Robust Biologically Guided Radiation Therapy (BGRT)

Robert D. Stewart, Ph.D.
Associate Professor, Radiation Oncology and Medical Physics
University of Washington Medical Center
Department of Radiation Oncology
1959 NE Pacific Street
Seattle, WA 98195-6043
206-598-7951 office
206-598-6218 fax
trawets@uw.edu

Presented at the

4th Modelling of Tumors (MOT) 2012 Meeting (August 2-4)

Date and Time: Friday August 3, 11:00 to 11:30 am
Location: Hotel Grand Chancellor, 65 Hindley Street, Adelaide, South Australia
Learning Objectives

- **Rationale for BGRT**
- **Are existing biological models “good enough” for clinical applications?**
  - Some of the challenges
  - Limitations and applicability of BED and EUD concepts with a focus on intra- and inter-patient heterogeneity

- **Examples**
  - Equivalent prescriptions
  - Plan ranking and comparison with EUD

- **This Presentation and Supplemental Slides**
  - [http://faculty.washington.edu/trawets/](http://faculty.washington.edu/trawets/)

Presenter has no conflicts of interest to disclose
Why isn’t EBRT more successful?

- Uncertainty in boundary of primary tumor
- Inability to delivery a tumoricidal dose
- Migration of diseased cells to other body parts

Dose escalation not always possible
Motivation for BGRT

How do we get the most bang for our buck (dose)?

Outcome Prediction

or

“Biological Metrics”

A way to rank the relative efficacy of alternate and competing treatments

When local control cannot be achieved through dose escalation, only RT option is to move the dose around in space and/or time.
Four R’s of Radiobiology (conventional wisdom)

- Repair (↓)
- Repopulation (↓)
- Redistribution (↑)
- Reoxygenation (↑)
Physics → Chemistry → Biology → Clinic

Absorbed Dose

Radiation

10^{-18} to 10^{-10} \text{s}

Chemical Repair

10^{-3} \text{s}

Ionization Excitation

10^{-6} \text{s}

DNA damage

Correct Repair

1 \text{ Gy} \sim 1 \text{ in } 10^6

Enzymatic Repair (BER, NER, NHEJ, …)

10^2 \text{ s} ↑ 10^4 \text{ s}

Chronic hypoxia (> 1-2 h)

Incorrect or Incomplete Repair

Cell Death

10^3 \text{ s}  \rightarrow 10^5 \text{ s}

Chronic hypoxia (> 4-10 h?)

Small- and large-scale mutations (point mutations and chromosomal aberrations)

10^4 \text{ s}  \rightarrow 10^5 \text{ s}

2^{\text{nd}} Cancer

Clonal Expansion

10^8 \text{ s}

Loss of Function and Remodeling

10^6 \text{ s}

Early Effects (erythema, …)

Angiogenesis and Vasculogenesis

Inflammatory Responses

Self renewal and Differentiation

Neoplastic Transformation

10^7 \text{ s}

Somatic cells

Genome Instability

Germline

Heritable Effects

10^5 \text{ s}

Clonal Expansion

10^8 \text{ s}

Late Effects (fibrosis, …)

Late Effects

10^8 \text{ s}

LOSS OF FUNCTION AND REMODELING

2^{\text{nd}} Cancer

Clonal Expansion

10^8 \text{ s}

Chronic hypoxia (> 1-2 h)

Incorrect or Incomplete Repair

Cell Death

10^3 \text{ s}  \rightarrow 10^5 \text{ s}

Chronic hypoxia (> 4-10 h?)

Small- and large-scale mutations (point mutations and chromosomal aberrations)

10^4 \text{ s}  \rightarrow 10^5 \text{ s}

2^{\text{nd}} Cancer

Clonal Expansion

10^8 \text{ s}

Loss of Function and Remodeling

10^6 \text{ s}

Early Effects (erythema, …)

Angiogenesis and Vasculogenesis

Inflammatory Responses

Self renewal and Differentiation

Neoplastic Transformation

10^7 \text{ s}

Somatic cells

Genome Instability

Germline

Heritable Effects

10^5 \text{ s}

Clonal Expansion

10^8 \text{ s}

Late Effects (fibrosis, …)

Late Effects

10^8 \text{ s}
The LQ in Radiation Therapy

Inaccurate and too simplistic \((\text{compared to known biology})\)

\[
S(D) = \exp\left(-\alpha D - \beta GD^2\right)
\]

Dose-rate and dose-fractionation effects \(\text{"dose protraction factor"}\)

one-hit damage \[\rightarrow\] inter-track damage interaction

Parameters \((\text{e.g., } \alpha \text{ and } \beta)\) derived from analysis of clinical outcomes are uncertain and averaged over a heterogeneous tumor and patient population

JF Fowler, R Chappell, M Ritter, IJROBP 50, 1021-1031 (2001)

\[
\alpha = 0.039 \ \text{Gy}^{-1}
\]

\[
\alpha/\beta = 1.49 \ \text{Gy}
\]

\[
S = 1.159 \times 10^{-3} \ (37 \times 2 \ \text{Gy})
\]


\[
\alpha = 0.15 \ \text{Gy}^{-1} \quad (4X \text{ higher})
\]

\[
\alpha/\beta = 3.1 \ \text{Gy} \quad (2X \text{ higher})
\]

\[
S = 2.677 \times 10^{-8} \ (10^4 \text{ smaller})
\]
SF for a Heterogeneous Cell Population

Can’t use a single \((\text{average})\) set of LQ radiation sensitivity parameters \((\alpha, \alpha/\beta)\) to predict overall shape of dose-response curve

\[
S \neq \exp(-\alpha D - \beta GD^2)
\]

Five Reasons \((\text{many others possible})\)
- Genomic Instability
- Repair
- Repopulation
- Reassortment
- Reoxygenation

But may be reasonable to extrapolate from a known point?
Poisson Tumor control probability (TCP)

Most widely used model assumes that the distribution of the number of tumor cells surviving a treatment is adequately described by a Poisson distribution

\[ TCP = \exp\{-\rho V S(D)\} \]

Chance no tumor cells survive a treatment that delivers total dose \( D \)

\( \rho = \text{number of tumor cells per unit volume} \quad (< 10^9 \text{ cells cm}^{-3}) \)

\( V = \text{tumor volume} \quad (\text{GTV? CTV? PTV?}) \)

product \( \rho V = \text{pre-treatment number of tumor cells} \)

Typical uncertainty? Factors as large as \( 10^3 \) to \( 10^6 \)!

Eradication of some cells, such as cancer stem cells, may be far more important than the eradication of others (effective \( \rho << 10^9 \text{ cells cm}^{-3} \))?
Prediction of Local Tumor Control

Even small levels of uncertainty in the biological parameters ($\alpha$ and $\alpha/\beta$) have a big impact on our ability to predict the chance we achieve tumor control.
Outcomes for a Patient Population?

Equivalent Prescriptions (tumor)

What dose should be delivered to achieve the same level of biological damage as another treatment?

Reference Treatment    Alternate Treatment

\[ \text{TCP}(D_R) = \text{TCP}(D) \]

\[ \exp(-\rho VS(D_R)) = \exp(-\rho VS(D)) \quad \text{Poisson TCP model} \]

\[ \rho = \text{cell density (} \# \text{ cm}^{-3} \) \quad V = \text{tumor volume (} cm^3 \) \]

When comparing or ranking plans in the same patient, \( \rho \) and \( V \) may be considered modality and plan independent constants (same number of diseased cells regardless of modality and plan).

\[ S(D_R) = S(D) \quad \text{Two biological parameters (} \rho \text{ and } V \) eliminated from modeling process (uncertainty in } \rho V \text{ doesn’t matter!} \]

For individual patients, iso-TCP = iso-survival
Equivalent dose derived from the LQ

Reference Treatment = Alternate Treatment

\[ S(D_R) = S(D) \]

\[ \exp(-\alpha D_R - \beta GD_R^2) = \exp(-\alpha D - \beta GD^2) \]

\[ D = \frac{\alpha / \beta}{2G} \left\{ -1 + \sqrt{1 - \frac{4G \ln S(D_R)}{\alpha(\alpha / \beta)}} \right\} = \frac{\alpha / \beta}{2G} \left\{ -1 + \sqrt{1 + \frac{4GD_R}{(\alpha / \beta)} \left( 1 + \frac{G_RD_R}{\alpha / \beta} \right)} \right\} \]

\( D \) is the total treatment dose needed to achieve same biological effect as a reference treatment that delivers total dose \( D_R \)

Determined by the value of \( \alpha/\beta \) and the dose protraction factor for the reference and alternate treatments \( (G_R \text{ and } G) \)
Equivalent Treatment Schedules

\[ D = \frac{\alpha / \beta}{2G} \left\{ -1 + \sqrt{1 + \frac{4GDR}{\alpha / \beta}} \left( 1 + \frac{G_R D_R}{\alpha / \beta} \right) \right\} \]

\[ G \equiv \frac{1}{n} \]

\[ G \equiv \frac{1}{n_R} \]

Determine biologically equivalent dose \( D \) by adjusting the physical parameter \( n \)

\[ D = \frac{n}{2} (\alpha / \beta) \left\{ -1 + \sqrt{1 + \frac{4D_R}{n(\alpha / \beta)}} \left( 1 + \frac{D_R}{n_R(\alpha / \beta)} \right) \right\} \]

**Reference Treatment**

("clinical experience")

\( D_R = \text{total dose (Gy)} \)

\( n_R = \text{number fractions} \)

\( d_R = D_R/n_r \text{ (fraction size)} \)

**New (alternate) Treatment**

\( n = \text{desired number fractions} \)

Uncertainty in \( D \) mainly arises from uncertainties associated with \( \alpha/\beta \).
Biologically Effective Dose (BED)

How is an iso-effective physical dose related to BED?

\[
D = \frac{\alpha / \beta}{2G} \left\{ -1 + \sqrt{1 - \frac{4G \ln S(D_R)}{\alpha (\alpha / \beta)}} \right\} \\
= \frac{\alpha / \beta}{2G} \left\{ -1 + \sqrt{1 + \frac{4G}{(\alpha / \beta)} D_R \left(1 + \frac{d_R}{\alpha / \beta}\right)} \right\}
\]

No repopulation effects

\[
D = \frac{\alpha / \beta}{2G} \left\{ -1 + \sqrt{1 + \frac{4G}{\alpha / \beta} D_R \left[1 + \frac{d_R}{\alpha / \beta} - \frac{\gamma(T_R - T)}{\alpha D_R}\right]} \right\}
\]

Correction for exponential repopulation without time lag
Equivalent Treatments (*prostate cancer*)

\[
D = \frac{n}{2} (\alpha / \beta) \left\{ -1 + \sqrt{1 + \frac{4D_R}{n(\alpha / \beta)}} \left( 1 + \frac{D_R}{n_r(\alpha / \beta)} \right) \right\}
\]

\[
\alpha / \beta = 1.5 \text{ Gy}
\]

Use any point along isoeffect line for the reference treatment

\[
D_R = 79.2 \text{ Gy (44 \times 1.8 Gy)}
\]

\[
D_R = 58.8 \text{ Gy (20 \times 2.94 Gy)}
\]
Inter-Patient Heterogeneity

\[
D = \frac{n}{2} (\alpha / \beta) \left\{ -1 + \sqrt{1 + \frac{4D_R}{n(\alpha / \beta)} \left( 1 + \frac{D_R}{n_R(\alpha / \beta)} \right)} \right\}
\]

When applied to a patient population, we are implicitly assuming that \(\alpha / \beta\) is the same for all patients for the reference and alternate treatment – an assumption that is surely incorrect!

Inter-Patient Heterogeneity

Thought Experiment: All patients (tumors) have a different effective \(\alpha / \beta\) (unknown distribution). BUT… same value of \(\alpha / \beta\) is appropriate (as a first approximation) in the same patient for competing plans and modalities.

How does inter-patient heterogeneity influence our ability to determine equivalent prescription dose?

How sensitive are estimates of \(D\) to uncertainties in \(\alpha / \beta\)?
Effects of Inter-Patient Heterogeneity

Key Point #1: Small changes from an accepted fractionation schedule quite reasonable – even for a very heterogeneous patient population
Equivalent Uniform Dose (EUD)

Concept of an EUD introduced by A. Niemierko in 1997

“It is intuitively logical that, for any inhomogeneous dose distribution delivered to a volume of interest (VOI) according to a certain fractionation scheme, there exists a unique uniform dose distribution delivered in the same number of fractions, over the same total time, which causes the same radiobiological effect.

The important feature of this equivalent dose distribution would be its uniformity, which allows one to use a single number to describe the entire VOI dose distribution. Of course, the equivalent dose depends on the considered effect.”

EUD for tumor control and cell survival

\[
\exp(-\alpha EUD - \beta EUD^2) = \frac{1}{\rho V} \sum_{i=1}^{N} v_i \rho_i \exp(-\alpha_i D_i - \beta_i D_i^2)
\]

To solve for EUD, take logarithm and apply quadratic formula

\[
EUD = \frac{1}{2} \frac{\alpha}{\beta} \left( -1 + \sqrt{1 - \frac{4 \ln \bar{S}}{\alpha(\alpha/\beta)}} \right) = \frac{1}{2} \frac{\alpha}{\beta} \left( -1 + \sqrt{1 + \frac{4 \text{BED}_{\text{het}}}{(\alpha/\beta)}} \right)
\]

\[
\bar{S} \equiv \frac{1}{\rho V} \sum_{i=1}^{N} v_i \rho_i \exp(-\alpha_i D_i - \beta_i D_i^2)
\]

Delivery of dose = EUD to all \(i\) regions will produce same surviving fraction and level of tumor control as heterogeneous dose distribution (array of \(D_i\) values)
EUD for a heterogeneous cell population

Individual filled symbols denote Monte Carlo sampling of the radiation response characteristics of 1000 cells given a uniform dose of radiation (x-axis).

Open circles: $\alpha_i$ sampled from 0.1 Gy$^{-1}$ to 0.2 Gy$^{-1}$; $(\alpha/\beta)_i$ sampled 2 to 4 Gy (population-average: $\alpha = 0.15$ Gy$^{-1}$, $\alpha/\beta = 3$ Gy).

Filled Triangles: $\alpha_i$ sampled from 0.05 Gy$^{-1}$ to 0.5 Gy$^{-1}$ and $(\alpha/\beta)_i$ sampled from 1 to 10 Gy ($\alpha = 0.275$ Gy$^{-1}$, $\alpha/\beta = 5.5$ Gy).
Effects of intra-tumor heterogeneity

44 × 1.80 Gy (original)  
39 × 1.95 Gy (α/β = 1.5 Gy)  
20 × 2.94 Gy (α/β = 1.5 Gy)

α/β sampled from a uniform pdf (1 to 10 Gy) on a voxel by voxel basis
EUD for large dose per fraction

- So-called “generalized” gEUD neglects the $\beta GD^2$ component of cell killing
  - Most of our knowledge of the effects of radiation on normal tissues comes from conventional (low dose) fractionation

Step 1. Convert 3D dose distribution for hypofractionated ($n_R < 3-5$) treatment into equivalent conventional ($n < 30-45$) 3D dose distribution

$$d = \frac{\alpha / \beta}{2} \left\{-1 + \sqrt{1 + \frac{4d_R}{\alpha / \beta} \frac{n_R}{n} \left(1 + \frac{d_R}{\alpha / \beta}\right)}\right\}$$

Apply on voxel by voxel basis

Step 2. Convert 3D dose distribution for conventional treatment into gEUD

$$gEUD = \left(\frac{1}{V} \sum_i v_i D_i^{1/a}\right)^a$$

$a = 1 \ (\text{average dose}), \ a \to +\infty \ (\text{maximum dose}), \ a \to -\infty \ (\text{minimum dose})$
Summary

- Absolute quantitative prediction of tumor control, complication rates and cell survival very sensitive to even small uncertainties in biological parameters
  - Such models are *(and always will be)* a highly non-linear function of dose

- For a heterogeneous patient *(or cell)* population, shapes of dose-response curve cannot be accurately modeled using the LQ and a single set of *(average)* radiosensitivity parameters
  - Usefulness of alternate mathematical models usually offset by introduction of additional *ad hoc* biological parameters into modeling process

- Direct use of TCP, NTCP models to compare and rank alternate plans and modalities may result in the selection of inappropriate or suboptimal treatments
  - Also need to specify large number of biological inputs
Robust BGRT – Key Points

- Many (all?) clinical questions can be usefully tackled using biological metrics (doses) derived from existing models
  - Semi-quantitative relative plan ranking and comparison
- Biological metrics derived by equating acceptable treatments to alternate ones
  - Need to incorporate corrections for relevant biology into biological metrics (repopulation effects, LET effects, oxygen effects, low-dose hyper-radiation sensitivity, bystander effects, …)
- Isoeffect calculation are remarkably insensitive to uncertainties in biology parameters
  - Assess the impact of uncertainties associated with biological parameters through Monte Carlo sampling (or other methods)
  - Uncertainties in biology offset by clinical judgment (i.e., the use of a “reference treatment”)
Future of BGRT – Individualize and Adapt

- **Patient imaging first part of treatment**
  - Estimate of *one or two* key biological parameters from patient imaging

- **Individualized isoeffect calculations**
  - Sample *other* biological parameters from probability distributions for an appropriate patient population

- **Individualize and adapt 2\textsuperscript{nd} stage of treatment**
  - Compare and rank alternate plans and modalities for individual patients
    - Boost, alter modality (e.g., protons), re-size GTV or PTV, …
  - Patient-specific cost-benefit analysis of adapted treatment
    - Is it worthwhile to alter the original plan?
Supplemental Slides

- Repopulation Effects in External Beam Therapy
- Brachytherapy Isoeffect Calculations
- Derivation of EUD formula

This presentation along with the supplemental slides available at

http://faculty.washington.edu/trawets/
Equivalent dose – repair and repopulation

Reference Treatment = Alternate Treatment

\[ S(D_R) = S(D) \]

\[ \exp(-\alpha D_R - \beta GD_R^2 + \gamma T_R) = \exp(-\alpha D - \beta GD^2 + \gamma T) \]

Take logarithm, apply quadratic formula and rearrange terms

\[ D = \frac{\alpha / \beta}{2G} \left\{ -1 + \sqrt{1 + \frac{4GD_R}{\alpha / \beta} \left[ 1 + \frac{G_R D_R}{\alpha / \beta} - \frac{\gamma(T_R - T)}{\alpha D_R} \right]} \right\} \]

\( D \) is the total treatment dose needed to achieve same biological effect as a reference treatment that delivers total dose \( D_R \)

Determined by the value of \( \alpha/\beta \) (in Gy), \( \gamma/\alpha \) (in Gy/day) and the dose protraction factor for the reference and alternate treatments (\( G \) and \( G_R \))
Repopulation Effects – Fast and Slow Growing Tumors

Repopulation effects are negligible for slow growing tumors but potentially very significant for fast growing tumors.
Are gains in tumor control significant?

Key Point #2: Clinical significance of potential gains (or losses) are easily judged when expressed in terms of physical dose.
Prescription dose for competing modalities?

Temporary or permanent brachytherapy implants

Fractionated External Beam Radiation Therapy
Fractionated EBRT $\rightarrow$ Brachytherapy

Dose for a brachytherapy procedure (again) determined by

$$D = \frac{\alpha / \beta}{2G} \left\{ -1 + \sqrt{1 + \frac{4GD_R}{\alpha / \beta} \left[ 1 + \frac{G_R D_R}{\alpha / \beta} - \frac{\gamma(T_R - T)}{\alpha D_R} \right]} \right\}$$

Reference Treatment
"clinical experience"

$D_R = \text{total dose (Gy)}$

$n_R = \text{number fractions}$

$d_R = D_R/n_r \text{ (fraction size)}$

$T_R = (n_R - 1) + 2\text{int}[(n_R - 1)/5]$

Brachytherapy Procedure

$$G = G_\infty \left\{ \frac{(1 + x)}{(1 - x)} - \frac{yx^2}{(1 - x)^2} \left[ 1 - e^{-((\lambda - \mu)T)} \right] \right\}$$

$$G_\infty \equiv \frac{\mu}{(\mu + \lambda)} \quad x \equiv \exp(-\mu T)$$

$$y \equiv \frac{2\mu}{(\lambda - \mu)}$$

Isotope Half-life

Repair Half-time

$T = \text{effective treatment time}$
Brachytherapy – Isotope Selection and Dose

Brachytherapy dose equivalent to $44 \times 1.8$ Gy fractions EBRT

Isotope Selection and Dose

- $^{125}$I
- $^{131}$Cs
- $^{192}$Ir
- $^{103}$Pd
- $^{90}$Y

Isotope Half-Life (days)

Total Brachytherapy Dose (Gy)

EBRT: $44 \times 1.8$ Gy
EUD Motivation – which is better?

**Distribution 1**

- $D_1 = 74 \text{ Gy}$
- $D_2 = 78 \text{ Gy}$
- $D_3 = 76 \text{ Gy}$
- $D_{avg} = 76 \text{ Gy}$

**Distribution 2**

- $D_1 = 73 \text{ Gy}$
- $D_2 = 75 \text{ Gy}$
- $D_3 = 80 \text{ Gy}$
- $D_{avg} = 76 \text{ Gy}$

EUD = the dose applied to all three regions that would produce the same overall level of biological damage

In general, EUD $\neq D_{avg}$ (because cell killing is a non-linear function of dose)

Biological damage increases with increasing EUD
EUD for tumor control (3)

\[
\exp\left(-\alpha EUD - \beta EUD^2\right) = \frac{1}{\rho V} \sum_{i=1}^{N} v_i \rho_i \exp\left(-\alpha_i D_i - \beta_i D_i^2\right)
\]

To solve for EUD, take logarithm and apply quadratic

\[
EUD = \frac{1}{2} \frac{\alpha}{\beta} \left(-1 + \sqrt{1 - \frac{4 \ln \bar{S}}{\alpha (\alpha / \beta)}}\right) = \frac{1}{2} \frac{\alpha}{\beta} \left(-1 + \sqrt{1 + \frac{4B\bar{E}D}{(\alpha / \beta)}}\right)
\]

\[
\bar{S} \equiv \frac{1}{\rho V} \sum_{i=1}^{N} v_i \rho_i \exp\left(-\alpha_i D_i - \beta_i D_i^2\right)
\]

Delivery of dose = EUD to all \( i \) regions will produce same surviving fraction \textit{and} level of tumor control as heterogeneous dose distribution (array of \( D_i \) values)
EUD for tumor control (1)

\[
TCP(EUD) = \prod_{i=1}^{N} TCP_i
\]

\[
\exp\left[ -\sum_{i=1}^{N} v_i \rho_i S(EUD) \right] = \exp\left[ -\sum_{i=1}^{N} v_i \rho_i S(D_i) \right]
\]

Neglect repopulation effects

\[
\sum_{i=1}^{N} v_i \rho_i \left[ \exp\left(-\alpha_i EUD - \beta_i EUD^2\right) \right] = \sum_{i=1}^{N} v_i \rho_i \exp\left(-\alpha_i D_i - \beta_i D_i^2\right)
\]
EUD for tumor control (2)

\[
\sum_{i=1}^{N} v_i \rho_i \left[ \exp\left(-\alpha_i EUD - \beta_i EUD^2\right) \right] = \sum_{i=1}^{N} v_i \rho_i \exp\left(-\alpha_i D_i - \beta_i D_i^2\right)
\]

Solve for EUD – in principle, formula applicable to any dose distribution

Assume ok to replace \(\alpha_i\) and \(\beta_i\) on the left-hand-side (LHS) with tumor-averaged parameters \(\alpha\) and \(\beta\)

\[
\exp\left(-\alpha EUD - \beta EUD^2\right) = \frac{1}{\rho V} \sum_{i=1}^{N} v_i \rho_i \exp\left(-\alpha_i D_i - \beta_i D_i^2\right)
\]

\[
V \equiv \sum_{i=1}^{N} v_i \quad \text{and} \quad \rho \equiv \frac{1}{V} \sum_{i=1}^{N} v_i \rho_i
\]
EUD for tumor control (3)

\[
\exp\left(-\alpha\text{EUD} - \beta \text{EUD}^2\right) = \frac{1}{\rho V} \sum_{i=1}^{N} v_i \rho_i \exp\left(-\alpha_i D_i - \beta_i D_i^2\right)
\]

To solve for EUD, take logarithm and apply quadratic

\[
\text{EUD} = \frac{1}{2} \frac{\alpha}{\beta} \left( -1 + \sqrt{1 - \frac{4 \ln \bar{S}}{\alpha(\alpha / \beta)}} \right)
\]

\[
\bar{S} \equiv \frac{1}{\rho V} \sum_{i=1}^{N} v_i \rho_i \exp\left(-\alpha_i D_i - \beta_i D_i^2\right)
\]

Delivery of dose = EUD to all \(i\) regions will produce same surviving fraction and level of tumor control as heterogeneous dose distribution (array of \(D_i\) values)