Midterm - QSci 291 - Winter 2014

February 14, 2014

Each question is worth 5 pts. Put your name on the other side of each page.
(1) Solve $|7 x-16| \geq 24$ for x (illustrate answer on graph):

$$
\begin{array}{cc}
\text { Case 1: } 7 x-16 \geq 0 & \text { Case } 2: 7 x-16<0 \\
7 x-16 \geq 24 & 7 x-16 \leq-24 \\
7 x \geq 40 & 7 x \leq-8 \\
x \geq 40 / 7 & x \leq-8 / 7
\end{array}
$$

(2) Find the equation of the line (in slope-intercept form) containing $(-3,3 / 5)$:

$$
\begin{aligned}
& m=\frac{2-3 / 5}{2+3}=\frac{7 / 5}{5}=\frac{7}{25} \\
& y-2=\frac{7}{25}(x-2) \rightarrow y=\frac{7}{25} x-\frac{14}{25}+\frac{50}{25}=\frac{7}{25} x+\frac{36}{25}
\end{aligned}
$$

(3)Find:

$$
\begin{aligned}
\lim _{x \rightarrow-4} \frac{x^{2}-x-20}{x+4} & =\lim _{x \rightarrow-4} \frac{(x-5)(x+4)}{x+4} \\
& =\lim _{x \rightarrow-4} x-5=-9
\end{aligned}
$$

(4) Find a recursion for a population that quadruples in size every 25 minutes and has 1024 individuals at 50 minutes:

t	0 mm	25 mm	50 mm
N_{t}	64	256	1024
	$\quad \pi$	$\div 4$	

$$
N_{t+1}=4 \cdot N_{t}, \quad N_{0}=64
$$

where t represents units of 25 ming.
(5)Use the limit laws to determine:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{2}{n}-\frac{1}{n^{2}+1}\right) \\
& \lim _{n \rightarrow \infty} \frac{2}{n}=2 \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=2 \cdot 0=0 \\
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}+1}=0 ; \text { so } \\
& \lim _{n \rightarrow \infty} \frac{2}{n}-\frac{1}{n^{2}+1}=0
\end{aligned}
$$

(6)Investigate if the floor function $g(x)=2\lfloor x\rfloor$ is continuous at $x=4$:

$$
g(4)=8, \text { so } g(4) \text { is defined, but }
$$

$$
\lim _{x \rightarrow 4^{-}} g(x)=6 \text { and } \lim _{x \rightarrow 4^{+}} g(x)=8 \text { so }
$$

$$
g(x) \text { is not continuous at } x=4 \text {. }
$$

(7) Find $f^{\prime}(x)$ for $f(x)=(3 x-2)^{2}$:

$$
f(x)=(3 x-2)(3 x-2)=9 x^{2}-12 x+4
$$

Using the power rule,

$$
f^{\prime}(x)=18 x-12
$$

(8) Find the equation of the tangent line (in slope-intercept form) to the curve $y=7 x^{4}$ at the point $(7,16807)$:

$$
\begin{aligned}
& y^{\prime}(x)=28 x^{3} \text {, so } y^{\prime}(7)=28 \cdot 7^{3}=9604=\text { slope. } \\
& 16,807=9604 \cdot 7+b \\
& b=-50,421 \rightarrow y=9604 x-50421
\end{aligned}
$$

(9) Evaluate $f^{\prime}(x)$ for $f(x)=\frac{a+2 x^{3}}{a b^{2}}-a b x+(a+2 b) x-a b$ with respect to x. Assume that a and b are constants:

$$
\begin{aligned}
f(x) & =\frac{a}{a b^{2}}+\left(\frac{2}{a b^{2}}\right) x^{3}-a b x+(a+2 b) x-a b \\
f^{\prime}(x) & =0+3 \cdot\left(\frac{2}{a b^{2}}\right) x^{2}-a b+(a+2 b) \\
& =\frac{6 x^{2}}{a b^{2}}-a b+a+2 b
\end{aligned}
$$

(10) Differentiate $h(q)=3 q^{6} \cos \pi / 3+\cos \pi / 6$:

$$
\begin{aligned}
h(q) & =[3 \cdot \cos (\pi / 3)] q^{6}+\cos (\pi / 6) \\
h^{\prime}(q) & =6 \cdot\left[3 \cdot \frac{1}{2}\right] q^{5}+0 \\
& =9 q^{5}
\end{aligned}
$$

