10],

neurons possess specialized cellular properties that support rhythm generation, such as intrinsic bursting,

plateau potentials, and post-inhibitory rebound. The preBötzinger complex, which controls breathing in

vertebrates, contains neurons that intrinsically burst, even when isolated from the rest of the network [11].

However, specific patterns of synaptic connectivity between neurons, such as mutual inhibition, can also

contribute to rhythm generation in these circuits [12]. For example, the swimming CPG of the nudibranch

Tritonia is a network oscillator whose cells lack intrinsic bursting properties [13]. Overall, studies of diverse

CPG circuits suggest that rhythm generation is often an emergent property of the network as a whole,

rather than being reliant on one specific mechanism [14, 15].
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Despite considerable evidence that CPGs produce the walking rhythm in vertebrates and invertebrates,

the specific implementation of a CPG circuit for walking is not known for any animal [5, 7]. Lacking knowl-

edge of the anatomy, connectivity, and electrophysiological properties of CPG neurons, most computational

models for animal walking rely on the presence of intrinsic bursting neurons as components of balanced

excitation-inhibition networks (e.g., [16, 17]), or abstract all neural mechanisms to replace the CPG circuit

with an oscillator equation (e.g., the Kuramoto oscillator [18]). Much theoretical work has focused on how

locomotor CPGs interact within and across limbs [19, 20, 21, 22] and with the body [23, 24, 25] to produce

coordinated gaits, without explicitly modeling the underlying pattern-generating mechanisms.

Here, we seek to identify the cellular components of CPG circuits that underlie walking in the fruit

fly Drosophila using a computational modeling approach enabled by comprehensive datasets of neural

connectivity. Flies are agile and robust walkers, and the adult fly is the only limbed animal whose nervous

system is almost completely mapped at synaptic resolution using electron microscopy reconstruction of

cells and synapses (known as connectomics, [26, 27, 28, 29]). Recent connectome datasets of the fly ventral

nerve cord (VNC, [27, 28]), which is analogous to the vertebrate spinal cord (Fig. 1a), provide a unique

opportunity to identify the core cell types and synaptic connections that comprise fly CPGs. Beyond

synaptic connectivity maps, published VNC connectome datasets have been extensively annotated [30, 31,

32] and include predictions of neurotransmitter identity and muscle targets of leg motor neurons.

Based on analyses of small nervous systems that have been mapped using connectomics (e.g., the C.

elegans worm) and electrophysiology (e.g., the crustacean STG), it has been argued that computational

models of neural dynamics are not sufficiently constrained by connectivity alone [33, 34]. Existing fly

connectome datasets lack important biophysical and molecular parameters, such as the expression of ion

channels, receptors, neuromodulators, and gap junctions. Despite these gaps, several recent studies have

developed connectome-constrained simulations of circuits within the fly central brain. One study directly

modeled neural activity using a spiking network with fixed parameters [35], while others have leveraged

neural recording data to infer unknown parameters with machine learning [36, 37, 38]. Here, we used

direct numerical simulation of the fly VNC connectomes to identify descending pathways from the brain

that produce rhythmic leg movement during sustained activation and corroborated these predictions with

optogenetics experiments in behaving flies. We then developed a computational pruning screen to isolate

a minimal rhythm-generating circuit of three VNC interneurons that is sufficient to generate rhythmic leg

motor activity. We propose that this three-neuron circuit constitutes the core CPG for fly walking.

Connectome simulations of motor activity from descending input

To identify rhythm-generating circuits for fly walking, we developed a firing rate model based on the

connectivity of neurons controlling the front legs in the male adult nerve cord (MANC) dataset [27]. The

full simulated network consisted of 4,604 neurons (Fig. 1b), including 1,318 descending neurons (DNs),

144 leg motor neurons, and 3,142 premotor neurons within the VNC, which we defined as all neurons that

synapse onto motor neurons [30]. The 3,780,908 synapses among these neurons formed elements of a weight

matrix W, for which the entries wij are the synapse counts from presynaptic neuron j to postsynaptic

neuron i (Fig. 1b). We used the predicted neurotransmitter identity of neuron j to assign positive or

negative weights for excitatory (cholinergic) or inhibitory (GABAergic, glutamatergic) cells, respectively.

We chose a rate model in part because some neurons in the insect VNC, including premotor neurons active

during walking, are nonspiking [39, 40, 41, 42].

We modeled the firing rates of neurons in the network ri(t) as a system of ordinary differential equations,

given their synaptic and exogenous inputs. Firing rates evolved according to

τi
dri
dt

=

rmax
i tanh

 ai
rmax
i

Ii(t) + b
∑
j

wijrj(t)− θi


+

− ri(t). (1)
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Figure 1: Direct numerical simulations of fly ventral nerve cord (VNC) connectomes identify descend-
ing pathways for rhythmic leg motor control. a, The Drosophila VNC, which is analogous to the vertebrate
spinal cord. We constructed network models based on the connectivity of cells in the front leg neuropil from the
male (MANC) and female (FANC) adult nerve cord connectomes (dashed box). b, Schematized synaptic weight
matrix W. Labels at left indicate the number of neurons in the MANC network model. c, Schematic of model
and descending neurons (DNs) activation screen. Each DN was stimulated with tonic input, then transformed by a
firing rate model of the VNC connectome (Equation 1). We assessed the rhythmicity of leg motor neuron firing
rates. d, Each neuron in the model had four biophysical parameters and a rectified tanh activation function. Insets
show the distributions from which the parameters were drawn randomly at every simulation replicate. Gain a and
threshold θ were scaled by the size of each neuron (see Methods). e, A computational screen of DNs identified cells
that produce rhythmic activity in leg motor neurons. At left are example motor neuron activity traces and their
rhythmicity scores. Each DN’s score was an average of 16 replicates using different random parameter seeds. Two
specific DN types are highlighted (DNb08 as stars, DNg100 as bolts, with their anatomy shown as insets).

The input to a given neuron i was a sum of firing rates {rj(t)} weighted by the synapse counts wij , and

any exogenous input Ii(t) to the neuron. A constant b scaled the synaptic inputs relative to the external

input and had the same value for all neurons. This summed input was then passed through a nonlinearity,

defined as a positive-rectified (indicated by [·]+) hyperbolic tangent, so that firing rates were non-negative

and gradually saturated at a maximum value (Fig. 1d).

Each model neuron had four biophysical parameters: gain ai, firing threshold θi, maximum firing rate

rmax
i , and time constant τi. We modeled these unmeasured cellular parameters as random samples from

biophysically plausible distributions. In other words, we did not fine-tune any parameters, and instead

simulated large numbers of computational replicates of each network (as was done in [43]), so that our

overall results are generally interpretable without precise knowledge of the 18,416 biophysical parameters

in the network. For each neuron i in each simulation, we drew its biophysical parameters from distributions

based in part on published physiological measurements of fly neurons [44, 42]; values were also consistent

with previous fly network models [45, 35]. We normalized the gain and threshold parameters to account for

the fact that larger neurons have proportionally lower input resistance and are therefore less excitable [46].

Note that no neuron had intrinsic bursting or other longer-timescale membrane properties. Details on the

construction and numerical implementation of simulations are elaborated in Methods.

We used our model to investigate descending control of rhythmic movement by conducting a computa-

tional activation screen of all 933 excitatory DNs (i.e., DNs predicted to release acetycholine). We activated

each DN with a step input and evaluated the output of motor neurons innervating the front legs over 16

random simulation replicates. Only a small fraction of DNs produced highly rhythmic activity in leg motor

neurons (Fig. 1e). To quantify the rhythmicity of simulated motor neuron activity, we developed a motor

rhythmicity score that was calculated from the autocorrelations of all active motor neurons, averaged over
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all replicates. The motor rhythmicity score was normalized between 0 and 1, where 0 is not rhythmic and 1

corresponds to perfectly periodic oscillations (see example traces in Fig. 1e). Out of the 933 DNs activated

in simulation, 184 (19.7%) failed to produce interpretable network activity (as defined in Methods) in all

replicates and could not be scored. Of the 749 remaining, 455 (60.7%, or 48.8% of the total) scored zero.

Only 37 DNs (4.9%, 4.0% of total) had an average score greater than 0.5 (Supplementary Table 1).

Activation screen results were qualitatively similar for the left and right front legs. In subsequent analyses,

we focus on two descending neuron types, DNg100 and DNb08, because every DN of these two types

produced among the highest rhythmicity scores.

DNg100 activation drives rhythmic leg motor neuron activity and con-

trols stepping frequency

DNg100 is among the only cell types known in flies to function as descending command neurons for walking;

a recent study found that optogenetically stimulating DNg100 neurons initiated forward walking, even in

headless flies ([47], where DNg100 is referred to as BDN2). To further investigate the impact of DNg100

activation in the VNC, we constructed simulations from two independent connectome datasets and found

that DNg100 activation consistently produced leg motor rhythms Fig. 2a–d. Specifically, we simulated

activation of the left DNg100 using the male (MANC, [27]) and female (FANC, [28]) adult nerve cord

networks, repeating 1024 replicates for each network, each with randomly drawn biophysical parameters.

In both networks, DNg100 reliably drove rhythmic activity in several front leg motor neurons (Fig. 2a–

d). Motor rhythmicity scores were comparable for FANC and MANC simulations, but more leg motor

neurons were recruited in the FANC network (Fig. 2c–d). These results suggest that the VNC network

downstream of DNg100 contains a CPG circuit.

To determine the extent to which leg motor rhythms depend on the precise synaptic weights mapped in

the connectomes, we repeated DNg100 activation after systematically adding noise to the weight matrix. In

particular, we perturbed W from the MANC dataset by adding noise ηij to each entry wij . The magnitude

of perturbations ηij was drawn from a normal distribution with standard deviation proportional to wij

(so that ηij ∼ N (0, σwij), where σ varied from 0 to 50%). Perturbed weights were truncated so that wij

could not change signs. In this way, perturbations preserved the structure of the connectivity matrix: no

new connections were added and no synapses changed sign. We found that motor rhythms were robust up

to 10% added noise (Fig. 2e). This value is close to the estimated uncertainty of the synapse counts in

connectome datasets, which reflects both real biological variability and computational errors in automated

synapse detection [26, 48]. These results suggest that motor rhythms generated by DNg100 arise from the

general structure of the connectivity matrix, rather than the precise synapse counts.

During walking, motor neurons are active with specific phase relationships among legs and between

antagonistic muscles. However, in flies, it remains unclear whether such coordination patterns are produced

centrally by feedforward mechanisms (e.g., CPGs) or require sensory feedback. By simulating bilateral

activation of DNg100 cells, we found that feedforward circuits downstream of DNg100 produced a consistent

phase offset between antagonistic muscles (coxa promotor and remotor) within the left leg (Fig. 2f).

Although the left and right leg motor neurons both had rhythmic activity, there was not a consistent

phase relationship between the two sides. In other words, our simulations produced signatures of motor

coordination within each leg, but descending drive alone was insufficient to produce realistic inter-leg

coordination.

Another unexpected result of our DNg100 simulations was that the oscillations produced in leg motor

neurons roughly matched the stepping frequency of real walking flies (∼7–15 Hz, [49, 50]). In our model,

oscillation frequencies were determined by the range of time constant parameters τ (Supplementary

Fig. 1, see also Methods for a mathematical relationship between frequency and τ in the linearized

system). Exploring other simulation parameters, we noticed that increasing the magnitude of DNg100

stimulation increased the frequency of motor neuron oscillations (Fig. 2g). Previous work had shown
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Figure 2: DNg100 produces rhythmic motor neuron activity in simulated connectome networks and
headless flies. a, Example activity of MANC network with DNg100 activation. Selected motor neurons (MNs) are
shown, with numbers corresponding to muscles they innervate in the anatomical diagram. b, Same as a for the FANC
network. c, DNg100 activation consistently produced motor rhythms in MANC and FANC (n=1024 replicates). d,
DNg100 typically recruited 2–5 motor neurons in MANC and 6–9 motor neurons in FANC (n=1024 replicates). e,
Motor rhythms were robust to noise perturbations of weights of the connectivity matrix up to 10% (n=512 replicates
per noise condition). Increasing noise also decreased MN recruitment and lead to unstable simulations (top). f,
When DNg100s were activated bilaterally, left coxa promotor and remotor MNs were activate with a reliable phase
offset (top), but left vs right coxa promotor neurons had no consistent phase relationship (bottom). Each subplot
shows mean ± std of motor neuron activities (n=1024 replicates) after aligning to the peak of MN 1 (promotor).
g, Increasing amplitude of activation to DNg100 increased motor neuron oscillation frequency in MANC network
(n=512 replicates per condition). Simulations with no active motor neurons were omitted. Green shaded regions
are distributions of frequencies, and black bars indicate medians and quartiles. h, VNC expression of Split-Gal4
line labeling DNg100 neurons (DNg100>CsChrimson, [47]). i, Example coxa-femur and femur-tibia joint kinematics
of front left leg during optogenetic activation of DNg100 neurons in a headless fly on a spherical treadmill. j, At
higher optogenetic stimulus intensities, flies walked with higher forward velocity (mean ± 95% c.i., shown for three
intensities, n=7 flies, 8 trials per fly). k, Stepping frequency of the left front leg increased with laser intensity (p
= 0.032, 0.352, and 0.042 for paired t-tests comparing low-medium, medium-high, and low-high laser intensities,
respectively).
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that optogenetically activating DNg100 neurons is sufficient to drive walking in headless flies ([47], see also

Supplementary Video 1), but different stimulus intensities were not explored. To test this prediction

experimentally, we expressed CsChrimson in DNg100 neurons and then optogenetically activated them

in decapitated flies on a spherical treadmill (Fig. 2h–i, Supplementary Fig. 2). We found that

increasing the laser intensity led to an increase in forward velocity and stepping frequency (Fig. 2j–k).

This experiment confirmed predictions from our connectome simulations and suggests that the oscillation

frequency of the CPG for walking is controlled by the strength of descending input from DNg100.

A core CPG circuit of three interneurons

Our connectome simulations offered an opportunity to understand how sustained descending commands

from DNg100 are transformed by the thousands of cells in the VNC network into rhythmic motor activity.

The circuitry linking DNg100 to leg motor neurons is extensive and highly recurrent (Fig. 3a), so un-

derstanding this transformation would be challenging using conventional connectome analyses that trace

feedforward pathways.

To identify a minimal circuit capable of rhythm generation, we started from VNC network simulations

with DNg100 activation, just as in Fig. 2, and designed a computational sufficiency screen. At each

iteration of this screen, we stochastically silenced one interneuron, selected with a probability inversely

proportional to its activity. If leg motor oscillations persisted (rhythmicity score >0.5), that cell was

pruned from the network (Fig. 3b, see Methods for additional details). However, if the oscillations ceased

(rhythmicity <0.5), the cell remained in the network. Each replicate of the screen terminated when none

of the remaining cells could be silenced without disrupting leg motor neuron rhythms. The goal of the

screen was to prune the network to a minimal, core subcircuit sufficient to generate leg motor rhythms in

response to sustained DNg100 activity.

Independent computational sufficiency screens repeatedly converged to a minimal circuit of just three

neurons, two excitatory and one inhibitory (Fig. 3c, in MANC, 636/1024 (62.1%) pruning screens con-

verged to this same circuit). These three cells, which we refer to as “E1” (IN17A001), “E2” (INXXX466),

and “I1” (IN16B036) for clarity, are interneurons local to the front left leg neuropil. The same approach

applied to the FANC network converged to a circuit of four interneurons (70.4% of 1024 pruning screens),

which also included E1 and E2, but identified a different inhibitory neuron “I2” (IN19A007) and one

additional excitatory interneuron “E3” (IN19B012). Although several other solutions were found by the

pruning screens, the minimal circuits nearly always included both E1 and E2 (Fig. 3c–d). A detailed list

of the circuits and cells identified by the pruning screens are found in Supplementary Tables 2 and 3.

In the minimal three-neuron circuit, E1, E2, and I1 are connected all-to-all, but with particularly strong

connections E1→E2, E2→I1, I1→E1, and I1→E2 (Fig. 3f). Only E1 receives direct synaptic input from

DNg100. Thus, the predominant mechanism for rhythm generation is that DNg100 drives E1 to excite

E2, amplifying the excitation, and E2 then recruits I1 to inhibit both excitatory neurons after some delay

(corresponding to the time-constant parameter τ in our model). Since I1 does not receive any direct input

from DNg100, E1 is disinhibited after the drive to I1 is released. This pattern of activity repeats cyclically

as long as DNg100 provides excitation. A model of this three-neuron circuit that retains only the E1→E2,

E2→I1, and I1→E1 connections still produced oscillatory activity (Supplementary Fig. 3b). All of the

excitatory cells in the circuit connect to multiple motor neurons that innervate muscles throughout the leg

(Fig. 3f). Thus, the differential patterns of excitation produced by E1 and E2 activate motor neurons at

consistent phase offsets relative to each other (Fig. 3g).

In further support of our numerical simulation results, an eigendecomposition of the linearized dynami-

cal system corresponding to the three-neuron model has one complex-conjugate pair of eigenvalues with an

oscillation frequency of ∼14 cycles per second (Supplementary Fig. 4a). To confirm that our results do

not rely on the specifics of a firing-rate model, we simulated the same circuit with leaky integrate-and-fire

neurons and found similar patterns of rhythmic spiking activity (Supplementary Fig. 5).
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The E1-E2-I1 circuit is sufficient, and both E1 and E2 are necessary, to produce leg motor rhythms

in response to DNg100 activation. Motor rhythmicity scores of the three-neuron circuit were comparable

to the full VNC network across independent simulation replicates (Fig. 3h). Unlike in the full network,

increasing input magnitude to DNg100 in the three-neuron circuit does not change the frequency of motor

neuron oscillations (Supplementary Fig. 3a). Silencing either E1 or E2 in the full VNC network models

abolished all rhythmic activity (Fig. 3i). This necessity is consistent with the fact that E1 and E2 were

present in nearly all circuits from the pruning screen, across multiple legs and both connectome datasets

(Fig. 3c–d, Supplementary Figs. 6 and 7). The circuit requires strong inhibition, but the identity of

the inhibitory cell is not unique across replicates of the pruning screen. I1 and I2 were not necessary in

the full MANC and FANC network models respectively (Fig. 3i), where inhibition from either neuron was

compensated for by other redundant inhibitory neurons.

The minimal three-neuron CPG circuit is repeated in the neuropils of all six legs of both connectomes

(Fig. 3e, Supplementary Fig. 8), suggesting the presence of a conserved circuit motif for rhythm

generation across leg segments. Because neurons in our model lack intrinsic bursting properties, we propose

that the walking rhythm can be generated by a network oscillator mechanism. Taken together, our modeling

results support the hypothesis that E1-E2-I1 form the core of a CPG circuit for forward walking in each

leg neuropil.

A separate class of descending neurons recruits an overlapping rhythm-

generating circuit

Having isolated a CPG circuit downstream of DNg100, we returned to examine the other DNs that gener-

ated leg motor rhythms from our initial computational screen. One cell type, DNb08, stood out because it

consists of four neurons (two per side) that all produced high rhythmicity scores (Fig. 1e, Supplemental

Table 1). Although a study had created genetic driver lines for DNb08 neurons [51], their function had not

been previously investigated. Similar to DNg100, we found that activating one DNb08 neuron in the full

network simulation consistently produced rhythmic activity in multiple leg motor neurons (Fig. 4a–b). In

an experiment that tested these model predictions, we found that optogenetically activating DNb08 cells

in decapitated flies produced rhythmic leg movements (Fig. 4c–e, Supplementary Video 2). These

movements were different from the coordinated walking pattern of DNg100 stimulation—they resembled

the searching or flailing movements that insects exhibit when their legs are not in contact with the ground

[52]. Indeed, DNb08 evoked leg movements more reliably when the spherical treadmill was removed and

the legs were not in contact with the substrate. Overall, these results illustrate how network simulations

can predict the motor function of previously unstudied cell types from the connectome.

To isolate the core circuit that generates rhythmic activity downstream of DNb08, we repeated our

computational sufficiency screen. In nearly half (45.4%) of the 1024 replicates, the screen converged to a

circuit of five interneurons (Fig. 4f). This most common minimal circuit included the same E1 and E2

neurons from the core walking CPG, in addition to two other excitatory neurons “E4” (IN03A006) and

“E5” (INXXX466) and an inhibitory neuron I2 (IN19A007); see Fig. 4g–h and Supplementary Table

4. Unlike DNg100, DNb08 is only weakly presynaptic to E1, but E4 and E5 are both postsynaptic to

DNb08 and provide strong input to E1. I2 provides strong feedback inhibition onto all four excitatory

interneurons. Thus, the primary mechanism for rhythm generation is the same as in the core walking CPG

circuit, where several mutually excitatory neurons activate an inhibitory neuron after some delay, which

then strongly inhibits all of the excitatory neurons. Silencing each of the excitatory neurons (E1, E2, E4,

E5) in the full network severely degraded rhythmic motor patterns, but silencing I2 did not (Fig. 4i). The

overlap between the DNg100 and DNb08 minimal CPG circuits suggests that DNs supporting different

behaviors recruit overlapping subnetworks that share a core rhythm-generating mechanism.
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Figure 4: DNb08 produces rhythmic leg movements in simulations and headless flies, and its down-
stream network converges to an overlapping minimal circuit. a, Activation of DNb08 in the full MANC
network produced rhythm leg motor activity. All active motor neurons are shown. Muscle innervation of MNs
are indicated below. b, DNb08 activation consistently produced leg motor rhythms (n=1024 replicates). c, VNC
expression of Split-gal4 line labeling DNb08 neurons (SS70620>CsChrimson). d, Femur-tibia joint kinematics in
front and middle legs during optogenetic activation of DNb08 neurons in headless flies (see Supplementary Video
2). e, Activating DNb08 produced oscillatory movement of the front and middle legs (n=10 flies, 8 stim-on and
4 stim-off trials per fly). Mean and error bars (95% c.i.) computed across means of individual flies (p = 0.036,
0.004 for paired t-tests comparing stimulus on vs. off trials for front and middle leg, respectively). Violin plots
show overall distributions over all trials. f, Minimal circuits identified by pruning. Top: Number of interneurons
within minimal circuits across 1024 independent simulations (32 screens did not converge to 20 or fewer interneurons
and are not shown). Bottom: Percentage of screens in which minimal circuits contained specified interneurons (see
Supplementary Table 4 for full list of cell identities). g, Connectivity of the minimal rhythm-generating circuit
downstream of DNb08 (MANC). Triangles and circles indicate excitatory and inhibitory connections, respectively.
Synapse counts are summed across all left leg motor neurons. h, Synaptic weight matrix for all cells identified in
either DNg100 and DNb08 minimal circuits (MANC) reveals strong shared circuitry (E1 and E2) and a common
motif of excitatory-inhibitory connections. i, In full MANC network simulations, individually silencing E1, E2, E4,
and E5 abolished leg motor rhythms, but silencing I2 did not.
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Discussion

A putative CPG circuit for fly walking

By simulating the dynamics of Drosophila VNC connectomes, we identified a putative central pattern

generator (CPG) circuit for walking that consists of three neurons (Fig. 3f). Each DNg100 neuron synapses

onto more than 1400 cells in the VNC, which would have made it prohibitively difficult to pinpoint a CPG

circuit using traditional connectivity analyses. We isolated the core CPG circuit with a computational

sufficiency screen that iteratively pruned the VNC network downstream of DNg100 while preserving leg

motor neuron rhythms. The three core CPG neurons and their synaptic connectivity patterns are repeated

in each of the six leg neuropils and across multiple connectomes of the fly VNC. Computational pruning of

the network downstream of DNb08, a separate pathway that we found also drives rhythmic leg movements,

converged on a five-neuron circuit that included the same two excitatory neurons present in the core CPG.

From the connectome, we see that the interneurons identified by our computational pruning screens receive

input from other walking-related descending neurons, including DNg97 (oDN1, [47]) and DNg74 (web, [53]),

as well as grooming-related neurons DNg12 [54] and DNg62 (aDN1, [55]) (see Supplementary Table 5).

Based on this convergence, we hypothesize that many rhythmic limbed behaviors rely on the same core

CPG in each leg. In other words, we suggest that multiple motor patterns are generated in the fly VNC by

modulating the frequency and phase of the core CPG circuit, sometimes by recruiting additional cells, rather

than switching among multiple, non-overlapping CPGs. This idea is consistent with past work showing

that pattern-generating circuits are multifunctional [56, 57], in that the same neurons can participate in

the generation of different behaviors.

Our simulation results make a suite of predictions that motivate future experiments. Here, we carried

out feasible experiments using existing genetic reagents, which confirmed that DNg100 activity controls

walking speed (Fig. 2i–k) and that activation of DNb08 drives rhythmic leg movements (Fig. 4d–e).

Further experiments will require the creation of new genetic driver lines that specifically label the in-

terneurons in the core CPG circuit. Our simulations predict that optogenetically silencing E1 and/or E2

neurons will abolish rhythmic leg movements driven by DNg100. In contrast, in addition to I1, there exist

multiple inhibitory cells, with similar connectivity onto E1 and E2, that are likely sufficient to produce

rhythmic inhibitory feedback in the CPG network. Electrophysiological recordings will be required to

test whether these cells exhibit nonlinear membrane properties (e.g., intrinsic bursting, plateau potentials,

post-inhibitory rebound) that have been found in other CPG circuits. The cells in our model did not pos-

sess any of these properties, suggesting that the core CPG can operate as a network oscillator. However,

it is also possible that cells in the circuit are intrinsically bursting or possess other membrane properties

that contribute to rhythm generation.

Limitations and future extensions of the model

Activating DNg100 neurons in our connectome simulations recruited motor neurons that innervate muscles

throughout the fly leg. Some muscle pairs were activated with naturalistic phase relationships. For example,

during forward walking, the coxa promotor muscle swings the leg anteriorly during the swing phase,

while the coxa remotor moves the leg posteriorly during stance. In our simulations, these antagonistic

muscles displayed a phase offset that resembles that recorded in other walking insects [5]. However,

other key muscles likely active during walking were either silent or non-rhythmic (e.g., the main tibia

flexors [46]). This suggests that although the feedforward signals from the CPG circuit may be sufficient to

initiate cyclic stepping movements, the naturalistic pattern of muscle activation likely relies on additional

factors, including proprioceptive feedback, mechanical coupling, activity of other DNs, or neuromodulation.

This idea is consistent with extensive evidence that feedforward CPG rhythms and sensory feedback act

cooperatively during locomotion [6, 58].

In the full DNg100 network model, the frequency of the motor rhythms of the legs increased with
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higher magnitudes of DNg100 activation, a prediction that we confirmed experimentally using optogenetic

manipulations in behaving flies. However, the minimal three-neuron CPG model did not exhibit frequency

modulation. In the future, it may be possible to use extensions of computational sufficiency screens to

identify larger circuits that support frequency modulation and other higher-order network properties.

Our DNg100 simulations did not produce the tripod inter-leg coordination pattern characteristic of

hexapod walking. Several VNC neurons connect the left and right CPG circuits, but their inclusion in

our simulations was insufficient to couple the phase of the left and right legs. Additional proprioceptive

feedback, biomechanical coupling, or other neural pathways may be necessary to organize stepping phase

and produce tripod-like interleg coordination. In the future, it may be possible to test these hypotheses by

coupling VNC connectome simulations to control and receive feedback from biomechanical models of the fly

body interacting with a simulated physical environment [59, 60]. Such an extension would require adding

biologically realistic interfaces of proprioceptive sensors and muscle actuators. DNs are also recruited as

populations, due to high levels of interconnectivity in the brain [61], so future models could incorporate

connectivity between DNs within the brain using the recent Drosophila brain and nerve cord (BANC)

connectome dataset [62].

Theory of minimal rhythm-generating networks

In a neural network constructed with basic threshold-linear units, a three-neuron circuit consisting of two

excitatory cells and one inhibitory cell is a mathematically minimal model for rhythm generation. Similar

minimal networks were studied in early neural network theory by Amari [63], who showed that a limit cycle

solution emerges within a specific regime of synaptic weights between a pair of cells, one excitatory and

one inhibitory. In this minimal two-neuron circuit, the excitatory cell must excite itself (i.e., via autapses).

Because neurons in the fly CNS rarely form autapses [28, 27], a minimum of two excitatory cells that excite

each other are necessary [64], as we found in our three-neuron CPG circuit. Further, for oscillations to

emerge, the circuit must provide inhibition onto excitatory units; all minimal circuits our pruning screen

identified followed this same architecture, including the five-neuron circuit downstream of DNb08. Beyond

minimal rhythm-generating networks, larger inhibition-dominated circuits may be designed to support

flexible motor patterns, such as distinct gaits [65] and variable oscillatory network dynamics [66].

The mathematical mechanism by which the three-neuron CPG circuit generates rhythms is closely

related to oscillatory networks of coupled non-neural biological components, including evolved and synthetic

gene circuits. For example, circadian rhythms in cyanobacteria are maintained by three genes, the kaiABC

cluster, which form a pacemaker through positive and negative feedback interactions [67]. In synthetic

biology, the oscillator circuit known as the repressilator combines three transcriptional regulators, in this

case arranged to cyclically inhibit each other [68]. Another oscillatory circuit with tunable periodicity

was designed with two transcriptional regulators, one self-activating unit that also activates an inhibitory

unit, which in turn inhibits the first [69]. Similar to our three-neuron circuit, where the E1-E2 connection

may be crucial in amplifying DNg100 excitation and introducing a time delay in activation, these genetic

circuits require time-delayed feedback to produce oscillations.

Connectome simulations as a discovery tool

Beyond walking, our simulation approach may be used to discover functional microcircuits in other connec-

tomes that produce specific patterns of neural dynamics. A key consideration in designing such computa-

tional simulations is the interpretability of the model’s inputs and outputs. The outputs of our simulations

were leg motor neuron firing rates, which are closely related to motor behavior, thus allowing us to test

predictions from our simulations with optogenetic experiments in behaving flies. We were surprised that

our modeling results were generally robust across a range of biophysical parameters and variation in synap-

tic connectivity. One reason may be that our criteria for success, rhythmic activity of leg motor neurons,

was quite permissive. Another reason may be that the core CPG circuit is hardwired to operate robustly

across a wide range of environmental conditions and behavioral contexts [70].
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To investigate ethological behaviors where movements are coordinated over longer timescales than a

single walking bout, connectome simulations may need to incorporate other circuit and cellular parame-

ters such as receptor and ion channel expression, neuronal morphology, neuromodulation, and plasticity.

Machine-learning approaches, such as reinforcement learning, may also help fine-tune connectome simula-

tions to achieve more complex motor patterns and behavioral sequences embodied in a biomechanical fly

body model (as was done with artificial neural networks in [71] and [60]). Overall, our work shows that

network simulations, when pursued in close collaboration with biological experiments, can predict circuit

dynamics from static connectomics and are a compelling approach to study the neuronal control of animal

behavior.
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Methods

VNC connectome datasets: MANC and FANC

Our VNC connectome simulations were constructed based on two published datasets, the male (MANC, [27])

and female (FANC, [28]) adult nerve cord connectome datasets. Unless stated otherwise, simulation results

throughout the manuscript are from the MANC dataset, because it is more comprehensively proofread.

To select a subset of cells to simulate from the entire MANC dataset, we first selected all front leg motor

neurons (class “motor neuron”, subclass “fl”). Next we added all front leg premotor neurons by querying

for any neuron that made synaptic outputs onto any of those leg motor neurons. Finally, we added all de-

scending neurons (class “descending neuron”) that made any synaptic outputs onto the front leg premotor

neurons. After collecting this initial set of neuron IDs, we filtered for neurons that were proofread and

had been assigned a neurotransmitter prediction. In this way, we constructed the front leg motor network

W (as illustrated in Fig. 1b), defined as the set of recurrent connections between any nodes in this set.

Each element |wij | was the number of synapses detected from neuron j to neuron i. To remove very weak

connections and a small number of neurons that made only very weak connections to this network, we

imposed a floor of 5 synapses. The sign of wij was assigned to be positive if the presynaptic neuron j

was predicted to be cholinergic and negative if neuron j was predicted to be GABAergic or glutamatergic

(according to the “predictedNt” property).

In the FANC connectome simulations, we applied an analogous set of criteria to construct W. We

restricted the network to the left front leg because this neuropil is the most thoroughly proofread and

annotated [28, 30]. We started with front left leg motor neurons (from motor neuron table v7 CAVE

annotation table), then added local premotor neurons (i.e., those with neurites constrained to the front

left leg neuropil, from left t1 local premotor table v6), and the single descending neuron DNg100. As in

MANC, the network consisted of all recurrent connections among these neurons, with |wij | being synapse

counts. Unlike the MANC dataset, the FANC dataset does not have an automated classifier to predict the

neurotransmitter for each neuron. However, the developmental hemlineage of neurons with somas within

the VNC can be determined anatomically and is highly predictive of the neurotransmitter released by each

neuron [30]. Therefore, we used the hemilineage annotations from the corresponding CAVE tables[72] to

assign a positive or negative sign to each cell’s output. The only exceptions to this approach were made

because of a set of discrepancies we noticed between the FANC and MANC datasets in hemilineage as-

signments. Specifically, 4 neurons (segIDs 72905112552773752, 72975481296715415, 72975481363813393,

72905112552782067) are grouped with glutamatergic hemilineages in FANC so would be considered in-

hibitory, but the same cells in MANC (bodyIDs 162543, 11751, 13246, 15115) have an indeterminate

hemilineage assignment of “TBD”. In MANC, an independent neurotransmitter classifier predicted that

all 4 of these neurons are cholingergic (with probability > 0.81), so they would be excitatory. Taken to-

gether, we reasoned that since there is no agreement on hemilineage assignments and high probability scores

from the MANC neurotransmitter prediction, so these four cells are more likely excitatory. Therefore, we

assigned their output synapse weights to be positive.

Connectome simulation models

We developed a firing rate model to simulate the activity (rate r(t) in Hz) of every cell in the network as

a function of its synaptic connectivity and external inputs I(t) (Equation 1). The form of this equation

follows a standard formulation of a firing rate model [73]. Each cell had four biophysical parameters; below,

we elaborate on how these parameters were randomly chosen for each replicate of the simulation.

We chose the input nonlinearity to be a positive-rectified hyperbolic tangent function [tanh(x)]+, where

[x]+ denotes max(x, 0). The function was parameterized as f(x) = [rmax tanh( a
rmaxx− θ)]+ so that param-

eters have straightforward interpretations. In particular, rmax is the upper bound, θ is the minimal input

needed to produce a nonzero output, and a is the slope at this threshold value (a = limx→θ+
df
dx) (Fig. 1d).
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Although this nonlinearity has an upper bound rmax, in most of the rhythm-generating simulation results

presented in this paper, the firing rates stayed well within the approximately linear regime, so that the

neural dynamics could have been effectively captured by a simpler nonlinearity (e.g. ReLU). However, we

chose the rectified tanh function because some simulations led to oversaturated or unstable output (e.g., in

some DN activation screens and noise perturbation shuffles), so that capping firing rates supported more

stable numerical solutions.

Biophysical parameter distributions

For each cell and in each random replicate of the simulation, we drew its biophysical parameters from normal

distributions truncated at zero, then normalized two of the parameters by neuron size (as elaborated below).

Across all simulations, the gain (before size normalization) was a∗ ∼ N (1, 0.1), the threshold (before size

normalization) was θ∗ ∼ N (7.5, 0.6), the max firing rate was rmax ∼ N (200, 10) Hz, and the time constant

was τ ∼ N (0.02, 0.002) sec. Next, a∗i was divided by the median-normalized size of each neuron i, and θ∗i
was multiplied by the median-normalized size of each neuron i, resulting in distributions for a and θ with

long tails (Fig. 1d).

Our choice of these parameter distributions was based on a combination of physiologically feasible

ranges reported in the literature and a hyperparameter search. Since rmax and τ have direct biological in-

terpretations, we used reasonable ranges for firing rate limits and time constants, respectively, of Drosophila

neurons given experimental literature [44, 42] and consistency with previous fly neuron simulation stud-

ies [45, 35]. In our model, gain was dimensionless and units of input were arbitrary, since voltage was not

directly modeled. Therefore, values of θ and a have no direct biological analogs. In our hyperparameter

search, we evaluated a grid of values for the four biophysical parameters as well as the synaptic scaling

constant b on a set of simple monosynaptic connections. In this test network, we chose ranges of values

that produced consistent activity in downstream neurons when stimulated with input, but this activity

also decayed to quiescence after input was removed.

To normalize θ and a by neuron size si, we used morphological data from FANC and MANC. For

each cell, a∗ and θ∗ were randomly drawn from the distributions described above, then gain was divided

by si and threshold was multiplied by si. In MANC, we used the available volume property. In FANC,

we accessed the neuron meshes in the reconstruction to calculate the surface area of each cell. In both

datasets, we took the ratio of each cell’s size to the median cell size in the dataset as the value used to scale

gain and threshold. We reasoned that, in most neurons, a significant amount of cell volume is accounted

for by the approximately cylindrical neurites, so that volume is approximately linearly related to surface

area, which is the determining factor for input resistance. This approach allowed us to account for the

general differences in excitability between large and small neurons, and this consideration was critical in

our simulation results. Other connectome analyses have normalized the strength of synaptic connections

by the total number of synaptic inputs received by the postsynaptic cell [74], which is similar to size

normalization, since large neurons tend to receive many synapses.

Implementation of numerical simulations

To compute solutions to the firing rate models of our connectome simulations, we implemented a numerical

differential equation solver using the GPU-accelerated numerical computing library JAX [75]. Our solver

used Diffrax [76] with the Runge-Kutta integration method of order 5(4) (diffrax.Dopri5()). Error

tolerances were chosen to be rtol=2e-6 and atol=5e-9, based on hyperparameter searches of values that

minimized both runtime and sum-squared error when compared to a reference run with very small error

tolerances. Run on 4 Nvidia L40s GPUs, 1024 replicates of the DNg100 activation in the full front leg

MANC model typically ran in ∼18 minutes.
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Leaky integrate-and-fire model

To confirm that the rhythm generating behavior of the core CPG circuit does not depend on our specific

firing-rate model formulation, we simulated the dynamics of the same connectome weights using a spiking

neuron model. We implemented a leaky integrate-and-fire (LIF) model based on the same parameter values

from previous work [35], without fine tuning or training. Specifically, we used the following parameters:

Vrest = −52 mV, Vreset = −52 mV, Vthresh = −45 mV, trefractory = 2.2 ms, τmembrane = 20 ms, τsynaptic = 5

ms, wsynaptic = 0.275 mV, tdelay = 1.8 ms, Vinit = −52 mV, dt = 0.01 ms, simulation time = 3 s, network

input = 0.15 nA. The membrane time constant was not specifically mentioned in [35], so we computed it

based on the membrane resistance Rm = 10 kΩ cm2 and membrane capacitance Cm = 2 µF cm−2 values

reported to arrive at τmembrane = RmCm.

Linearized dynamical system analysis

We performed an eigendecomposition of the linearized dynamical system corresponding to the full MANC

network and the minimal circuit (core CPG circuit and DNg100) to confirm the oscillatory behavior and

oscillation frequencies observed in simulations. For this analysis, we simplified the dynamical system

equation to τ dh
dt = −h+ϕ(Wh+ I), then discretized and linearized it to ht+dt = (1−α+αgW)ht +αgI,

where α = dt/τ , and g is the non-linearity gain at time t, which is potentially different for each neuron

(column-wise multiplication with W, element-wise multiplication with I). With W∗ ≡ 1− α+ αgW, we

decomposed the dynamics matrix by eigendecomposition and denoted vectors expressed in the eigenbasis

by a hat ·̂. In this basis, we find ĥt+dt = D∗ĥt+αgÎ, where D∗ is the diagonal form of W∗ with eigenvalues

λ∗ = 1− α+ αgλ.

The system is oscillatory if it has pairs of complex-conjugate eigenvalues. We simplified the solution to

find the oscillation frequency of the system. We let λ∗ ≡ a∗+ ib∗ ≡ r∗eiθ
∗
, where θ∗ = atan2(b∗, a∗). Thus,

we found ĥk,i ∼ r∗k+1ei(k−1)θ∗ − r∗e−iθ∗ − r∗keikθ
∗
+ 1. We computed the oscillation frequency according

to f = 1/(∆kdt), where we chose ∆k such that ĥk,i and ĥk+∆k,i have the same phase. With α ≪ 1, then

r∗ ≈ 1, and we found ∆k ≈ 2π/θ∗, and finally f = atan2(αgb,1−α+αga)
2πdt .

To analyze the network dynamics matrix W and the core CPG network, we scaled each neuron’s gain

according to its size (as described above in Biophysical parameter distributions), then multiped by an

overall gain factor of 0.75 to approximate the simulated nonlinearity (scaled tanh function). Calculations

used an average time constant of τ = 20 ms and a timestep dt = 0.01 ms. For the minimal CPG network,

the eigenvalues of W∗ were {0.9908 + 0.0879j, 0.9908 − 0.0879j, 0.8683, 0.95}, confirming the oscillatory

nature of the system with an oscillation frequency of approximately 14 Hz.

Motor rhythmicity score

To quantify the degree to which circuit simulations generated rhythmic activity patterns in leg motor

neurons, we developed a motor rhythmicity score that was used throughout the paper to evaluate and

screen circuit models. Our goal was to devise a simple metric, based on autocorrelations, with the property

that repeating signals would receive high scores even if they were not necessarily symmetric waveforms

(e.g., both a sine wave and a sawtooth would receive a high score).

The motor rhythmicity score assigned to each simulation was computed as the average of rhythmicity

scores for all active motor neurons. A motor neuron was included if its ri(t) > 0.01 at any time after

t = 250 ms. To compute a motor neuron’s rhythmicity score, we take the trace of its activity after the

initial transient response until the end of the simulation (250 ms to end). This trace was normalized

so that it is between −1 and 1, r̂(t) = 2 r(t)−min(r)
max(r) − 1. We then computed the autocorrelation of r̂

and detected peaks in this autocorrelation, with a prominence threshold of 0.05. The “raw score” for this

neuron was assigned as the smaller of the maximum peak height (magnitude above zero) and the maximum

peak prominence (magnitude between peak and valley). Using the time shift ∆t value at which the most

prominent peak occurred as the period of the dominant rhythm, we then computed the same score for a
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reference sinusoidal waveform with the same frequency and total duration. To normalize the rhythmicity

score between 0 and 1, we divided the raw score by the reference score of this frequency-matched sinusoidal

signal. Examples of individual motor neuron traces with their scores are shown in Fig. 1e. If a motor

neuron is active, but there is no prominent peak in the autocorrelation, the neuron received a score of 0.

Kinematic rhythmicity score

To quantify the degree to which leg joint kinematics were rhythmic in DNb08 activation experiments

Fig. 4e, we used the same calculation as the motor rhythmicity score to evaluate individual joint angle

traces. We used the joint angle during a 2 second time window, beginning 0.5 seconds after stimulus onset.

Traces for which the detected peak frequency was slower than 1 Hz were assigned a score of 0.

Descending neuron activation screen

We conducted a computational screen in which each of the 933 putative excitatory descending neurons

(DNs) in our model was stimulated with a tonic input, and we assessed how much motor neuron outputs

driven by that DN was rhythmic (as quantified by the motor rhythmicity score). We conducted this

activation screen in a network constructed from MANC because this dataset included neurotransmitter

predictions of all DNs; our FANC network was used to investigate the DNg100 circuit specifically and

only contains that descending neuron. Each simulation replicate was 1 second in duration, with the tonic

input stimulus onset at 20 ms. Because the input strength Istim was arbitrary in magnitude in our model,

we automatically tuned Istim over a range of values depending on if the simulation was underactive or

oversaturated. Underactive simulations were defined as having fewer than 5 neurons recruited in the whole

network, and oversaturated simulations were defined as having more than 500 neurons recruited, because

such simulations were generally unstable. If the simulation was underactive, Istim was doubled, or set to

the midpoint to the next highest value that had been tried. If it was oversaturated, Istim was halved,

or set to the midpoint to the next lowest value that had been tried. In each replicate, this automated

adjustment was repeated up to a maximum of 10 times to try to achieve a reasonable stimulus strength.

If after these 10 iterations, the simulation was still underactive or oversaturated, it was consider infeasible

and the motor rhythmicity score for this replicate was not computed (set to NaN). Out of the 933 neurons

screened, 749 (80.3%) had at least one feasible replicate out of 16, and 694 (74.4%) had at least 5 feasible

replicates. Reported motor rhythmicity scores for each neuron (Fig. 1e, Supplementary Table 1 and

6) were the mean score of the feasible replicates.

Computational sufficiency screen with iterative pruning

We developed an iterative procedure to isolate a subset of cells in the full network that were sufficient to

generate rhythmic motor patterns in a reduced model (illustrated in Fig. 3b). We started with a full intact

network and one random seed for the biophysical parameters of its cells (these parameters were frozen for

all iterations in one pruning procedure). As in the DN activation screen, simulations were 1 second in

duration and consisted of a tonic input to a single descending neuron with an onset at 20 ms. For DNg100

activation, Istim = 250 in MANC and 150 in FANC (these activations have arbitrary units and were set by

the procedure described in the activation screen). For DNb08 activation, Istim = 65. Leg motor neurons

were not considered by the pruning screen, so they all remain present in all simulated networks.

Each replicate of the computational sufficiency screen executed the following stochastic procedure to

prune neurons from the model network, until convergence to a minimal network according to the stopping

criterion. First, all neurons that were not active were pruned from the network. Thereafter, at each

step, one additional neuron was chosen to be silenced, with a probability inversely proportional to its

maximum firing rate at the last iteration. We then simulated DN activation of this new network and

evaluated its motor rhythmicity score. If the motor rhythmicity score of this pruned network still exceeded

a threshold value (≥ 0.5), this silenced neuron, along with any inactive neurons, were permanently pruned
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in the next iteration. If the motor rhythmicity score of a pruned network fell below the threshold, then

it was returned to the network. This procedure was then repeated by choosing another neuron to silence.

Finally, the stopping criterion was when no neuron in the pruned network could be removed without

producing a motor rhythmicity score below threshold, at which point we considered the pruning screen to

have converged. The remaining cells in the network formed a sub-circuit (with the DN input, recurrent

network of interneurons, and all motor neuron outputs) that was sufficient to generate rhythmic activity,

in the sense that they were computationally isolated from the initial full network simulation. Because the

biophysical parameters and the choices of neurons to silence were stochastic, we repeated the screen 1024

times for each full network (MANC and FANC) activated by each DN (DNg100 and DNb08).

Fly behavior and optogenetics experiments

Genotypes used

Name Genotype Figures

DNg100>CsChrimson w[1118]/w[1118]; VT058557-GAL4.AD/+;

R85F12-GAL4.DBD/20xUAS-CsChrimson-tdTomato

su(Hw)attP1

2h,i,j

S2

SS70620>CsChrimson w[1118]/w[1118]; P{y[+t7.7]

w[+mC]=R94D12-p65.AD}attP40/+; P{y[+t7.7]

w[+mC]=VT031392-GAL4.DBD}attP2/20xUAS-
CsChrimson-tdTomato su(Hw)attP1

4d,e

Optogenetics experiments with 3D joint kinematics

Methods for behavioral experiments were previously described in [42]. Briefly, female flies were cold-

anesthetized, de-winged, decapitated, and tethered (0.1 mm tungsten rod) with UV glue (KOA 300). For

DNg100 experiments, we used flies that were 10–12 days old, as in [47], because this produced more

robust walking behavior, possibly due to accumulated CsChrimson expression. For DNb08 experiments,

we used flies that were 2–5 days old. Each fly recovered for 10–15 minutes before being positioned in the

behavioral arena. For DNg100 experiments, flies were postioned on an air-supported spherical treadmill

(0.13 g, 9.08mm diameter). To activate DNs, a LED laser (638 nm, 1200 Hz, 30% duty cycle, Laserland)

was focused at the body-coxa joint of the front left leg. Each trial consisted of 5 seconds pre-stim, 5 seconds

stim-on, and 5 seconds post-stim, for a total trial length of 15 seconds. Trials were run in blocks of 12:

8 experimental trials with the LED laser stimulus on and 4 control trials where the stimulus was off. We

recorded each trial using 6 high-speed cameras (300 fps; Basler acA800–510 µm; Balser AG) and tracked

3D leg joint kinematics using DeepLabCut [77] and Anipose [78]. The movements of the ball were recorded

with a FLIR camera (FMVU-03MTM-CS, 30 FPS) and processed with FicTrac [79] to read out the forward

velocity of the fly. We used a custom Python script to analyze kinematics based on the Anipose tracking

data. Stepping frequency was computed on the tracked tarsus tip position along the anterior-posterior

axis of the fly during the stimulus period. The frequency of each trial was calculated as the inverse of

the average time between peaks, which was detected with scipy.signal.find peaks using a minimum

prominence of 0.15 and a minimal temporal distance of 50 ms.

To test DNg100 modulation of walking speed in headless flies, we used laser intensities of 0.03, 0.09,

and 0.33 mW/mm2 (8 experimental trials of each intensity per fly). DNg100 activation produced forward

walking on the ball, but at a lower speed than is typical of wild-type flies [50]. They generally exhibited a

tetrapod coordination pattern (Supplementary Fig. 2).
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Supplementary Materials

Supplementary Video 1: Optogenetic activation of DNg100 neurons drives walking in headless flies.

Corresponds to experimental data in Fig. 2i–k.

Supplementary Video 2: Optogenetic activation of DNb08 neurons drives oscillatory leg movements in

headless flies. Corresponds to experimental data in Fig. 4d–e.
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Supplementary Figure 1: Time constant (τ) vs. motor neuron frequency. a, Adjusting the mean τ in
parameter distributions did not affect the distribution of motor rhythmicity scores. b, The frequency of the motor
neuron oscillations is inversely proportional to the mean τ value.
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Supplementary Figure 2: Interleg coordination patterns during optogenetic DNg100 activation in
headless flies. a, Probability of n legs being in stance simultaneously during DNg100-driven walking, with n from
0 to all 6 legs, at each laser intensity. b, Relative phase between legs at each laser intensity.
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not show the same modulation of motor neuron frequency with DNg100 input strength as the full network does
(n=512 replicates per condition). Simulations with no active motor neurons were omitted. Green shaded regions
are distributions of frequencies, and black bars indicate medians and quartiles. b, Core CPG circuit in which all
interneuron-interneuron connections aside from the cyclic E1 → E2 → I1 → E1 connections have been removed still
produces rhythmic activity.
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Supplementary Figure 4: Eigenvalue spectra of linearized dynamical systems corresponding to reduced
and full circuits. a, Eigenvalues of the linearized dynamical system of the 4-neuron subcircuit consisting of only
the left DNg100, E1 L, E2 L, and I1 L. The light gray region denotes the unit circle in the complex plane. The pair of
complex-valued eigenvalues corresponds to an oscillation frequency of about 14 Hz. b, Eigenvalues of the linearized
dynamical system of the full MANC front leg motor network.
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Supplementary Figure 5: Leaky integrate-and-fire model of core CPG circuit showed rhythmic ac-
tivity. Simulation included a subcircuit consisting of only the left DNg100, E1 L, E2 L, I1 L, and all of leg motor
neurons. Top: Spike times, and Bottom: voltage (Vm) for each of the core CPG neurons, and one motor neuron.
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Supplementary Figure 6: DNg100 R activation. a, Example activity of MANC network with step DNg100
R stimulation. Selected motor neurons shown, with numbers corresponding to muscles innervated in the anatomical
diagram. b, DNg100 R activation consistently produces motor rhythms (n=1000 replicates). c, Circuits identified
by pruning (n=297 replicates, right DNg100, MANC). Left : Number of interneurons that are in minimal circuits
(one outlier of 30 neurons not shown). Right : Percentage of simulation runs in which minimal circuits contained
unique interneurons.
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weight matrix. b, Example activity of the isolated four-neuron circuit.

Supplementary Figure 8: Morphologies of VNC interneurons identified in the computational suffi-
ciency screens. Cell type correspond to the most commonly identified cells in Supplementary Tables 2, 3, and
4. Top: All neurons of each type in MANC. Each of these cell types consists of exactly one neuron per leg neuropil.
Bottom: The neuron of the same type identified in the FANC front left leg neuropil.
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bodyId type mean motor rhythmicity score
10339 DNg100 0.983424
10093 DNg100 0.978602
14061 DNb08 0.955253
30919 DNg12 0.905598
18279 DNp41 0.865838
16683 DNxl091 0.860995
18153 DNp41 0.847139
14966 DNb08 0.841571
13892 DNb08 0.839170
32815 DNg12 0.813234
14680 DNb08 0.801999
25931 DNa07 0.786021
12221 DNxl121 0.766589
44321 DNit011 0.764497
23461 DNfl031 0.735547
17031 DNxl092 0.731611
15841 DNp71 0.714360
19821 DNg54 0.687533
32742 DNg12 0.668965
38587 DNg12 0.647725
37139 DNit013 0.646784
30130 DNxn167 0.636139
11164 DNa13 0.625670
26047 DNg09 0.624473
11145 DNa13 0.620487
16264 DNxn159 0.603845
10291 DNxl134 0.586567
25645 DNut054 0.584007
23962 DNxn127 0.567792
10896 DNxl133 0.566917
11981 DNp43 0.551802
22194 DNxn171 0.546201
27523 DNfl025 0.523922
27095 DNfl025 0.521211
13257 DNxl103 0.512680
12791 DNxl110 0.508832
11311 DNa13 0.500819

Supplementary Table 1: Top scoring neurons in descending neuron activation screen. All descending
neurons with a mean motor rhythmicity score >0.5, corresponding to Fig. 1e.

bodyIds types count
10707, 11751, 13905 IN17A001 (E1), INXXX466 (E2), IN16B036 (I1) 636
10707, 10715, 11751, 12026,
17664

IN17A001 (E1), IN19B012 (E3), INXXX466 (E2),
IN13A010 (–), MNfl10 (–)

123

10242, 10707, 11751 IN19A007 (I2), IN17A001 (E1), INXXX466 (E2) 102
10707, 10715, 11751, 12026 IN17A001 (E1), IN19B012 (E3), INXXX466 (E2),

IN13A010 (–)
33

10707, 11751, 11799, 17664,
162543

IN17A001 (E1), INXXX466 (E2), IN19A020 (–), MNfl10 (–),
INXXX464 (E5)

11

Supplementary Table 2: Converged minimal circuits for DNg100 pruning screen in MANC. All distinct
sets of interneurons that appeared at least 10 times out of 1024 pruning screens.
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segIds types count
72483380721505294, 72834674820722635,
72975481296715415, 73820799177797612

IN19A007 (I2), IN17A001 (E1),
INXXX466 (E2), IN19B012 (E3)

721

72483380721505294, 72834674820722635,
72905112552773752, 72975481296715415

IN19A007 (I2), IN17A001 (E1),
INXXX464 (E5), INXXX466 (E2)

89

72694075576809644, 72834674820722635,
72975481296715415, 73820799177797612

IN13A010 (–), IN17A001 (E1),
INXXX466 (E2), IN19B012 (E3)

36

72483380721505294, 72834674820722635,
72905112552773752, 72975481296715415,
72975481364113281

IN19A007 (I2), IN17A001 (E1),
INXXX464 (E5), INXXX466 (E2), 8A (–)

25

72834674820722635, 72905112619913957,
72975481296715415, 73820799177797612

IN17A001 (E1), IN16B036 (I1),
INXXX466 (E2), IN19B012 (E3)

15

72483380721505294, 72834674820722635,
72975481296715415, 73891167921933971

IN19A007 (I2), IN17A001 (E1),
INXXX466 (E2), 19B (+)

13

72483380721505294, 72834674820722635,
72905112552773752, 72975481296715415,
73468887542677672

IN19A007 (I2), IN17A001 (E1),
INXXX464 (E5), INXXX466 (E2), 12B (–)

13

Supplementary Table 3: Converged minimal circuits for DNg100 pruning screen in FANC. All distinct
sets of interneurons that appeared at least 10 times out of 1024 pruning screens.

bodyIds types count
10242, 10707, 11751, 12021,
162543

IN19A007 (I2), IN17A001 (E1), INXXX466 (E2),
IN03A006 (E4), INXXX464 (E5)

465

10715, 11751, 12021, 13905,
162543

IN19B012 (E3), INXXX466 (E2), IN03A006 (E4),
IN16B036 (I1), INXXX464 (E5)

129

10707, 11751, 12021, 13905,
17664, 162543

IN17A001 (E1), INXXX466 (E2), IN03A006 (E4),
IN16B036 (I1), MNfl10 (–), INXXX464 (E5)

26

10707, 11751, 12021, 13905,
162539, 162543

IN17A001 (E1), INXXX466 (E2), IN03A006 (E4),
IN16B036 (I1), IN13A001 (–), INXXX464 (E5)

21

10707, 11751, 12021, 13905,
162543

IN17A001 (E1), INXXX466 (E2), IN03A006 (E4),
IN16B036 (I1), INXXX464 (E5)

12

10242, 10707, 11751, 21162,
162543

IN19A007 (I2), IN17A001 (E1), INXXX466 (E2),
IN20A.22A036 (+), INXXX464 (E5)

12

10242, 10707, 11751, 12021,
21162, 162543

IN19A007 (I2), IN17A001 (E1), INXXX466 (E2),
IN03A006 (E4), IN20A.22A036 (+), INXXX464 (E5)

10

Supplementary Table 4: Converged minimal circuits for DNb08 pruning screen in MANC. All distinct
sets of interneurons that appeared at least 10 times out of 1024 pruning screens.
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pre. post. pre. pre. post. post. neuro- num. of
bodyId bodyId type nickname type nickname transmitter synapses

10093 10707 DNg100 BDN2 IN17A001 E1 acetylcholine 187
10097 11751 DNxl080 INXXX466 E2 gaba 173
10532 10707 DNg74 web IN17A001 E1 gaba 160
10086 11751 DNg105 INXXX466 E2 gaba 126
10941 11751 DNxl130 INXXX466 E2 acetylcholine 93
10279 10707 DNxl049 IN17A001 E1 acetylcholine 92
23461 10707 DNfl031 IN17A001 E1 acetylcholine 86
27936 13905 DNfl023 IN16B036 I1 acetylcholine 82
10107 11751 DNg74 web INXXX466 E2 gaba 80
10291 10707 DNxl134 IN17A001 E1 acetylcholine 75
19287 10707 DNfl036 IN17A001 E1 acetylcholine 73
27523 10707 DNfl025 IN17A001 E1 acetylcholine 73
10420 10707 DNg93 IN17A001 E1 gaba 72
22875 13905 DNg12 IN16B036 I1 acetylcholine 68
10058 11751 DNg108 INXXX466 E2 gaba 62
15249 10707 DNg17 IN17A001 E1 acetylcholine 60
156265 10707 DNfl014 IN17A001 E1 acetylcholine 54
10291 11751 DNxl134 INXXX466 E2 acetylcholine 40
21235 10707 DNfl032 IN17A001 E1 gaba 39
32742 10707 DNg12 IN17A001 E1 acetylcholine 38
32815 10707 DNg12 IN17A001 E1 acetylcholine 37
11220 10707 DNxl127 IN17A001 E1 gaba 36
20782 10707 DNfl034 IN17A001 E1 acetylcholine 34
24753 10707 DNg62 aDN1 IN17A001 E1 acetylcholine 34
31078 10707 DNg12 IN17A001 E1 acetylcholine 33
10656 10707 DNg97 oDN1 IN17A001 E1 acetylcholine 32
21320 13905 DNfl033 IN16B036 I1 acetylcholine 22
14903 10707 DNg17 IN17A001 E1 acetylcholine 21
10107 13905 DNg74 IN16B036 I1 gaba 20
10107 10707 DNg74 IN17A001 E1 gaba 19
27350 10707 DNxl070 IN17A001 E1 gaba 19
14836 13905 DNxl099 IN16B036 I1 acetylcholine 19
27516 10707 DNxn143 IN17A001 E1 acetylcholine 18
10058 10707 DNg108 IN17A001 E1 gaba 17
10532 11751 DNg74 INXXX466 E2 gaba 16
31635 10707 DNg12 IN17A001 E1 acetylcholine 16
13845 13905 DNg44 IN16B036 I1 glutamate 15
28478 10707 DNg12 IN17A001 E1 acetylcholine 15
13257 10707 DNxl103 IN17A001 E1 acetylcholine 15
19287 13905 DNfl036 IN16B036 I1 acetylcholine 15
23953 10707 DNfl030 IN17A001 E1 acetylcholine 14
11354 10707 DNg75 IN17A001 E1 acetylcholine 13
13257 13905 DNxl103 IN16B036 I1 acetylcholine 12
25879 10707 DNfl029 IN17A001 E1 acetylcholine 12
27217 10707 DNfl024 IN17A001 E1 acetylcholine 12
10760 10707 DNa01 IN17A001 E1 acetylcholine 12
10410 11751 DNd03 INXXX466 E2 glutamate 12
11270 11751 DNxl129 INXXX466 E2 acetylcholine 11
21320 10707 DNfl033 IN17A001 E1 acetylcholine 11
17547 10707 DNfl040 IN17A001 E1 acetylcholine 11
17400 10707 DNfl040 IN17A001 E1 acetylcholine 11
10410 10707 DNd03 IN17A001 E1 glutamate 11
11961 13905 DNxl126 IN16B036 I1 gaba 10
16369 10707 DNfl015 IN17A001 E1 acetylcholine 10

Supplementary Table 5: Top descending inputs to DNg100 core CPG circuit interneurons. Table of all
descending neurons that make ≥10 synaptic connections onto left front leg E1, E2, and I1 neurons.
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bodyId type mean motor rhythmicity score
10118 DNa02 0.000000
10126 DNa02 0.015600
14680 DNb08 0.801999
13892 DNb08 0.839170
14966 DNb08 0.841571
14061 DNb08 0.955253
10093 DNg100 0.978602
10339 DNg100 0.983424
29706 DNg12 0.000000
27728 DNg12 0.000000
34253 DNg12 0.000000
30271 DNg12 0.000000
28478 DNg12 0.000000
22875 DNg12 0.000000
24858 DNg12 0.000000
31635 DNg12 0.001649
32424 DNg12 0.014636
31742 DNg12 0.021896
31361 DNg12 0.035059
40338 DNg12 0.093108
31613 DNg12 0.137115
31078 DNg12 0.184643
34862 DNg12 0.219746
35413 DNg12 0.247020
35473 DNg12 0.424952
38587 DNg12 0.647725
32742 DNg12 0.668965
32815 DNg12 0.813234
30919 DNg12 0.905598
22870 DNg12 NaN
26725 DNg12 NaN
29120 DNg12 NaN
30346 DNg12 NaN
30999 DNg12 NaN
31123 DNg12 NaN
32667 DNg12 NaN
33586 DNg12 NaN
34382 DNg12 NaN
24753 DNg62 0.009698
152849 DNg62 0.012459
10656 DNg97 0.040061
11070 DNg97 0.257257
12955 DNp09 0.000000
12926 DNp09 0.000000
14523 MDN 0.000000
13438 MDN 0.000000
13809 MDN 0.321310
14419 MDN 0.429656

Supplementary Table 6: Mean motor rhythmicity scores of selected known motor-related descending
neurons in activation screen. DNg97 is the standard cell type of oDN1 [47]. DNg62 is the standard cell type of
aDN1 [55].
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