QSCI 291 Final Study Guide

Ch. 1 \& Review Material

- Union of two or more sets
- Intersection of two or more sets
- Difference of two sets
- Set cardinality
- Common sets such as real numbers, integers, rational numbers, whole numbers
- Writing intervals using set notation
- Standard, point-slope, and slope-intercept forms of a line (p. 13: \#13, 19)
- Relation of slopes of parallel lines (p. 13: \#34)
- Solving absolute value equations and inequalities (p. 13: \#5)
- Types of functions (polynomial, rational, trigonometric, exponential, logarithmic)
- Rules for simplifying exponential expressions (p. 15: \#73, 74)
- Rules for simplifying logarithmic expressions (p. 15: \#79)
- Basic trigonometric identities

$$
\begin{aligned}
& -\tan \theta=\sin \theta / \cos \theta \\
& -\sin ^{2} \theta+\cos ^{2} \theta=1 \\
& -1+\tan ^{2} \theta=\sec ^{2} \theta
\end{aligned}
$$

- Checking whether a function has an inverse (p. 38: \#71, 73)
- Finding the inverse of a function (p. 38: \#75, 77)
- Finding the value of an inverse function given an output of the original function (for example, $f(0)=1$ implies $f^{-1}(1)=0$)
- Finding the composition of two functions (p. 35: \#13, 17)

Ch. 2

- Definition of a sequence (p. 78: $\# 9,13$)
- Recursive form of a sequence (p. 79: \#83, 91)
- Explicit form of a sequence (p. 78: \#41, 43)
- Converting between the set, recursive, and explicit forms of a sequence (p. 78: \#27, 29, 33)
- Exponential growth and decay (p. 67: \#15, 21, 29)
- Application of limit laws to find limits of sequences as $n \rightarrow \infty$ (p. 79: \#71, 75, 79, 81)

Ch. 3

- Limits of functions as $x \rightarrow \infty$ (p. 113: $\# 3,11,13,19)$
- Limits of functions in a " $0 / 0$ " situation (p. 101: \#47, 53)
- Limits of functions as x approaches an asymptote from left or right (p. 101: \#21, 25)
- Limits of exponential and negative exponential functions (such as $y=e^{x}$ and $y=e^{-x}$) as $x \rightarrow \pm \infty$
- Different ways a limit can not exist (infinite, oscillation, discontinuous)
- Criteria for a function being continuous at a certain x-value (p. 108: \#5)
- Continuous functions and their exceptions (polynomial; rational except at asymptotes; trigonometric except at asymptotes; exponential; logarithmic except at asymptote)
- Limits of continuous functions at continuous points (p. 105: \#35, 39, 47)

Ch. 4

- Formal definition of the derivative (p. 143: \#21, 24)
- Calculating the slope of a secant line between two points on a function
- Connection between the derivative of a function and the slope of the tangent line to the function
- Calculating the slope of the tangent line to a function at a certain x-value (p. 143: \#27, 28)
- Derivative of a power function (p. 149: $\# 5,11$)
- Derivatives of trigonometric functions (p. 177: \#29, 55, 71)
- Derivatives involving constants (p. 150: \#27, 29, 39)
- Product rule (and how to write out the "recipe"- $u^{\prime} v+v^{\prime} u$) (p. 158: \#15, 19, 27)
- Quotient rule (and how to write out the recipe) (p. 158: \#53, 77)
- Chain rule (and how to write out the recipe) (p. 172: \#15, 27)
- Finding higher derivatives (second derivative, third derivative, etc.) (p. 173: \#75, 79)
- Using implicit differentiation to find $d y / d x$ given an equation involving x and y (p. 172: \#49, 53, 57)
- Derivative of an exponential function (such as $y=e^{x}$ or $y=2^{x}$) (p. 181: \#9, 21, 45)
- Derivatives of inverse functions using the "inverse function" formula (p. 192: \#3, 5, 11)
- Derivatives of a logarithmic function (such as $y=\ln (x)$ or $y=\log _{2}(x)$) (p. 192: \#39, 59)

Ch. 5

- Extreme value theorem
- Difference between global extrema and local extrema
- Difference between an increasing/decreasing function
- Difference between a concave up/concave down function
- Finding critical points by setting $f^{\prime}(x)=0$
- Testing critical points by using $f^{\prime \prime}(x)$ or by checking $f^{\prime}(x)$ on either side of the critical point
- Finding potential inflection points by setting $f^{\prime \prime}(x)=0$
- Testing potential inflection points by using $f^{\prime \prime \prime}(x)$ or by checking $f^{\prime \prime}(x)$ on either side of the point

