Some set theoretical notation for QSci291

- Say we have a set of four numbers: $1,2,3,4$. Let A denote this set. We say $A=\{1,2,3,4\}$.
- The four numbers are the elements of set A. We say for example that $1 \in A$ (number 1 is an element of set A. Number 1 could of course be an element of other sets too.
- We can index the elements of a set. Say i indexes set A. We can say that $i \in A$. We can also say things like $i \geq 0 \forall i \in A$. In other words, each element of set A is greater than or equal to zero. The sign \forall means "for any" or equivalently: "for all".
- The cardinality of a set is equal to the number of elements in the set: $|A|=4$
- Suppose we have another set: $B=\{4,5,1,7,8\}$. The union of set A and B is denoted by $A \cup B=\{1,2,3,4,5,7,8\}$.
- The intersection of A and $B: A \cap B=\{1,4\}$.
- The complement or exception set is the set of elements in one set that are not members of another set. For example $B \backslash\{A \cap B\}=\{5,7,8\}$. We also call this as set difference.
- If all the members of a set, say set C are also elements of another set, say set D, then say that set C is a subset of set $D: C \subseteq D$. Conversely, set D is a superset of set C : $D \supseteq C$.
- Set $\}$ is called the empty set and is also denoted by \varnothing.
- Some of the numbers that we deal with are binary in nature. They are either 0 or one (true or false, yes or no). In other words, they are elements of the binary set: $B=\{0,1\}$. We will also deal with integer numbers, set \mathbf{Z}, real numbers, set R, and rational numbers set Q.

