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Abstract: Spatially-explicit harvest scheduling models to enforce maximum harvest opening size 4 

restrictions often lead to combinatorial problems that are hard to solve. This paper shows that the 5 

inequalities required by one of the three existing formulations, the Path Model are typically lazy. In other 6 

words, these constraints are rarely binding during optimization, especially if the maximum opening size is 7 

large relative to the average management unit size. By solving 60 hypothetical and eight real forest 8 

problems with varying maximum clear-cut sizes and to varying target optimality gaps, we confirm that 9 

applying the Path constraints only when they are violated during optimization leads to shorter solution 10 

times. While the lazy Path constraints performed better than the other formulation/solution approaches, 11 

the relative superiority of the method was more obvious at larger optimality gaps.  Nearly 95% of the 12 

problem instances solved fastest with the “lazy” method at a target gap of 1%, and almost 92% solved 13 

fastest at 0.05%. At 0.01%, the Lazy Path approach was still superior in the majority of cases, but the 14 

percentage was much lower: 57%. This is a significant improvement compared to the 14, 10 and 19% 15 

shares of the other approaches. If only the real instances are considered, the Lazy Path approach 16 

performed best in 68% of the instances with 1% and 0.01% optimality gaps and in 61% of the instances 17 

with 0.05% gap. A closer analysis of the results suggests that the relative superiority of the approach 18 

increases with problem size and maximum clear-cut size. 19 

 20 

Keywords: spatial forest planning, integer programming 21 

 22 

Introduction 23 

Spatially-explicit harvest scheduling models optimize the spatial and temporal layout of forest 24 

management actions in order to best meet management objectives such as profit maximization, even 25 

flow of products, and wildlife habitat preservation while satisfying a variety of constraints, including 26 

maximum harvest opening size restrictions.  These models assign various silvicultural prescriptions, such 27 
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as clearcuts, thinning or shelterwood treatments, to forest management units within a predetermined 1 

land-base.  In addition, spatially-explicit decisions may also be modeled. These decisions, such as 2 

whether to treat a harvest unit or to build a road link in a given planning period, are typically represented 3 

with binary variables that can take only the values of 0 or 1.  A variety of other restrictions, some 4 

spatially-explicit and some not, are also typically included such as timber-flow smoothing constraints (e.g., 5 

Thompson et al. 1994), minimum average ending age or inventory constraints (e.g., McDill and Braze 6 

2000), and maximum harvest opening size restrictions (e.g., Meneghin et al. 1988). 7 

The need for spatial specificity in these models, and the use of discrete optimization, has 8 

emerged primarily as a result of adjacency restrictions.  Adjacency, or “green-up,” constraints limit the 9 

maximum size of contiguous harvest openings.  These restrictions, which are often required by law or 10 

policy in North America (e.g., Barrett et al. 1998, American Forest & Paper Association 2000, Boston and 11 

Bettinger 2002), have been promoted as a tool to mitigate the negative impacts of harvesting forested 12 

ecosystems (e.g., Thompson et al. 1973, Jones et al. 1991, Murray and Church. 1996a, 1996b, Snyder 13 

and ReVelle 1996a, 1996b, 1997a, 1997b, Carter et al. 1997, Murray 1999).  Although maximum harvest 14 

opening size constraints do indeed disperse harvesting activities across the landscape, and thus reduce 15 

the concentration of this type of human disturbance, they have also been shown to fragment and 16 

disperse mature forest habitats (Harris 1984, Franklin and Forman 1987, Barrett et al. 1998, Borges and 17 

Hoganson 2000).  To mitigate these negative consequences of these restrictions, Rebain and McDill 18 

(2003a, 2003b) proposed a 0-1 programming formulation that allows the forest planner to promote or to 19 

require the preservation, maintenance or creation of a certain amount of mature forest habitat in large 20 

patches over time in models with maximum harvest opening size constraints.  A drawback of combining 21 

both harvest opening size and mature patch habitat constraints is that the resulting models are large, 22 

complex, and hard to solve.  Considerable effort has been made to improve our ability to obtain high-23 

quality solutions for these models within reasonable time frames such as a few hours.  This study focuses 24 

on improving the performance of models with harvest opening size constraints. We show that the so-25 

called Path constraints (McDill et al. 2002), which are required by one of the existing models to ensure 26 

maximum harvest opening size restrictions, are rarely active (binding) during optimization, especially if 27 
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the size limit on harvest openings is large. Furthermore, since these constraint sets tend to be large, we 1 

hypothesize that putting these inequalities in lazy constraint pools, i.e., using them only when they are 2 

violated by a solution during optimization, can lead to dramatic improvements in solution times. 3 

The rest of the Introduction discusses the existing exact optimization models for maximum 4 

harvest opening size restrictions and further explains our hypothesis about the “lazy” nature of Path 5 

constraints. In particular, the potential significance of this property with respect to the computational 6 

performance of harvest scheduling models is discussed. The empirical study described in this paper 7 

compares the solution times that can be achieved by the existing models with those of the Lazy Path 8 

approach using 60 hypothetical and eight real test problem instances, and different maximum harvest 9 

opening size levels.  10 

The simplest type of maximum harvest opening size constraints prevent adjacent management 11 

units from being harvested within the same time period (McDill and Braze 2000).  This case, referred to 12 

as the Unit Restriction Model (URM, Murray 1999), assumes that the combined area of any two units in 13 

the forest would exceed this maximum area.  The Area Restriction Model (ARM, Murray 1999) is more 14 

general, allowing groups of contiguous management units to be harvested concurrently as long as their 15 

combined area is less than the maximum opening size.  Depending on the average area of management 16 

units, the maximum harvest opening size, and the age-class distribution of the forest, the ARM 17 

formulation might allow for a significantly higher net present value (NPV) of the forest.  Furthermore, the 18 

ARM approach gives harvest scheduling models more flexibility in building up treatment units in a variety 19 

of ways to meet different forest management objectives.  Unfortunately, formulating and solving forest 20 

planning problems with ARM constraints is generally considerably more difficult than formulating and 21 

solving such problems with URM constraints. 22 

URM constraints can be written in a number of different ways.  McDill and Braze (2000) identify 23 

16 different ways URM constraints have been formulated in the literature.  The URM problem, which can 24 

be stated as selecting a subset of management units from a forest for logging in such a way that no two 25 

adjacent units are cut and that the net revenues are maximized, is equivalent to the well-researched 26 

maximum weight stable set problem (SSP).  Nemhauser and Wolsey (1988, p259-265) provide a detailed 27 
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discussion of the SSP.  The equivalence of URM and SSP is evident if one considers the graph 1 

representation of the URM where the nodes correspond to the management units and the arcs represent 2 

the adjacency relationships among these units.  If the weight assigned to a node represents the net 3 

revenues that are earned if the corresponding unit is cut, then the one-period URM problem is to identify 4 

a subset of unconnected nodes with maximum total weight.  This is the maximum weight stable set 5 

problem.  This equivalence is easily generalized to the n-period URM problem (Barahona et al. 1990). 6 

There are two important implications of the equivalence of URM and SSP with respect to 7 

spatially-explicit harvest scheduling models. One is that harvest scheduling models, both URM and ARM, 8 

are NP –Hard. In other words, the solution times for these problems increase more than polynomially as 9 

a function of the number of constraints and variables that are required to formulate the models. This is 10 

because the ARM is a generalization of the URM, and the URM is equivalent to the SSP, which is known to 11 

be NP -Hard (Nemhauser and Trotter 1974). The other implication is that families of inequalities that 12 

have already been found useful for SSPs, such as those based on maximal cliques (Padberg 1973), can 13 

be useful for URM problems as well. The concept of maximal cliques – maximal sets of nodes in a graph 14 

that are mutually connected by edges – translates to maximal sets of mutually adjacent management 15 

units in forest planning. The useful combinatorial properties of maximal clique inequalities in URM 16 

problems has been mentioned in Murray and Church (1996a, 1997) and was later utilized by Goycoolea 17 

et al. (2005) and Murray et al. (2004) in solving ARM problems. 18 

In contrast to the URM, ARM problems were initially deemed impossible to formulate in a linear 19 

model (Murray 1999) and only heuristics were employed to solve them (e.g., Lockwood and Moore 1993, 20 

Caro et al. 2003, Richards and Gunn 2003).  However, McDill et al. (2002) identified two exact, linear, 0-1 21 

programming formulations of the ARM.  Their first formulation uses constraints that allow groups of 22 

contiguous management units to be harvested as long as their combined area does not exceed the 23 

maximum harvest opening limit.  McDill et al. (2002) present an algorithm, which they call the Path 24 

Algorithm, that recursively enumerates all sets of contiguous management units whose combined areas 25 

just exceed the maximum allowable harvest level.  The constraints created this way are similar to cover 26 

inequalities in 0-1 knapsack problems (c.f., Wolsey 1998, p147) and thus they are occasionally referred to 27 
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as cover inequalities in this paper. The disadvantage of the Path/cover formulation is that the number of 1 

these constraints can be very large, and this number grows exponentially as the number of times the 2 

recursive algorithm that generates them calls itself.  Thus, the number of constraints increases 3 

exponentially as the ratio between the average size of the management units and the maximum harvest 4 

opening size decreases. The advantage of the Path/cover formulation over the two alternatives, discussed 5 

next, is that it does not require the introduction of additional 0-1 decision variables. The potentially very 6 

large number of Path/cover constraints relative to the number of 0-1 variables suggests that with larger 7 

maximum harvest opening sizes, these constraints might be less likely to be binding during optimization. 8 

This behavior could be utilized to produce shorter solution times. 9 

 McDill et al.'s (2002) other formulation uses separate variables for each possible combination of 10 

contiguous management units within the forest whose total area does not exceed the allowable harvest 11 

opening size.  McDill et al. (2002) refer to these combinations as Generalized Management Units (GMUs). 12 

These GMUs need to be enumerated before the model can be constructed.  With this formulation, the 13 

same types of adjacency constraints as those used in URM models can be written on the set of GMUs.  14 

McDill et al. (2002) used pairwise constraints in their initial experiments, whereas Goycoolea et al. (2005) 15 

applied maximal cliques and found that these formulations performed better. Additionally, in a more 16 

recent work, Goycoolea et al. (2009) also provide theoretical evidence that the maximal clique GMU, or 17 

“Cluster,” formulation is always at least as tight as the Path formulation in its approximation of the 18 

convex hull of ARM. In other words, the linear programming relaxation of the GMU model always leads to 19 

an objective function value that is at least as close, or closer to the objective function value of the true 20 

optimum as that of the Path model. This is an important result because tighter formulations often lead to 21 

shorter solution times.  In contrast to the Path formulation, where the number of constraints grows 22 

exponentially as the ratio of the maximum harvest opening size is increased, with the GMU model the 23 

number of variables grows exponentially as the ratio of the maximum harvest opening size is increased. 24 

The third exact 0-1 programming formulation of ARM, proposed by Constantino et al. (2008), is 25 

very different from the Path/Cover and GMU/Cluster formulations in that it does not rely on a recursive, 26 

potentially time consuming a priori enumeration of spatial constructs such as minimally infeasible (as in 27 
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the Path Model) or feasible clusters of management units (as in the GMU Model). Since the number of 1 

clearcuts in a forest cannot exceed the number of management units (given that a management unit can 2 

only be harvested once) a parsimonious set of clearcut assignment variables can be defined that 3 

represent the decisions to assign management units to a particular clearcut (also referred to as a 4 

“bucket” in Goycoolea et al. 2009) in a given planning period. In the context of Constantino et al.’s 5 

(2008) model, a clearcut or bucket may comprise units that are disconnected. Additional constraints are 6 

present in the formulation to ensure that the area of these clearcuts never exceeds the maximum 7 

opening size and that two or more clearcuts never overlap and are never adjacent. Since the number of 8 

assignment variables in this formulation is bounded by n n T× × , where n is the number of management 9 

units in the forest and T is the number of planning periods, Constantino et al.’s (2008) model leads to 10 

smaller problems than the other two formulations when the maximum harvest opening size is large 11 

relative to the typical size of a management unit. Further, substantial reductions in problem size can be 12 

achieved by eliminating those assignments from the model where the area of the minimum-area path 13 

between the two management units involved is greater than the maximum harvest opening size. 14 

Constantino et al.’s (2008) model is significant because it keeps the size of ARM from growing 15 

exponentially with increasing maximum harvest opening sizes relative to the average unit size. 16 

At least two other ARM constraint sets have been proposed.  One can be viewed as an extension 17 

of  McDill et al.'s (2002) Path model, and the other as a hybrid method that can be solved using exact 18 

optimization techniques but cannot guarantee solutions that do not require post-fixing for ARM-feasibility. 19 

Crowe et al. (2003) appended what they call “ARM clique constraints” to McDill et al.'s (2002) Path or 20 

cover inequalities, arguing that the “clique” concept can be applied to ARM models if the total area of a 21 

mutually adjacent set of management units exceeds the maximum opening size.  Crowe et al.'s (2003) 22 

“clique constraints” are very similar to knapsack constraints, and are written for each mutually adjacent 23 

set of units, where the left-hand-side coefficients are the areas of the units and the right-hand-side is the 24 

allowable cut limit.  Crowe et al. (2003) found that the appended formulation did not outperform McDill 25 

et al.'s (2002) Path approach computationally.  It can be shown, however, that some of these ARM clique 26 

constraints cut off fractional solutions from the LP relaxation defined by McDill et al.’s (2002) Path/Cover 27 
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formulation, and thus they could possibly be used to tighten the Path/Cover formulation (i.e., better 1 

approximate the ARM’s integral convex hull).  Crowe et al.'s (2003) results illustrate how obtaining a 2 

tighter formulation does not necessarily result in improved solution times.  While additional constraints 3 

may tighten the formulation, they increase the size of the LP relaxation that must be solved at each node 4 

in the branch-and-bound tree, slowing down the rate at which nodes are processed.   5 

 Gunn and Richards' (2005) “stand-centered” constraints can also be used as an alternative or 6 

complement to McDill et al.'s (2002) cover inequalities.  One stand-centered constraint is written for each 7 

management unit and period.  The constraint prevents the harvest of the unit in a given period if the 8 

combined area of the adjacent units that are scheduled for harvest in the same period exceeds the cut 9 

limit minus the area of the unit. Gunn and Richards (2005) observe that these constraints do not prevent 10 

every possible harvest area violation, but they argue that these violations will be few when the areas of 11 

management units are not too small compared to the harvest opening area limit and that those that do 12 

occur can be easily detected and “post-fixed” at a relatively small loss in optimality.  Although Gunn and 13 

Richards' (2005) constraint set is not an exact formulation of the ARM, it is attractive because (1) the 14 

number of stand-centered constraints needed is equal to the number of units in a forest, which is much 15 

less than the number of covers that might be needed, and (2) unlike finding McDill et al.’s (2002) covers, 16 

generating stand-centered constraints does not require a potentially very time-consuming recursive 17 

enumeration. However, Gunn and Richards' (2005) constraint set can be expected to be less effective as 18 

the ratio of the maximum harvest opening limit to the typical management unit size increases. 19 

The goals of this paper are 1) to test empirically whether McDill et al.'s (2002) Path or cover 20 

inequalities are often lazy in a sense that most of them are rarely active (binding) in otherwise feasible 21 

integer solutions that are potential candidates for the true optimum, and 2) to test whether this property 22 

can be used to solve area-based harvest scheduling models more efficiently. Specifically, we test whether 23 

specifying the Path constraints as a lazy constraint pool leads to more efficient solution times (i.e., 24 

whether a target dual gap can be achieved more quickly or whether a tighter gap can be achieved within 25 

a given amount of time). While the construction of lazy constraint pools still requires the a priori 26 

enumeration of paths, or minimally infeasible clusters of management units, the constraints in the pool 27 
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are only applied during optimization if they are violated by a solution that has the potential to improve 1 

upon the objective function value of the incumbent. Note that lazy constraints are different from 2 

redundant constraints in that the latter can never be active in any of the solutions because they are 3 

found outside of the feasible region. Lazy constraints are also different from cutting planes because they 4 

are required in order to fully identify the set of feasible solutions; without them, an infeasible integer 5 

solution would be allowed.  6 

We also note that our proposed approach bears some resemblance to McNaughton and Ryan’s 7 

(2008) integrated column and constraint generation method. Our method is markedly different in three 8 

ways. First, while the lazy constraint approach is applied to the Path Formulation, McNaughton and 9 

Ryan’s (2008) technique is applied to the Cluster Packing (Goycoolea et al. 2006) or, equivalently to the 10 

Generalized Management Unit-based Formulation (McDill et al. 2002). Second, we do generate all of the 11 

adjacency constraints, which are in our case path constraints, upfront but use them only when needed 12 

during optimization. McNaughton and Ryan (2008) do not generate any of the GMU-based adjacency 13 

constraints upfront. However, they enumerate the GMUs and construct the associated GMU variables and 14 

constraints only on those GMUs that turn out to be involved in clear-cut size or green-up violations at 15 

particular solution candidates. At last but not least, one big advantage of our approach is that all it 16 

requires from the user for implementation is to label the path constraints as “lazy”. While most of-the-17 

shelf optimization packages, such as IBM’s ILOG CPLEX, offers several options to define model 18 

constraints as “lazy”, the efficacy of the approach in forest planning has not been investigated so far. The 19 

McNaughton and Ryan’s (2008) approach requires setting up what is essentially a branch-and-cut-and-20 

price algorithm for the ARM, which is a far more technical task. 21 

The next section describes the computational experiment that was conducted to check if the Path 22 

constraints are indeed lazy in various problem instances, and to test whether and under what conditions 23 

the use of lazy constraint pools leads to shorter solution times compared to other methods. We also give 24 

formal, mathematical definitions of the models and algorithms that we used in the comparison. 25 
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Methods 1 

The test forests 2 

The “laziness” of the Path constraints and the computational efficiency that can be afforded by 3 

the use of lazy constraint pools was tested on sixty hypothetical and eight real forest planning problems, 4 

all of which are available in a public data repository at http://ifmlab.for.unb.ca/fmos/ (Integrated Forest 5 

Management Lab 2006). Multiple levels of maximum harvest opening size restrictions were used (see 6 

Table 3). Thirty of the hypothetical forests had 300 units and thirty had 500 units. The real forests, 7 

Kittaning4, FivePoints, PhyllisLeeper, BearTown, Pack, ElDorado, Shulkell and NBCL5 consisted of 32, 71, 8 

89, 90, 186, 1,363, 1,019 and 5,224 units, respectively. In this paper, a management unit is simply the 9 

smallest contiguous pre-defined spatial unit that will be treated using a single prescription, i.e., it cannot 10 

be split. Adjacent management units may be aggregated, however, to create larger treatment units that 11 

will be collectively treated using a single prescription. The hypothetical problems had one forest type and 12 

one site class, while some of the real problems had four, five or six forest types and two, three, four or 13 

six site classes (Table 2). Forests in different categories exhibit different growth and yield patterns. The 14 

initial age-class distribution of the hypothetical forests mimics a typical Pennsylvania hardwood forest 15 

(Table 1).  As the hypothetical forests comprise different spatial configurations of management units and 16 

the acreage of the individual units is predefined, the actual percentages of the age-classes might deviate 17 

slightly from the figures in the table. The hypothetical problems were generated in batches using a 18 

program called MakeLand (McDill and Braze 2000), which creates hypothetical forests consisting of 19 

contiguous irregular polygons that can be assigned different stand characteristics. MakeLand was 20 

instructed to randomly assign age-classes to the polygons of each randomly generated forest map in 21 

such a way so that the overall age-class distribution would approximate the one shown in Table 1. This 22 

random age-class assignment was done three times for each of twenty maps, resulting in the thirty 300-23 

stand and thirty 500-stand problems. Neighborhood adjacency (the average number of adjacent stands, 24 

or vertex degree in the adjacency graph) was varied by changing the initial number of points that 25 

MakeLand was instructed to use to construct the polygons. The age-classes and yields of each unit in the 26 

real problems were based on on-site measurements. 27 
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The planning horizon was 60 years for the hypothetical models, and 50, 45, 40 or 25 years for 1 

the real problems. The length of the planning periods was 10 years for each problem except for El 2 

Dorado, Shulkell and Pack forests, where it was 5 years. The minimum rotation age was 60 for the 3 

hypothetical, 80 for the four small real problems from Pennsylvania, 45 for Pack Forest, 35 for El Dorado 4 

and Shulkell, and it ranged from 20 to 100 years for NBCL5, depending on the forest type. Since the 5 

initial age and the minimum rotation age of a management unit determine whether it can be cut during 6 

the planning horizon, and this in turn can have an impact on the difficulty of the harvest scheduling 7 

problem, we note that the percentage area of the forests that cannot be cut at all is zero for the majority 8 

of the test problems. More specifically, it is zero for the 60 hypothetical problems, Pack Forest and 9 

Shulkell and it is 6.18% for Kittaning4, 3.66% for FivePoints, 1.83% for PhyllisLeeper, 0.44% for 10 

BearTown, 1.27% for NBCL5 and 20.1% for El Dorado. The financially optimal rotation age, based on 11 

maximizing the land expectation value (LEV), was 80 years for the hypothetical, 50 years for the small 12 

real problems and Pack Forest, 90 years for NBCL5, 70 for Shulkell and 35 for El Dorado. The possible 13 

prescriptions were to cut the management units in period 1, 2, 3, 4, 5, 6 (in the hypothetical forests) or 14 

not at all.  Maximum harvest opening sizes of 40, 50 and 60 ha were imposed on the hypothetical 15 

problems, 40, 50, 60 and 80 ha on the four smallest real problems, 24.28, 32.37, 40.47 and 48.56 ha on 16 

Pack Forest, 48.56, 60.70 and 72.84 ha on El Dorado, 40 and 60 ha on Shulkell and 21, 30 and 40 ha on 17 

NBCL5. Adjacent management units were allowed to be harvested concurrently as long as their combined 18 

area was less than the maximum opening size. All units were smaller than the maximum harvest opening 19 

size. In the case of Kittaning4, FivePoints, PhyllisLeeper and BearTown, units greater than 40 ha were 20 

divided into smaller units by a Pennsylvania Bureau of Forestry employee using contour lines, roads, 21 

trails, streams and shape. In NBCL5 and Shulkell, units greater than 21 and 40 ha, respectively were 22 

excluded as we had no site-specific knowledge to make meaningful delineations. We also excluded those 23 

units from NBCL5 that had no yield information. The average age of the forests at the end of the 24 

planning horizon was set to be at least half of the minimum rotation age. We used a 3% real discount 25 

rate for each formulation except for the four Pennsylvania forests where we used 4% and in Pack Forest, 26 
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where we used 7% as prescribed by the respective administrators. The 3% rate was used to be 1 

consistent with Goycoolea et al. (2009).  2 

Table 2 summarizes the spatial characteristics of each real problem, and each hypothetical 3 

problem batch. Apart from the minimum, maximum and mean unit sizes, the unit size distribution, the 4 

total forest area, as well as the average vertex degrees and the number of forest types, site classes and 5 

planning periods are listed.  6 

To evaluate potential solution time savings of the Lazy Path approach, we formulated each 7 

problem three different ways: using (1) McDill et al.'s (2002) Path/Cover constraints, (2) Goycoolea et 8 

al.'s (2005) maximal clique GMUs (clusters), and (3) Constantino et al.'s (2006) clearcut assignment 9 

variables. We used a green-up exclusion period of one period length. This means that depending on 10 

whether a 5 or 10-year long planning period was used, 5 or 10 years were assumed to be long enough 11 

for a clear-cut to be replanted or naturally regenerated into a new stand that had adequate canopy 12 

closure and height. We assumed that adjacent units with a combined area above the maximum opening 13 

size can both be cut as long as there is at least one planning period between the two harvests to allow 14 

green-up. As a reference for the readers, we note that the length of the exclusion period ranged between 15 

10 and 20% of the financially optimal rotation age in these test problems. We solved the Path 16 

formulation with and without treating the Path/Cover inequalities as lazy constraint pools. We did not test 17 

the lazy constraint approach with Goycoolea et al.’s (2005) and Constantino et al.’s (2006) models 18 

because those formulations don’t require exponentially large constraint pools; they require more variables. 19 

Lazy constraint pools are expected to work well only in cases where the number of lazy constraints 20 

substantially exceeds the number of variables and where only a few constaints in the lazy constraint pool 21 

are likely to be binding. The more constraints there are relative to the number of variables, the less likely 22 

that they will all intersect in the neighborhood of a new, potentially optimal solution, hence the “lazy” 23 

designation. 24 

The following two sub-sections give formal definitions for each of the models and for each of the 25 

preprocessing algorithms that were used in this experiment. 26 
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Model formulations 1 

The Path Model (a.k.a. the Cell or Cover Model, McDill et al. 2002) 2 

The general structure of McDill et al.'s (2002) Path Model is as follows: 3 

 4 
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where the variables are: 14 

 xmt = 1 if management unit m is to be harvested in period t for t = hm , ... T, 0 otherwise; 15 

when t = 0, the value of the binary variable is 1 if management unit m is not harvested 16 

at all during the planning horizon (i.e., xm0 represents the “do-nothing” alternative for 17 

management unit m), and 18 

Ht  = the total volume of sawtimber in m3 harvested in period t, and 19 

the parameters are: 20 

 hm      =   the first period in which management unit m is old enough to be harvested, 21 

M = the number of management units in the forest, 22 
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T = the number of periods in the planning horizon,  1 

cmt  = the net discounted net revenue per hectare plus the discounted expected forest value at 2 

the end of the planning horizon if management unit m is harvested in period t, 3 

Mht   =    the set of management units that are old enough to be harvested in period t, 4 

am  = the area of management unit m in hectares, 5 

vmt  = the volume of sawtimber in m3/ha harvested from management unit m if it is harvested 6 

in period t, 7 

 bl,t = a lower bound on decreases in the harvest level between periods t and t+1 (where, for 8 

example, bl,t = 1 would require non-declining harvests and bl,t = 0.9 would allow a 9 

decrease of up to 10%), 10 

 bh,t = an upper bound on increases in the harvest level between periods t and t+1 (where bh,t 11 

= 1 would allow no increase in the harvest level and bh,t = 1.1 would allow an increase 12 

of up to 10%), 13 

C = a set of management units, also called a cover or path, that forms a contiguous area 14 

just greater in size than the maximum harvest opening limit, 15 

^  = the set of covers (or paths) that arise from a forest planning problem, 16 

hi  =  the first period in which the youngest management unit in cover i is old enough to be 17 

harvested, 18 

T
mtAge  = the age of unit m at the end of the planning horizon if it is harvested in period t; and 19 

T
Age  = the minimum average age of the forest at the end of the planning horizon.  20 

 21 
 Equation (1) specifies the objective function of the problem, namely to maximize the discounted 22 

net revenue from the forest during the planning horizon plus the discounted ending value of the forest.  23 

Constraints (2) are logical constraints.  They require a management unit to be assigned to at most one 24 

prescription, including a do-nothing prescription.  Harvest variables ( mtx ) are only created for periods 25 

where the stand is old enough to be harvested (i.e., it is older in that period than the predefined 26 
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minimum rotation age).  Constraints (3) are harvest accounting constraints.  They sum the harvest 1 

volume for each period and assign the resulting value to harvest accounting variables Ht .  Constraint sets 2 

(4) and (5) are flow constraints.  They limit the rate at which the harvest volume can increase or 3 

decrease from one period to the next.  Constraint set (6) captures the maximum harvest opening size 4 

restrictions as minimal cover constraints generated by the Path Algorithm.  These constraints assume that 5 

the exclusion period equals one planning period: once a management unit, or group of contiguous units, 6 

has been harvested, no adjacent management units can be harvested until at least one period has 7 

passed.  The structure of these constraints is easy to generalize to alternative exclusion periods which are 8 

integer multiples of a planning period (see for example, Snyder and ReVelle 1997b).  Constraint (7) is an 9 

ending age constraint.  It requires that the average age of the forest at the end of the planning horizon is 10 

at least 
T

Age years. In the real forests with multiple forest types, such as NBCL5, one ending age 11 

constraint was written for each forest type. The target ending age was set to one half of the minimum 12 

rotation age associated with the forest type. These constraints help prevent the model from over-13 

harvesting the forest during the planning horizon and define a minimum criterion for a desirable ending 14 

condition. Lastly, constraint (8) identifies the management unit variables as binary. 15 

 16 
The Maximal Clique GMU Model 17 

 As discussed in the Introduction, the key step in constructing the maximal clique GMU or Cluster 18 

Model is to enumerate each possible combination of contiguous management units within the forest 19 

whose total area does not exceed the allowable harvest opening size. The choice variables utx  in this 20 

model represent the decision whether all management units in GMU or Cluster u should be cut in period t 21 

or not. We note that these variables are defined for t=0 (the “do nothing” option) only if they denote a 22 

GMU that consists of one unit. This is necessary to ensure that the minimum average ending age 23 

constraint (15) functions as intended. As in Goycoolea et al. (2005), we used maximal clique constraints 24 

in this benchmark model to impose the maximum harvest opening restrictions: 25 

 26 
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 10 

where  u = a generalized management unit (GMU or cluster): a set of management units that forms a 11 

connected sub-graph of the underlying adjacency graph, for which maxjj u
a A

∈
≤∑ ( ja = 12 

area of unit j, and maxA = maximum harvest limit), 13 

Gm = the set of GMUs that contain management unit m, 14 

hu  = the first period in which the youngest management unit in u is old enough to be cut, 15 

Gt  = the set of GMUs formed by management units that are each old enough to be cut in t, 16 

Kjt = the set of GMUs that 1) contain at least one unit in maximal clique j of management units 17 

and 2) where all units comprising the GMU are old enough to be harvested in period t.  A 18 

maximal clique is a set of mutually adjacent management units where no other units exist 19 

that are adjacent to all of the units in the clique, 20 

hj  = the first period in which the youngest unit in clique j is old enough to be cut, 21 
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J = the set of maximal cliques of the management units, and  1 

T
utAge = the age of GMU u in years at the end of the planning horizon if it is cut in period t. 2 

 3 
The Bucket Model  4 

To formulate Constantino et al.’s (2008) Bucket Model, define classΚ as a class of clearcuts. 5 

Each clearcut is uniquely indexed by a management unit (stand). Thus, MΚ = , where M is the number 6 

of units in the forest. Further, the elements of a clearcut iK ∈Κ  are management units defined by the 7 

following function (0-1 program). Function (11)-(14) assigns a set of units, (which can be the empty set) 8 

to each clearcut via the use of binary variables it
mx that take the value of 1 if unit m is assigned to clearcut 9 

i in period t. The value of this variable is 0 otherwise. 10 
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 17 
 Equation (11), the objective function, is equivalent to Equation (1) in the Path Model. It 18 

maximizes the discounted net timber revenues from the forest over the planning horizon plus the 19 

discounted ending value of the forest. Constraint set (12) comprises the logical constraints for the Bucket 20 

Model. They allow a management unit to be harvested only once in the planning horizon or not at all. 21 

Constraints (13) prevent the formation of any clearcut i in class Κ  whose area exceeds the maximum 22 

harvest opening size. Lastly, constraint set (14) defines variables it
mx as binary. 23 
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 Note that since constraint set (13) does not prevent clearcuts in class Κ from being adjacent or 1 

overlapping, it alone cannot prevent maximum harvest opening size violations. Additional constraints are 2 

necessary. To that end, Constantino et al.’s (2008) model introduces a new set of binary variables of 3 

form it
Qw  that take the value of one whenever a unit in maximal clique Q∈_ is assigned to clearcut i in 4 

period t. As with the GMU/Cluster Model, set _ , the set of maximal cliques of management units, must 5 

be enumerated during the model formulation phase. The following two constraint sets, along with 6 

constraints (13) guarantee that the maximum harvest opening size is never exceeded. The contribution 7 

of constraint sets (15)-(16) is to ensure that the units in each maximal clique can only belong to at most 8 

one clearcut in any given planning period:  9 

 10 
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 14 
 To account for harvest volumes in each planning period and to ensure a minimum average 15 

ending age, we modify constraint set (3) and (7) and add them to the Bucket Model (18-19). The harvest 16 

flow constraints are identical to constraint sets (4-5). 17 
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 21 
 The model defined by (11-18) and (4, 5) is identical to what Constantino et al. (2008) refer to as 22 

ARMSCV-C. We add a minimum average ending age constraint (19) to this model to prevent the forest 23 

from being overharvested. Finally, Constantino et al. (2008) propose a variety of pre-processing 24 
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techniques that can improve the computational performance of the Bucket Model. We describe the 1 

algorithms that we used in a subsequent section titled “Pre-processing”. 2 

  3 
The Lazy Path Approach 4 

The Lazy Path approach solves the Path formulation (1-8) by specifying that constraints (6), i.e., 5 

the Path/cover inequalities, are placed in a lazy constraint pool. The integer programming solver is 6 

instructed to stop at each node in the branch-and-bound algorithm where a new feasible solution is found 7 

with an objective function value that is better than the current incumbent solution. The solver checks 8 

whether the solution at the node violates any of the Path inequalities in the lazy constraint pool. If none 9 

of the inequalities are violated and the solution is integer feasible, the solver designates the new solution 10 

as the incumbent and proceeds with pruning inferior nodes and processing any remaining unprocessed 11 

nodes in the branch-and-bound tree. If none of the inequalities in the lazy pool are violated, but the 12 

solution is fractional, the new node remains active for further branching. If, on the other hand, a violation 13 

is found, the violated constraints are added to the model and the sub-problem at the node is resolved. If 14 

the new solution is still feasible, integer, and has an objective function value that is better than that of 15 

the incumbent, then a new incumbent solution is found and, again, the branch-and-bound process is 16 

resumed. If the node has an inferior objective function value compared to the current incumbent after 17 

the violated constraint(s) has been added, it is pruned from the branch-and-bound tree. If the solution at 18 

the node is not integer feasible but still has a superior objective function value to the incumbent, it 19 

becomes an unprocessed node, and the branch-and-bound process is resumed.  When there are no more 20 

nodes to explore, the algorithm terminates at the node that yields the best objective function value 21 

without violating any of the Path constraints that remain in the lazy constraint pool. We implemented the 22 

Lazy Path approach in IBM ILOG CPLEX 12.1 by using the “Lazy constraints” label for Path inequalities. 23 

To estimate how “lazy” the Path constraints were, we kept track of the number of lazy constraint 24 

violations that occurred during the course of optimization and these numbers were compared with the 25 

number of Path constraints that were needed to fully define the ARM. We note that CPLEX 12.1 offers 26 

several options for the user to define or label certain constraints as “lazy”. The options differ based on 27 
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the modeling environment used, i.e., whether the Concert Technology, the Callable Libraries or other 1 

methods were used to access CPLEX.  2 

Pre-processing 3 

Each of the three models above requires pre-processing. The Path model, whether one uses the 4 

the Lazy Path approach or not, needs the set of paths or minimal covers to be enumerated before it can 5 

be formulated. The Maximal Clique GMU, or Cluster Model, requires the enumeration of both feasible 6 

clusters of units (GMUs) and the maximal cliques. The enumeration of maximal cliques is also necessary 7 

for the Bucket Model. In addition, the computational performance of the Bucket Model greatly benefits 8 

from the elimination of clear-cut assignment variables that can never take the value of one in a feasible 9 

solution.  10 

For the simultaneous enumeration of both the clusters (GMUs) and minimal covers, we used 11 

“Algorithm I” as proposed by Goycoolea et al. (2009, p164). Following the recommendation in that paper, 12 

we utilized special computer programming structures such as hash tables and linked lists to store 13 

enumeration results and to check for repetitions. For finding the set of maximal cliques (mutually 14 

adjacent management units), we used the following algorithm: 15 

 16 
Step 1: Pick a management unit and create a linked list of units that are adjacent to it. 17 

As an example, A1={2,3,5} is the set of units that are adjacent to unit 1. Repeat 18 

Step 1 for each stand. 19 

Step 2: Using an adjacency table or matrix that specifies which units are adjacent, check 20 

if i jA A = ∅∩
 
for each pair of adjacent units i, j with i j≠ . If the intersection is 21 

empty, save {i,j} as a maximal clique. Otherwise, create a list of 3-member cliques 22 

of form {i,j,k} for { }i jk A A∀ ∈ ∩ .  23 
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Step 3: For each 3-member clique {i,j,k}, check if 1i jA A =∩ .  If 1i jA A =∩ , then 1 

save {i,j,k} as a maximal clique. Otherwise, create a list of 4-member cliques of 2 

form {i,j,k,l} for { }i jl A A∀ ∈ ∩  with
 
k l≠ .  3 

Step 4: For each 4-member clique of form {i,j,k,l}, check if kl A∈ .  If the condition 4 

holds (i.e., units k and l are adjacent), then save {i,j,k,l} as a maximal clique. 5 

Step 5: Go through all the saved maximal cliques and discard the redundant ones. 6 

 7 
This algorithm could be extended for higher-order cliques (i.e., with more than four elements), but it was 8 

not necessary in this case, since adjacency was defined in this paper as sharing a common boundary, not 9 

just a point.  In this case, the Four Color Theorem (Appel et al. 1977) guarantees that no cliques with 10 

more than four elements will exist.   11 

Apart from enumerating the maximal cliques, pre-processing for the Bucket Model involves the 12 

identification of clear-cut assignments that can never be part of a feasible solution. For example, a 13 

management unit should never be assigned to a particular clear-cut (bucket) if the total area of the 14 

minimum area shortest path between this unit and the unit that indexes the clear-cut exceeds the 15 

maximum harvest opening size. In this context, paths are defined as contiguous sets of management 16 

units that connect a pair of units. Constantino et al. (2008) note that the vast majority of clear-cut 17 

assignments can be eliminated via a minimum-weight shortest path algorithm that determines, for each 18 

pair of units, whether they can form a feasible clear-cut or not. As an example, the following program, 19 

which is a modified version of the standard shortest path model, can, if solved, make such a 20 

determination. Given a directed graph representation of the forest, ( , )G V E , whereV is the set of units 21 

and E is the set of adjacencies or edges among the units, solve  22 

 23 

,

1  if  
: 1  if     ,  0  

0  otherwise
i i

s t i ij t ij ji iji V j A j A

i s
z min a x a x x i t i V x ij E

∈ ∈ ∈

⎛ = ⎞⎧
⎜ ⎟⎪= + − = − = ∀ ∈ ≥ ∀ ∈⎨⎜ ⎟

⎪⎜ ⎟⎩⎝ ⎠

∑ ∑ ∑  (20)  24 



 21

for each pair of units ,s t V∈ (“s” stands for source and “t” for terminal unit). As before, parameter ia is 1 

the area of unit i, and iA is the set of units adjacent to unit i. Variable ijx represents the decision whether 2 

directed edge ij should be part of the minimum area path between s and t. If , maxs tz A≤ , then an 3 

assignment variable for s and t is necessary, otherwise it isn’t. A potentially more efficient alternative that 4 

solves the minimum-weight shortest path algorithm for all pairs of units at once is the Floyd-Warshall 5 

Algorithm (Roy 1959, Floyd 1962 or Warshall 1962). This recursive, dynamic programming algorithm was 6 

used both in Constantino et al. (2008) and in this study to reduce the size of the Bucket formulation for 7 

the computational experiment. 8 

The computational experiment 9 

All pre-processing and model formulation tasks were automated using Java and IBM-ILOG CPLEX 10 

v. 12.1 Concert Technology (4-thread, 64-bit, released in 2009) on a Power Edge 2950 server that had 11 

four Intel Xeon 5160 central processing units at 3.00Gz frequency and 16GB of random access memory. 12 

The only exceptions were the Path and Maximal Clique GMU formulations of the Pack Forest problem with 13 

the 48.56 ha maximum harvest opening size and the Bucket formulations of NBCL5 and El Dorado. In 14 

these cases, a different, more powerful machine was used: a Power Edge 510 with two Intel® Xeon® 15 

x5670 CPUs at 2.93Gz frequency and 32GB memory. The operating system was MS Windows Server 2003 16 

R2, Standard x64 Edition with Service Pack 2 (2003) on the Power Edge 2950, and it was MS Windows 17 

Server 2008 R2 Standard x64 Edition (2009) on the 510. As shown in the “Results and discussion” section, 18 

the fact that for a few problems the formulation times were measured using a faster machine had no 19 

impact on our conclusions because these formulation times were longer than those obtained with the 20 

alternative models using the slower machine. Finally, we note that the formulation time measurements 21 

included computer times that were required to write out the linear programming formulations into text 22 

files. The formulation times, the number of constraints and 0-1 variables that ensure the maximum 23 

harvest opening size restrictions, as well as the distribution of paths/minimal covers in terms of the 24 

number of units they contain are listed in Table 3 and 4 for each of the 68 problems. The information in 25 



 22

these tables, along with Table 1 and 2, should allow readers to evaluate the results (e.g., solution times) 1 

in the context of the spatial and other attributes of the problems. 2 

Every problem instance was solved on the Power Edge 2950 server with CPLEX 12.1. until a 3 

predefined target optimality gap or 6 hours of runtime was reached, whichever happened first. We set 4 

the target optimality gaps at three different levels, 1%, 0.05% and the CPLEX default of 0.01% to see 5 

how robust the results were with respect to this parameter. The use of a relatively loose 1% gap is 6 

illustrative of forest planning exercises where the input data already carries some error, there are 7 

simplifications in model development, perhaps because only rough first estimates or strategic benchmarks 8 

are sought, and it is not critical to identify accurate solutions. At the other end of the spectrum, model 9 

runs with the default gap of 0.01% will demonstrate the power of the proposed lazy approach to 10 

generate research-grade solutions that are assumed to be based on high-quality input data. Finally, the 11 

goal of the 0.05% runs is to strike balance between these two extremes. We present the 0.05% solutions 12 

in more detail and use worst-case analyses and other statistical tools to determine if these results were 13 

robust with respect to the 1% and the 0.01% gaps.  All solver parameters were set to their default levels 14 

except the working memory limit which was set at 1GB. Since CPLEX allows only primal reductions for 15 

pre-processing formulations with lazy constraint pools, we set the “Primal and Dual Reduction Type” 16 

parameter to 1 (primal reductions only) for the Lazy Path approach. Solution times and constraint activity 17 

information for the Lazy Path inequalities (i.e., the number and percentage of lazy constraints that were 18 

found to be active during optimization) are listed in Table 5 for the eight real problems.  19 

Results and discussion 20 

The “laziness” of Path/Cover inequalities 21 

On average only 0.20%, 0.33% and 0.54% of the Path/Cover inequalities were found to be 22 

active in the hypothetical problems with the 40 ha maximum opening size restriction and with 1%, 0.05% 23 

and 0.01% target optimality gaps, respectively (Table 6). The same measures were 0.04%, 0.08% and 24 

0.13% for the same set of problems with 50 ha, and 0.01%, 0.02% and 0.03% with 60 ha maximum 25 

harvest opening size. The percentages varied more widely for the real problems (Table 6). While only 26 
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fractions of a percentage of the constraints were found to be active during optimization for most of the 1 

Pack Forest, NBCL5 and El Dorado problems, as many as 23-24% of the constraints were active in some 2 

of the PhyllisLeeper or Kittaning4 instances at the 40ha max opening size. With a few exceptions, namely 3 

the PhyllisLepper, Kittaning4, FivePoints and BearTown problems with 40 or 50 ha max opening size 4 

settings, the Path/Cover inequalities were rarely active in the overwhelming majority of test cases. The 5 

activity rate ranged between 0 and 1.47% in the hypothetical and between 0 and 23.81% in the real 6 

problems. This empirical result suggests that in many cases only a fraction of the Path constraints might 7 

be necessary to find optimal solutions to area-based harvest scheduling problems. Not surprisingly, the 8 

results in Table 6 also imply that the larger the maximum harvest opening size, the less likely it is that a 9 

given path constraint will be active during optimization. As the evidence in the next section suggests, this 10 

implication could in turn lead to significant solution time savings. Before we move on to solution times, 11 

we note that the degree of “laziness” could also depend on other factors including the length of the 12 

green-up period or on the tightness of harvest flow and minimum average ending age constraints. The 13 

longer the green-up and the more relaxed the forest-wide constraints, the more likely it is that a given 14 

path constraint becomes active. Lastly, we would also like to point to the result that the proportion of 15 

active path constraints increases with tighter optimality gaps. More violations are likely during 16 

optimization if more accurate solutions are sought. As we will see, one implication of this result is that the 17 

proposed lazy approach is somewhat less effective with tighter optimality gaps.    18 

Solution times 19 

Table 7 lists the number and percent of “wins” for each of the three benchmark models and for 20 

the proposed lazy approach for both the real and the hypothetical problems at the pre-specified 1%, 21 

0.05% and 0.01% target optimality gaps. We chose the number and percent of wins as the primary 22 

performance metric because not all problems solved to the desired gaps within the predefined 6 hours of 23 

runtime. We counted the “wins” based on the number of times a particular model/method solved the 24 

problem instance faster than any of the other models. If none of the models/methods were able to find a 25 

solution within the preset optimality gap and the 6 hours of runtime, we selected the “winner” based on 26 
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the tightness of the optimality gap that was achieved. The model that led to the tightest gap for a given 1 

instance was considered to be the winner for that particular problem. 2 

We start with the observation that the lazy approach far outperformed the three benchmarks at 3 

the 1% and at the 0.05% target optimality gaps for the hypothetical problems. At 1%, it solved 178 of 4 

the 180 (98.9%) instances faster than McDill et al.’s (2002) Path, Goycoolea et al.’s (2005) Maximal 5 

Clique GMU or Constantino et al.’s (2008) Bucket Model. At 0.05%, the proposed method “won” in 174 of 6 

180 (96.7%) hypothetical cases (Table 7). The computational advantage of the Lazy approach was 7 

dramatic: it was at least one magnitude faster than the other methods in solving these problems. While 8 

the aggregate solution time at the 0.05% was less than an hour for the Lazy approach, it was more than 9 

53 hours for the Path Model, more than 63 hours for the Bucket and more than 78 hours for the Maximal 10 

Clique GMU. And this comparison does not even account for the fact that the Maximal Clique GMU was 11 

not able to solve 7 of the hypothetical problems at the target gap of 0.05%. At the 1% target gap, the 12 

Lazy approach was also at least one magnitude faster on average, although this advantage was not as 13 

dramatic because most hypothetical problems solved in a matter of seconds. Nonetheless, it is worth 14 

pointing out that the total solution time was 1.37 minutes with the Lazy approach, while it was 18.65 15 

minutes with the Bucket, more than half an hour with the Path and almost 13 hours with the Maximal 16 

Clique GMU. At the 0.01% gap, the advantage of the Lazy method in solving the hypothetical problems 17 

was still overwhelming although not as dramatic as it was at 1 or 0.05%. The proposed solution 18 

technique led to 99 “wins” out of the 180 hypothetical instances (55%) as opposed to the 21 (11.7%), 40 19 

(22.2%) and 20 (11.1%) “wins” of the Path, Bucket and GMU models, respectively (Table 7). There were 20 

26 cases when the Lazy approach was not able to find an optimal solution within the 0.01% gap in 6 21 

hours. The number of such “timeouts” was 36, 78 and 49 for the Path, Bucket and the GMU models. To 22 

further illustrate the advantage of the Lazy approach in the 0.01% gap runs for the hypothetical 23 

problems, we created two charts (Fig. 1) that show the percent of “wins” for each approach by maximum 24 

harvest opening size and by the number of units. The top chart in Fig. 1 shows that the Bucket model 25 

"wins" the largest number of 300-unit instances when the smaller, 40-50 ha opening sizes are applied, 26 

but the Lazy approach gains as the opening size is increased and wins the most at the 60 ha opening 27 
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size. In solving the 500-unit problems, the Lazy approach "wins" the largest number of cases for all 1 

opening sizes, and the result is increasingly strong as the opening size is increased (middle chart in Fig. 2 

1). Noteworthy is the Maximal Clique GMU’s relatively bad performance despite the fact that theoretical 3 

evidence exists that this formulation is tighter than either the Path (Goycoolea et al. 2009) or the Bucket 4 

models (Martins et al. 2011). Solution times are functions of both the number of branches that need to 5 

be created and processed by the solution algorithm and the complexity of the LP sub-problems. It is 6 

possible that the GMU model leads to harder and/or larger sub-problems at the nodes of the branch-and-7 

bound algorithm due to the higher number of variables even though fewer branches might be required to 8 

reach the desired level of optimality.   9 

As far as the real problems are concerned, the Lazy Path approach outperformed the other 10 

methods in 18 out of the 28 problems (64.3%) at the 1% gap, in 17 out of the 28 problems (60.7%) at 11 

the 0.05% and in 19 of the 28 problems (67.9%) at the default 0.01% gap. In the instances where the 12 

Lazy approach did not yield the shortest solution times or the tightest optimality gaps, it was almost 13 

always the original Path Model that performed the best (Table 7). The Bucket Model never led to better 14 

solution times or to better optimality gaps in any of the real problems. The Maximal Clique GMU did solve 15 

fastest in two cases (7.1%) of the 0.01% runs (Table 7). 16 

A worst-case performance analysis, applied to all the experimental data we have, provides 17 

further evidence that the proposed Lazy approach had a distinct advantage in both the hypothetical and 18 

the real problems despite differences in the percentage of “wins”. The bottom chart in Fig. 1 shows the 19 

proportion of times when each model/method performed the worst by different maximum harvest 20 

opening size categories: S (small), M (medium), L (large) and XL (extra-large). It is clear that the Lazy 21 

approach has the fewest "worst" performances, and the proportion of "worst" performances decreases as 22 

the relative maximum opening size increases. The Bucket model has the highest number of worst 23 

performances of all the approaches, regardless of the opening size.  Surprisingly, this result gets stronger 24 

as the relative opening size increases. 25 

Overall, the results suggest that the Lazy Path approach can improve solution times for area-26 

based harvest scheduling problems - sometimes dramatically. This result appears to be robust regardless 27 
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of the number and size of the units, the presence or absence of various forest types and site classes, the 1 

length of the planning horizon, the maximum harvest opening size, the vertex degree (Table 2) or the 2 

cardinality distribution of covers (Table 3). It also appears, especially in the hypothetical problem set, 3 

that the Lazy approach is particularly efficient in solving problems with greater maximum harvest opening 4 

sizes (Table 1). This is not surprising since the larger the max opening size, the less likely that a given 5 

Path constraint becomes active during optimization. It is also clear that in the instances where the Lazy 6 

approach was outperformed by the other models (e.g., in Kittaning4, FivePoints, PhyllisLeeper and 7 

BearTown – see Table 5), it was the low number of path constraints that was the common denominator 8 

(Table 4). Our conjecture, supported by empirical data, that the proposed Lazy approach performs the 9 

best when there are a high number of path constraints in the formulation is consistent with the pattern 10 

that the advantage of the method increases with greater opening sizes. Greater opening sizes and a 11 

greater number of management units both contribute to a higher number of adjacency constraints, which 12 

in turn makes it more likely that an individual constraint is lazy in the formulation. 13 

Finally, we like to draw the reader’s attention to the apparent lack of correlation between the 14 

number of units in a given problem and solution times. The instances that appear to be the most difficult 15 

to solve are very small (e.g., PhyllisLeeper or BearTown), whereas the largest models such as NBCL5 16 

solve to the target optimality gaps in seconds. In a sense, this should not come as a surprise as McDill 17 

and Braze (2000) have already shown that the initial age-class distribution of a forest also has a role in 18 

determining problem difficulty. Further, Vielma et al. (2007) have shown that side constraints, such as 19 

volume flow constraints, can also have a significant effect. The idea that problem size (the number of 20 

stands is one of the primary determinants of problem size in harvest scheduling models) is only weakly 21 

related to problem difficulty is not new. Van Roy and Wolsey (1987) have made this point about mixed-22 

integer programs a long time ago: “ in contrast with linear programming, size is a poor indication of 23 

difficulty. We believe that size is perhaps an even less reliable measure for mixed integer programs than 24 

it is for pure integer programs.” (Page 45). We speculate that the reason why some of the smallest 25 

problems were the hardest to solve is due to a combination of factors. These factors likely include these 26 

forests’ over-mature initial age-class distribution, which has been identified by McDill and Braze (2002) as 27 
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a critical determinant of problem difficulty, and the fact that harvest flow requirements are harder to 1 

meet in an optimal fashion if the “volume blocks”, i.e., the timber volumes associated with individual 2 

stands, are few in number and are large relative to the optimal levels of flow. We believe that the more 3 

“volume blocks” are available and the smaller they are relative to the sustainable periodic harvest flows, 4 

the easier it will be to find good solutions that satisfy the flow constraints. Since confirming these 5 

speculations on an empirical basis would require very large samples, likely thousands of test forests, we 6 

leave the question of problem difficulty to future research. 7 

Formulation plus solution times 8 

In this sub-section, we provide an analysis of “total times”, the sum of formulation and solution 9 

times, to illustrate the role of the proposed Lazy approach in the context of formulating and solving ARM 10 

models. We only discuss the results in detail for the compromise 0.05% runs. At 1%, total times are 11 

dominated by formulation times because most problems solve very fast to this level of optimality. The 12 

Lazy approach does not have an impact on formulation times because it requires that all Path constraints 13 

are identified upfront. At 0.01%, the results with respect to total times are very similar to those of the 14 

0.05% runs. 15 

At 0.05%, the Lazy approach still comes out ahead of the other models on average in terms of 16 

total times for the hypothetical problems at each of the three maximum harvest size levels that were 17 

considered. The results with respect to the real problems are mixed (Table 4, 5). For FivePoints, 18 

PhyllisLeeper and BearTown, it was the Path and the Lazy Path approach that allowed the shortest 19 

formulation times. The four Kittaning4 instances on the other hand formulated 4-6 times faster with the 20 

Bucket Model than with the Path. Since Kittanning4, FivePoints, PhyllisLeeper and BearTown are all very 21 

small in size, and they can be formulated in the matter of seconds regardless of which method is used, it 22 

is really the solution times that set the alternative formulations apart. While both the Path and the Lazy 23 

Path approach solved Kittaning4 and FivePoints in seconds, the Bucket and the Cluster methods took 24 

several minutes, or in some cases, several hours of computer time before a solution with the target 25 

0.05% optimality gap was found. Moreover, in one case (Kittaning4 at 80 ha Amax) the Bucket Model 26 
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was unable to find a solution within the desired optimality gap in six hours of run time. As far as 1 

PhyllisLeeper is concerned, neither the Cluster nor the Bucket approach was able to find a solution within 2 

the 0.05% gap at any of the four maximum harvest size levels. While the Lazy Path method solved all 3 

four of the PhyllisLeeper models to the desired optimality, the original Path Model did so only at the 60 4 

and 80 ha max opening size levels. Finally, none of the models were able to solve the 71-unit BearTown 5 

to the 0.05% gap. The tightest gaps were achieved by the Lazy Path approach in three of the four 6 

instances and it was the original Path approach that found the best solution for the fourth instance within 7 

the 6 hrs pre-specified runtime. 8 

Formulation times ranged from a couple minutes to several days for NBCL5 depending on the 9 

maximum harvest opening size and the modeling approach (Table 4). The Maximal Clique GMU/Cluster 10 

Model allowed shorter formulation times (~3-11% shorter) than the Path Model for all three max opening 11 

sizes for this particular problem. Formulation times were excessive for the 5,224-unit NBCL5 with the 12 

Bucket Model even though the Floyd-Warshall Algorithm and other preprocessing techniques, suggested 13 

by Constantino et al. (2008), were utilized. While the Path or the Lazy Path approaches both solved the 14 

NBCL5 problem instances faster than the Maximal Clique GMU Model, this advantage was offset by the 15 

slightly longer formulation times at the 21 and 30 ha max opening size levels. The sum of formulation 16 

and solution times were roughly the same for these instances. At 40 ha, both the Path and the Lazy Path 17 

methods outperformed the Maximal Clique GMU model when the sum of formulation and solution times 18 

were used as the basis of comparison. The sum of formulation and solution times were excessive for the 19 

NBCL5 instances, due to the very long formulation times.  20 

For the 186-unit Pack Forest, formulation times increased exponentially with increasing max 21 

opening sizes when the Path or the Cluster models were used (Table 4). Compare the 36.53 – 36.65 s 22 

formulation times at the 24.28 ha (60 ac) level with the 61.38 – 61.37 days at 48.56 ha (120 ac). The 23 

24.28 ha (60 ac) maximum harvest opening size restriction corresponds to the Forest Stewardship 24 

Council’s standard in the Pacific Northwest United States, whereas the 48.56 ha (120 ac) coincides with 25 

the Sustainable Forest Initiative’s and the State of Washington’s Forest Practices rules (Washington State 26 

Forest Practices Act 2010). With the Bucket Model, formulation times were stable (i.e., not exponentially 27 
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increasing) and much shorter, except at 24.28 ha, than with the other models. This stability was 1 

expected due to the way the Bucket is formulated. Since none of the models could solve the Pack Forest 2 

problems to the target 0.05% gap, we were not able to compare the sums of formulation and solution 3 

times. In three of the four problems that were created based on four different maximum harvest opening 4 

sizes, it was the Lazy Path approach that reached the tightest optimality gaps within the pre-specified 6 5 

hour runtimes (Table 5). 6 

For the 1,363-unit El Dorado and the 1,019-unit Shulkell, formulation times were essentially the 7 

same regardless of whether the GMU/Cluster or the Path/Cover model was used. Formulation times 8 

ranged from about 25 minutes (at 48.56 ha max opening size) to 65 hours (72.84 ha) for El Dorado and 9 

from about 9 minutes (40 ha) to 20 hours (60 ha) for Shulkell (Table 4.). Formulation times were longer 10 

for the Bucket Model at the 48.56 and 60.70 ha levels in El Dorado and at the 40 ha level in Shulkell, 11 

likely because of the large number of management units involved. On the other hand, the Bucket Model 12 

formulated much faster for both problems at the highest, 72.84 and 60 ha maximum opening size levels.  13 

In sum, our empirical results indicate that using lazy constraint pools for McDill et al's (2002) 14 

Path inequalities can lead to significant, sometimes dramatic cuts in solution times. Since the use of lazy 15 

constraint pools does not eliminate the need of an a priori enumeration of Path constraints, the proposed 16 

technique can only influence solution but not formulation times. As a result, the Bucket Model, which 17 

does not rely on costly enumerations, can outperform the Lazy Path approach in terms of solution plus 18 

formulation times in cases (e.g., Shulkell) where the maximum harvest opening size is large relative to 19 

the average size of the units and the number of units is not too high (like in NBCL5).  Hence, we do not 20 

recommend the use of the Lazy Path approach for every single problem instance. We suggest instead 21 

that the forest planner tries to formulate the Path and Cluster models as a first step (using Goycooolea et 22 

al.’s 2009 Algorithm I) but abandons the process if it appears to be more time-consuming than what his 23 

or her timeframe allows. This scenario can occur when the maximum harvest opening size restriction is 24 

very large relative to the average size of the management units (see Pack Forest at 48.58 ha max 25 

opening size). If that is the case but the number of management units is not too large, then the Bucket 26 

Model is likely to be the most efficient choice in terms of formulation plus solution times. If the number of 27 



 30

units is also very high (as in NBCL5), the Bucket Model might also become very large and cumbersome to 1 

formulate even if efficient pre-processing algorithms such as the Floyd-Warshall are employed. In this 2 

particular case, a cutting plane or delayed constraint generation method might be the best approach, 3 

where the path constraints are generated only during optimization and only if one or more ARM violations 4 

occur in a solution candidate. If the formulation of the Path/Cover/Cell and Cluster models is not too 5 

time-consuming, then it is safe to say based on the results of this study that the Lazy Path approach is 6 

the best choice to minimize solution times. 7 

Finally, it must be noted that the formulation times reported in the present study should not be 8 

considered ironclad. Our goal was to give the reader a feel for the expected computational expense that 9 

is associated with formulating these models using the resources of an average analyst. We acknowledge 10 

that other programmers could improve these formulation times, perhaps significantly. The question is 11 

whether shorter formulation times would have an impact on our conclusions with respect to the 12 

performance of the Lazy Path approach. We argue that such an impact is very unlikely for the following 13 

reasons. First, since three of the four models that were considered in this study, the Path/Cover, the Lazy 14 

Path and the Cluster models all use the same formulation algorithm (Goycoolea et al.’s 2009 Algorithm I), 15 

a better computational implementation would have the same impact on all three formulation times. 16 

Second, while formulation times for the Bucket Model could potentially be improved to a greater extent 17 

than those for the other models, they would have to be improved by several orders of magnitude in order 18 

to outperform the Lazy Path approach. This is because the solution times afforded by the Lazy Path 19 

method are at least one magnitude shorter than those of the Bucket Model (Table 5).  20 

Caveats 21 

In this sub-section, we discuss a number of additional factors that might have an impact on how 22 

useful the proposed Lazy approach can be in solving harvest scheduling problems with area restrictions. 23 

As mentioned earlier, the efficacy of the method appears to depend on how lazy the path constraints are 24 

in a given formulation. If forest-wide constraints such as even flow or minimum average ending age 25 

constraints are present, and these constraints are set tight, it is more likely that a given path constraint is 26 
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going to be lazy since the model is already very constrained. In practice, it is possible that harvest flow 1 

constraints are needed only at a scale broader than the one at which a spatially-explicit harvest 2 

scheduling problem is to be optimized. With that in mind, we removed the flow constraints from the 60 3 

hypothetical problems and resolved them using the tightest allowable clear-cut size limit (40 ha) to see if 4 

this had any impact on “laziness” and on solution times. We found that the average number of lazy 5 

constraints per problem that were active during optimization went up from 71.45 to 719.60 (0.33% of 6 

total to 2.85%), which is almost a 10-fold reduction in “laziness”. Nonetheless, 60% (36) of these 7 

problems still solved faster using the lazy constraints. This is a significant finding considering that the 40 8 

ha max opening size was the tightest of the 3 settings that were used in the experiments. This means 9 

that even with the least lazy max opening size setting, the lazy constraint approach still maintained an 10 

edge even without even-flow constraints. As far as the impact of the minimum average ending age 11 

constraints is concerned, one could argue that these restrictions might force the models to leave old 12 

stands uncut during the planning horizon to make sure that the minimum average age is met. This in 13 

turn could have an impact on how active the path constraints are in problems that are severely 14 

constrained already. Our results for the hypothetical problems suggest, however, that this scenario never 15 

materialized. In our models, it was always optimal to cut the stands in the oldest age-classes during the 16 

planning horizon.  17 

To illustrate how important (or unimportant) the maximum harvest opening size constraints were 18 

in restricting the forest managers’ ability to maximize discounted timber revenues, we resolved the test 19 

problems at the 0.05% gap without path constraints. The percent reductions in NPV due to maximum 20 

clear-cut sizes are reported in the rightmost column of Table 5. The average cost of adjacency was a 21 

fraction of a percent for the hypothetical problems and it was less than 1% for most of the real problems. 22 

In a few real problems, however, as in FivePoints or Kittaning4 with 40ha max opening sizes, the cost 23 

was much higher at 11.89% and 7.78%, respectively. The cost of adjacency dropped rapidly as the max 24 

opening size was raised. The fact that the Lazy approach solved the FivePoints the fastest at 40 ha, but 25 

the original Path method was the best for Kittaning4 suggests that there might not be a strong correlation 26 

between the cost of adjacency and the efficacy of the Lazy method. 27 
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Conclusions 1 

In this article, we showed empirically that the Path/Cover inequalities of McDill et al.’s (2002) 2 

Path formulation of the Area Restriction Model (Murray 1999) are often lazy. We exploited this property 3 

by removing these inequalities from the harvest scheduling model and placing them in a “lazy constraint 4 

pool”. Each time the solver finds a potential solution it checks if any of the constraints in the pool is 5 

violated. If a lazy constraint is violated, we add it to the model. The process is repeated until the desired 6 

optimality gap is reached and no more violations occur. We tested the technique on sixty hypothetical 7 

and eight real problem instances with varying maximum harvest opening sizes and found that in most 8 

cases it outperformed the other three existing models in terms of solution times, often by a dramatic 9 

margin. An additional finding was that if the sum of formulation and solution times was used as a 10 

measure of efficiency, the Lazy Path approach still came out ahead of the other models on average.  11 

In conclusion, we emphasize that while the Lazy Path approach offers significant improvements 12 

in solution times, it does not allow reductions in formulation times. The proposed technique still requires 13 

the complete enumeration of Path/Cover constraints prior to optimization, and as we have seen, this 14 

process can be extremely time-consuming. For future research, we plan to develop a cutting plane or 15 

delayed constraint generation technique that will enumerate a Path/Cover constraint only if a maximum 16 

harvest size violation is detected during optimization.  17 
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Figure 1.  Best- and worst-case performance analysis - 0.01% target gap runs 1 
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 2 
*(S,M,L)=(40,50,60 ha) for the hypothetical forests, =(21,30,40 ha) for NBCL5, =(48.56,60.70,72.84 3 
ha) for El Dorado; (S,L)=(40,60 ha) for Shulkell, and (S,M,L,XL)=(40,50,60,80 ha) for Kittaning4, 4 
FivePoints, PhyllisLeeper and BearTown and =(24.28,32.37,40.47,48.56 ha) for Pack Forest. 5 
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Table 1.  Initial age-class distribution and yield table for the hypothetical forests  1 

Age- Total Stand Yield Annual value
classes Area (%) age (MBF/ha) growth rate

1 0-10 8 10 0.0 N/A
2 11-20 8 20 0.0 N/A
3 21-30 3 30 3.7 N/A
4 31-40 3 40 12.4 0.1279
5 41-50 2 50 29.7 0.0915
6 51-60 2 60 61.8 0.0762
7 61-70 13 70 103.2 0.0526
8 71-80 13 80 144.6 0.0343
9 81-90 24 90 188.4 0.0269

10 91-100 24 100 232.3 0.0211
100 110 269.3 0.0149

120 306.4 0.0130
130 333.6 0.0085
140 360.8 0.0079
150 381.8 0.0057

Sum

2 
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Table 2.  Test problem characteristics  1 

Area Planning Forest Site
0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-50 Total (ha) Min Max Mean Periods Types Classes

Pack Forest, WA 62 56 31 16 21 0 0 0 186 1,708 0.55 24.27 9.18 9X5yrs 4.78 1 1
NBCL5, Canada 2,833 1,577 623 211 0 0 0 0 5,244 34,739 0.99 20.23 6.65 4X10yrs 2.87 6 1
El Dorado, CA 107 421 267 183 134 94 88 69 1,363 21,147 4.05 47.09 15.52 5X5yrs 5.30 1 1
Shulkell, Nova Scotia 299 377 188 67 49 16 17 6 1,019 9,443 0.31 39.33 9.27 5X5yrs 4.05 6 6
Kittaning4, PA 1 3 4 13 5 6 0 0 32 588 4.02 29.32 18.38 3.27 4 2
FivePoints, PA 0 15 19 10 26 14 6 0 90 1,673 5.80 31.75 18.58 3.71 5 4
PhyllisLeeper, PA 6 3 15 30 21 13 1 0 89 1,597 1.25 30.46 17.95 3.19 5 3
BearTown, PA 0 7 11 20 19 13 1 0 71 1,349 5.96 30.81 19.00 2.90 5 3
75-77 0 147 80 38 20 9 4 2 3,600 5.39 38.25 12.00 4.63
81-83 0 135 101 35 17 9 2 1 3,600 5.61 38.84 12.00 5.03
87-89 0 132 108 35 11 11 3 0 3,600 5.78 32.56 12.00 4.95
90-92 0 143 79 46 20 6 6 0 3,600 5.20 35.00 12.00 4.87
93-95 0 130 101 43 17 7 2 0 3,600 5.60 33.86 12.00 4.93
96-98 0 133 98 43 13 12 1 0 3,600 5.95 31.27 12.00 5.00
99-101 0 140 85 48 18 5 3 1 3,600 5.86 35.51 12.00 4.99
102-104 0 141 85 38 24 5 4 3 3,600 5.15 38.89 12.00 4.69
189-191 0 143 104 31 15 3 1 3 3,480 5.59 38.56 11.60 5.06
192-194 0 156 84 37 15 5 2 1 3,480 5.91 39.29 11.60 5.25
108-110 0 233 170 45 34 12 6 0 6,000 5.56 34.98 12.00 4.94
111-113 0 241 151 72 21 4 9 2 5,725 5.15 39.97 11.45 4.79
120-122 0 189 161 82 33 22 9 4 6,750 6.93 39.79 13.50 5.29
135-137 0 295 122 58 13 7 2 3 5,300 5.40 39.31 10.60 5.28
141-143 0 242 164 56 19 9 10 0 5,800 5.82 34.89 11.60 5.36
144-146 0 256 142 48 33 15 5 1 5,800 5.70 35.67 11.60 5.44
150-152 0 299 131 39 20 5 3 3 5,300 5.43 39.87 10.60 5.50
153-155 0 280 146 55 11 5 2 1 5,300 5.37 35.20 10.60 5.47
159-161 31 270 126 53 14 4 1 1 5,000 4.78 38.73 10.00 5.46
168-170 0 209 150 88 29 14 9 1 6,300 6.35 36.34 12.60 5.4650
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Table 3.  Test problem formulation characteristics: cover/path size distribution 1 
Problem

IDs 15 14 13 12 11 10 9 8 7 6 5 4 3 2
24.28 0 0 0 0 0 5 72 201 640 828 620 386 212 161 3,125

Pack Forest 32.37 0 0 1 18 304 1,063 2,908 4,305 4,020 2,349 1,175 477 302 68 16,990
WA 40.47 62 311 2,166 5,632 13,924 21,573 22,659 16,469 8,708 3,652 1,664 838 316 14 97,988

48.56 3,212* 12,586 35,507 77,330 111,530 129,198 109,547 68,371 33,022 12,938 5,707 2,613 942 175 603,419
21.00 0 0 0 0 0 0 0 0 62 463 1,867 4,148 3,749 1,566 11,855
30.00 0 0 0 0 0 1 193 990 3,328 8,151 11,058 8,413 3,021 163 35,318
40.00 0 0 0 26 528 2,620 9,051 27,885 41,540 34,432 20,893 6,554 537 0 144,066
48.56 0 0 0 0 0 0 0 3 536 3,476 6,626 6,205 3,127 657 20,630
60.70 0 0 0 0 0 0 156 3,424 13,335 20,240 17,543 9,859 2,966 193 67,716
72.84 0 0 0 0 36 1,958 18,700 47,749 65,734 54,688 31,672 10,609 1,971 18 233,135
40.00 0 0 5 44 105 183 290 790 1,674 3,014 3,603 2,042 845 378 12,973
60.00 755** 1,626 2,747 2,782 5,328 12,870 21,376 26,141 22,532 13,902 6,798 2,066 394 181 119,734
40.00 0 0 0 0 0 0 0 0 0 0 0 1 44 15 60

Kittaning4 50.00 0 0 0 0 0 0 0 0 0 0 0 4 63 1 68
WA 60.00 0 0 0 0 0 0 0 0 0 0 2 68 28 0 98

80.00 0 0 0 0 0 0 0 0 0 7 117 33 0 0 157
40.00 0 0 0 0 0 0 0 0 0 0 0 9 74 80 163

FivePoints 50.00 0 0 0 0 0 0 0 0 0 0 4 41 188 28 261
WA 60.00 0 0 0 0 0 0 0 0 0 1 27 160 192 2 382

80.00 0 0 0 0 0 0 0 0 5 84 278 462 26 0 855
40.00 0 0 0 0 0 0 0 0 0 0 0 3 72 59 134

PhyllisLeeper 50.00 0 0 0 0 0 0 0 0 0 0 4 17 201 8 230
WA 60.00 0 0 0 0 0 0 0 0 0 0 26 133 130 0 289

80.00 0 0 0 0 0 0 0 0 2 35 359 290 0 0 686
40.00 0 0 0 0 0 0 0 0 0 0 0 0 58 47 105

BearTown 50.00 0 0 0 0 0 0 0 0 0 0 0 14 123 8 145
WA 60.00 0 0 0 0 0 0 0 0 0 0 5 91 99 0 195

80.00 0 0 0 0 0 0 0 0 0 12 226 166 3 0 407
40.00 0 0 0 0 0 0 0 0 34 496 1,055 1,414 704 64 3,767
50.00 0 0 0 0 0 0 0 210 1,485 2,892 3,764 2,230 350 12 10,943
60.00 0 0 0 0 0 5 754 4,095 7,891 10,051 6,614 1,523 116 4 31,053
40.00 0 0 0 0 0 0 0 0 0 172 1,126 2,228 837 49 4,412
50.00 0 0 0 0 0 0 0 3 509 2,905 5,960 3,164 317 10 12,868
60.00 0 0 0 0 0 0 18 1,382 8,090 15,955 11,177 1,893 87 3 38,605
40.00 0 0 0 0 0 0 0 0 0 625 1,191 2,458 747 47 5,068
50.00 0 0 0 0 0 0 0 166 1,960 3,916 6,007 2,808 340 6 15,203
60.00 0 0 0 0 0 0 1,364 5,565 13,879 16,681 9,595 1,966 79 1 49,130
40.00 0 0 0 0 0 0 0 0 0 206 1,067 1,891 650 68 3,882
50.00 0 0 0 0 0 0 0 8 569 3,043 4,761 2,069 444 12 10,906
60.00 0 0 0 0 0 0 76 1,650 8,376 12,509 6,897 1,944 165 0 31,617
40.00 0 0 0 0 0 0 0 0 0 64 1,623 2,292 737 46 4,762
50.00 0 0 0 0 0 0 0 0 295 4,075 6,461 2,670 348 5 13,854
60.00 0 0 0 0 0 0 0 1,092 10,604 18,805 9,581 1,807 87 0 41,976
40.00 0 0 0 0 0 0 0 0 0 208 1,393 2,193 829 45 4,668
50.00 0 0 0 0 0 0 0 0 742 3,393 5,788 2,829 401 4 13,157
60.00 0 0 0 0 0 0 97 2,631 8,855 15,742 9,817 2,203 72 0 39,417
40.00 0 0 0 0 0 0 0 0 0 99 1,379 2,512 727 47 4,764
50.00 0 0 0 0 0 0 0 0 397 3,894 6,868 2,778 307 8 14,252
60.00 0 0 0 0 0 0 10 1,519 11,704 20,057 9,802 1,622 90 2 44,806
40.00 0 0 0 0 0 0 0 0 12 45 767 1,694 656 71 3,245
50.00 0 0 0 0 0 0 0 45 145 1,807 4,217 2,236 361 16 8,827
60.00 0 0 0 0 0 1 68 494 5,074 10,673 7,354 1,513 146 3 25,326
40.00 0 0 0 0 0 0 0 0 0 175 2,355 2,890 627 45 6,092
50.00 0 0 0 0 0 0 0 0 875 7,209 8,317 2,725 213 13 19,352
60.00 0 0 0 0 0 0 16 4,215 23,064 25,753 10,515 1,130 106 2 64,801
40.00 0 0 0 0 0 0 0 0 0 408 3,392 2,611 693 52 7,156
50.00 0 0 0 0 0 0 0 3 2,351 10,408 8,096 2,808 299 8 23,973
60.00 0 0 0 0 0 0 115 11,656 33,098 26,782 10,438 1,692 112 0 83,893
40.00 0 0 0 0 0 0 0 0 0 120 2,113 3,395 1,297 93 7,018
50.00 0 0 0 0 0 0 0 1 477 5,445 9,086 4,596 637 12 20,254
60.00 0 0 0 0 0 0 14 1,732 14,482 25,964 15,732 3,090 189 1 61,204
40.00 0 0 0 0 0 0 0 0 16 340 2,686 3,363 984 92 7,481
50.00 0 0 0 0 0 0 0 56 1,586 7,087 9,140 3,700 454 23 22,046
60.00 0 0 0 0 0 11 497 5,506 20,151 25,758 12,466 2,341 191 3 66,924
40.00 0 0 0 0 0 0 0 0 0 7 603 3,398 1,471 199 5,678
50.00 0 0 0 0 0 0 0 0 11 1,176 7,743 4,859 1,078 54 14,921
60.00 0 0 0 0 0 0 0 17 2,557 17,450 14,754 4,852 536 8 40,174
40.00 0 0 0 0 0 0 0 0 227 3,245 7,019 4,782 1,087 58 16,418
50.00 0 0 0 0 0 0 7 2,711 13,440 23,861 16,291 4,920 320 9 61,559
60.00 0 0 0 0 0 1,035 14,946 57,353 80,853 61,841 19,561 2,078 93 0 237,760
40.00 0 0 0 0 0 0 0 0 0 513 4,033 4,986 1,169 101 10,802
50.00 0 0 0 0 0 0 0 1 2,052 11,468 14,684 4,902 675 12 33,794
60.00 0 0 0 0 0 0 63 7,723 33,014 44,575 19,502 3,637 146 3 108,663
40.00 0 0 0 0 0 0 0 0 2 926 4,564 4,729 1,423 79 11,723
50.00 0 0 0 0 0 0 0 90 3,489 14,110 14,962 5,778 566 14 39,009
60.00 0 0 0 0 0 0 892 13,832 44,865 49,854 22,099 3,249 203 0 134,994
40.00 0 0 0 0 0 0 0 0 1 3,299 10,800 5,633 819 71 20,623
50.00 0 0 0 0 0 0 0 323 18,732 38,426 19,319 3,584 439 15 80,838
60.00 0 0 0 0 0 0 6,213 95,252 139,898 69,352 15,972 2,525 146 0 329,358
40.00 0 0 0 0 0 0 0 0 33 3,448 10,482 6,156 920 41 21,080
50.00 0 0 0 0 0 0 0 628 18,197 37,199 20,878 4,507 293 4 81,706
60.00 0 0 0 0 0 30 7,588 83,597 136,886 77,729 19,441 1,907 60 0 327,238
40.00 0 0 0 0 0 0 0 13 1,371 7,076 11,369 5,785 818 34 26,466
50.00 0 0 0 0 0 0 500 11,425 31,552 41,593 20,841 3,848 236 7 110,002
60.00 0 0 0 0 15 8,550 65,482 143,837 154,467 78,924 17,876 1,460 72 0 470,683
40.00 0 0 0 0 0 0 0 0 0 53 1,683 3,717 1,807 117 7,377
50.00 0 0 0 0 0 0 0 0 245 3,957 9,772 6,452 948 16 21,390
60.00 0 0 0 0 0 0 1 698 9,994 25,526 21,072 5,199 244 3 62,737

*: At Amax = 48.56 ha, Pack Forest has an additional 684 16-, 56 17- and one 18-unit cover **: At Amax = 60 ha, Shulkell has an additional 223 16-, and 23 17-unit cover 
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Table 4.  Test problem formulation characteristics: problem size and formulation time 1 
Problem

IDs CLUSTER PATH BUCKET CLUSTER PATH BUCKET CLUSTER PATH BUCKET
24.28 54,570 7,181 1,733 7,872 33,689 36.65 36.53 104.78

Pack Forest 32.37 344,110 12,626 1,808 34,302 59,695 2,752.73 2,846.41 135.68
WA 40.47 2,171,170 19,229 1,810 170,232 91,063 162,727.63 164,079.31 121.32

48.56 15,643,562 26,178 1,818 924,133 122,709 5,303,282.04 5,302,396.93 176.00
21.00 109,630 75,096 15,397 32,691 164,920 171.98 182.14 210,716.77
30.00 337,965 126,431 15,495 88,248 277,596 2,829.54 2,931.58 789,070.12
40.00 1,360,425 187,363 15,507 326,796 407,233 74,514.28 83,743.45 949,889.21
48.56 128,466 38,032 9,209 54,024 187,059 1,515.96 1,499.91 56,252.90
60.70 426,012 55,780 9,230 164,401 274,575 20,144.21 20,160.48 64,383.68
72.84 1,508,178 77,413 9,230 521,154 379,145 233,878.77 234,218.79 39,149.23
40.00 155,016 27,361 5,368 50,562 97,470 585.50 548.87 68,264.58
60.00 1,726,446 65,827 5,370 425,760 222,448 72,297.81 72,823.93 24,555.11
40.00 414 311 98 147 731 3.16 1.42 0.44

Kittaning4 50.00 594 420 101 165 954 3.02 1.38 0.22
WA 60.00 882 533 101 192 1,193 2.77 1.38 0.23

80.00 1,836 734 101 307 1,553 2.52 1.38 0.30
40.00 1,200 841 313 450 2,431 3.01 1.34 2.84

FivePoints 50.00 1,914 1,260 324 653 3,626 2.49 1.34 3.47
WA 60.00 2,994 1,704 324 941 4,804 2.52 1.33 4.47

80.00 6,960 2,566 324 1,847 7,057 2.85 1.59 6.64
40.00 1,104 947 435 577 2,499 2.58 1.23 2.49

PhyllisLeeper 50.00 1,734 1,452 440 951 3,977 2.36 1.22 3.67
WA 60.00 2,688 1,944 440 1,126 5,175 2.69 1.23 4.83

80.00 6,474 3,020 440 2,421 7,774 2.68 1.44 9.79
40.00 756 718 325 487 1,787 2.61 1.49 3.08

BearTown 50.00 1,182 1,102 325 661 2,679 3.00 1.48 3.39
WA 60.00 1,668 1,427 325 883 3,416 2.77 1.48 4.11

80.00 3,630 2,319 325 1,830 5,288 3.41 1.56 6.19
40.00 13,159 13,074 2,250 12,160 13,074 9.74 7.26 297.19
50.00 68,859 21,928 2,253 31,510 13,599 119.12 113.10 1,493.94
60.00 198,807 32,330 2,253 81,057 13,751 1,669.52 1,654.85 2,532.97
40.00 13,237 13,220 2,578 13,954 13,220 9.83 7.76 285.69
50.00 67,480 22,282 2,581 36,177 16,428 138.94 133.52 1,167.92
60.00 200,221 33,861 2,581 97,560 16,579 2,468.89 2,453.76 3,139.36
40.00 15,748 13,923 2,435 15,938 13,923 12.82 10.65 340.17
50.00 79,681 23,276 2,437 42,398 15,849 223.73 215.85 1,371.53
60.00 255,626 35,460 2,437 123,580 15,977 10,587.19 10,568.65 3,669.02
40.00 12,960 13,122 2,365 11,982 13,122 10.33 7.18 269.28
50.00 67,655 21,660 2,370 29,642 14,764 127.09 120.45 1,443.80
60.00 197,974 32,534 2,370 76,758 14,968 2,779.65 2,765.56 3,273.09
40.00 14,473 14,097 2,342 15,909 14,097 10.98 8.92 341.17
50.00 72,968 23,458 2,342 41,615 15,426 170.21 164.22 1,819.45
60.00 217,392 35,392 2,342 113,949 15,581 2,735.79 2,719.88 3,417.82
40.00 14,685 13,778 2,524 16,540 13,778 10.35 8.23 331.70
50.00 70,315 22,861 2,524 42,805 16,268 141.77 136.21 1,352.35
60.00 209,713 34,613 2,524 117,748 16,386 2,178.78 2,164.06 3,413.22
40.00 14,488 14,179 2,487 16,283 14,179 10.91 8.75 356.68
50.00 74,011 23,903 2,487 44,479 16,161 171.21 165.87 1,738.68
60.00 228,697 36,094 2,487 128,770 16,302 2,770.44 2,753.50 3,473.52
40.00 11,452 12,547 2,217 10,406 12,547 6.61 4.75 281.53
50.00 56,210 21,254 2,221 24,941 13,670 70.83 66.74 1,412.88
60.00 159,019 32,050 2,221 63,440 13,909 1,070.91 1,060.27 3,251.74
40.00 16,457 22,907 2,557 19,338 22,907 17.01 14.52 6,291.70
50.00 93,170 38,913 2,560 54,718 25,992 1,253.17 1,246.39 14,301.59
60.00 309,484 59,153 2,560 165,274 26,255 5,646.42 5,623.78 22,560.71
40.00 17,699 24,824 2,768 21,102 24,824 25.95 23.04 6,674.27
50.00 115,598 41,018 2,770 62,394 23,713 1,459.86 1,450.85 14,202.39
60.00 395,360 61,627 2,770 195,118 24,103 10,613.52 10,584.38 19,862.15
40.00 22,643 18,644 4,085 23,888 18,644 28.17 24.33 2,448.78
50.00 111,048 31,779 4,093 61,823 30,258 406.96 395.93 8,523.89
60.00 330,575 48,247 4,093 169,752 30,884 6,920.04 6,890.28 17,748.60
40.00 26,156 33,657 3,830 24,924 33,657 40.84 36.47 10,038.91
50.00 137,074 57,368 3,838 65,817 30,250 608.00 595.16 20,697.16
60.00 420,371 87,033 3,838 180,368 30,485 14,530.98 14,491.35 30,740.52
40.00 17,220 27,181 4,642 20,436 27,181 15.02 12.24 7,688.99
50.00 74,235 45,491 4,652 49,348 31,455 171.11 164.37 15,434.25
60.00 198,940 69,320 4,652 122,099 31,676 3,647.06 3,628.28 24,365.35
40.00 43,061 27,715 4,578 48,923 27,715 241.91 234.15 7,638.60
50.00 310,037 47,271 4,588 160,994 32,571 4,936.36 4,905.92 15,683.86
60.00 1,188,313 71,433 4,588 557,488 32,841 129,895.00 129,781.14 26,663.42
40.00 30,129 35,538 4,763 34,699 35,538 81.19 75.86 10,143.24
50.00 169,757 58,937 4,772 97,204 33,683 1,254.79 1,237.15 19,267.10
60.00 546,063 88,894 4,772 283,289 33,949 35,702.50 35,645.51 31,542.25
40.00 32,933 35,098 4,917 38,667 35,098 109.15 103.45 11,123.05
50.00 194,096 58,726 4,924 115,408 33,397 1,932.03 1,912.50 21,404.01
60.00 668,388 88,670 4,924 361,239 33,534 40,145.54 40,068.83 31,508.70
40.00 49,090 39,553 5,102 63,527 39,553 2,973.76 350.95 13,224.18
50.00 369,159 65,220 5,106 221,387 33,259 5,515.69 8,078.36 23,266.02
60.00 1,501,787 98,045 5,106 811,518 33,415 160,533.47 160,338.75 33,898.84
40.00 48,495 21,923 5,078 62,263 21,923 5,097.38 386.16 4,421.20
50.00 372,582 37,677 5,080 213,411 32,807 6,107.62 10,629.55 9,334.47
60.00 1,504,258 57,403 5,080 773,017 33,076 167,768.99 167,581.37 19,401.93
40.00 63,985 15,425 5,018 76,663 15,425 789.36 775.33 442.03
50.00 554,743 25,917 5,023 279,577 16,595 47,693.36 47,634.63 2,283.87
60.00 2,417,709 38,767 5,023 1,060,839 16,772 423,982.86 423,672.59 4,092.80
40.00 22,199 15,822 5,005 25,559 15,822 30.94 27.45 447.52
50.00 107,177 26,623 5,010 67,463 17,996 1,665.73 1,656.44 2,365.92
60.00 317,002 39,705 5,010 180,288 18,153 5,377.14 5,344.47 4,163.09

Grayed out cells represent formulation times obtained on a different, higher-performance computer
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Table 5.  Solution characteristics for 0.05% target gap runs: real problems 1 

Note: The negative sign for the percent NPV reduction due to the 80 ha maximum clear-cut size restriction for 2 

FivePoints is due to the fact that both the problem with and without ARM constraints was solved to 0.05% 3 

optimality. This is the reason why the profit maximizing objective value in the ARM can exceed the objective value 4 

of the problem without ARM by 0.01%. 5 

Number Maximum Reduction
of harvest of NPV due

stands opening size Conventional Lazy to ARM 
24.28 ha 0.44% 1.83% 0.21% 0.24% 1.35%
32.37 ha 0.58% 0.95% 0.20% 0.19% 0.98%
40.47 ha 0.92% 0.86% 0.44% 0.21% 0.96%
48.56 ha no solution 1.01% 0.55% 0.23% 0.27%
21.00 ha 21.27 s 532.14 s 11.23 s 25.56 s 0.70%
30.00 ha 86.63 s 0.07% 22.63 s 11.78 s 0.28%
40.00 ha 12,747.56 s 19,515.86 s 79.78 s 5.02 s 0.08%
48.56 ha 32.23 s 0.08% 20.16 s 96.5 s 0.71%
60.70 ha 115.92 s 0.14% 75.61 s 36.67 s 0.55%
72.84 ha 530.95 s 0.56% 3518.24 s 354.53 s 0.43%
40.00 ha 53.44 s 133.28 s 4.30 s 4.36 0.06%
60.00 ha 7,315.89 s 3,339.63 s 52.56 s 8.06 0.01%
40.00 ha 162.23 s 235.19 s 13.48 s 13.52 s 7.78%
50.00 ha 473.14 s 2,724.56 s 8.92 s 3.99 s 0.74%
60.00 ha 1,164.09 s 13,322.46 s 4.38 s 12.13 s 0.41%
80.00 ha 138.88 s 0.27% 13.81 s 11.91 s 0.00%
40.00 ha 210.25 s 6.97 s 4.03 s 3.09 s 11.89%
50.00 ha 461.71 s 7,074.70 s 0.56 s 0.72 s 4.52%
60.00 ha 229.89 s 10,342.17 s 0.78 s 0.83 s 4.51%
80.00 ha 2,426.52 s 35.297 s 0.33 s 0.66 s -0.01%
40.00 ha 0.16% 0.18% 0.07% 0.05% 0.04%
50.00 ha 0.16% 0.11% 0.08% 11,678.69 s 0.01%
60.00 ha 0.15% 0.21% 19,553.28 s 1,117.45 s 0.01%
80.00 ha 0.13% 0.20% 1,796.89 s 20,081 s 0.00%
40.00 ha 0.18% 0.21% 0.15% 0.10% 0.15%
50.00 ha 0.24% 0.14% 0.12% 0.07% 0.07%
60.00 ha 0.14% 0.38% 0.14% 0.10% 0.07%
80.00 ha 0.24% 0.51% 0.06% 0.09% 0.05%

El Dorado, California 1,363

Shulkell, Nova Scotia 1,019

BearTown, Pennsylvania 71

5,224NBCL5, Canada

PhyllisLeeper, Pennsylvania 89

FivePoints, Pennsylvania 90

Kittaning4, Pennsylvania 32

Test Problems

Pack Forest, Washington 186

Path/Cover/CellCluster Bucket

Solution time (s) / Optimality Gap (%)
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Table 6.  The number and percentage of path constraints used during optimization 1 

under three different optimality gaps 2 

Number Maximum
of harvest

stands opening size No. % No. % No. %
24.28 ha 38 0.48% 93 1.18% 93 1.18%
32.37 ha 23 0.07% 51 0.15% 51 0.15%
40.47 ha 13 0.01% 37 0.02% 37 0.02%
48.56 ha 8 0.00% 26 0.00% 26 0.00%
21.00 ha 1,009 3.09% 966 3.36% 962 2.94%
30.00 ha 662 0.75% 669 0.92% 656 0.74%
40.00 ha 382 0.12% 328 0.13% 366 0.11%
48.56 ha 564 1.04% 1,231 3.36% 601 1.11%
60.70 ha 467 0.28% 402 0.92% 561 0.34%
72.84 ha 824 0.16% 709 0.13% 931 0.18%
40.00 ha 42 0.08% 47 0.09% 63 0.12%
60.00 ha 8 0.00% 8 0.00% 7 0.00%
40.00 ha 35 23.81% 29 19.73% 29 19.73%
50.00 ha 8 4.85% 12 7.27% 10 6.06%
60.00 ha 3 1.56% 12 6.25% 10 5.21%
80.00 ha 0 0.00% 6 1.95% 4 1.30%
40.00 ha 17 3.78% 45 10.00% 54 12.00%
50.00 ha 19 2.91% 23 3.52% 31 4.75%
60.00 ha 27 2.87% 16 1.70% 37 3.93%
80.00 ha 5 0.27% 7 0.38% 128 6.93%
40.00 ha 41 7.11% 134 23.22% 134 23.22%
50.00 ha 60 6.31% 126 13.25% 122 12.83%
60.00 ha 33 2.93% 91 8.08% 94 8.35%
80.00 ha 38 1.57% 74 3.06% 98 4.05%
40.00 ha 76 15.61% 101 20.74% 101 20.74%
50.00 ha 26 3.93% 78 11.80% 78 11.80%
60.00 ha 39 4.42% 73 8.27% 73 8.27%
80.00 ha 33 1.80% 39 2.13% 39 2.13%
40.00 ha 44.45 0.20% 71.45 0.33% 116.80 0.54%
50.00 ha 26.07 0.04% 45.07 0.08% 74.28 0.13%
60.00 ha 14.80 0.01% 25.20 0.02% 45.77 0.03%

32

90

89

71

186

5,224

1,363

1,019

1% 0.05% 0.01%
Adjacency constraints in lazy constraint pools

Hypothetical problems (means) 300, 500

Test Problems

Pack Forest, Washington

NBCL5, Canada

El Dorado, California

Shulkell, Nova Scotia

Kittaning4, Pennsylvania

FivePoints, Pennsylvania

PhyllisLeeper, Pennsylvania

BearTown, Pennsylvania

 3 
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Table 7.  Solution characteristics: the number of “wins” for each model/method 1 

Target Test
opt. gap Problems Conventional Lazy

0 0 10 18 28
(0%) (0%) (35.7%) (64.3%) (100%)

0 0 2 178 180
(0%) (0%) (1.1%) (98.9%) (100%)

0 0 11 17 28
(0%) (0%) (39.3%) (60.7%) (100%)

0 2 4 174 180
(0%) (1.1%) (2.2%) (96.7%) (100%)

2 0 7 19 28
(7.1%) (0%) (25.0%) (67.9%) (100%)

20 40 21 99 180
(11.1%) (22.2%) (11.7%) (55.0%) (100%)

1%

0.05%

0.01%

Real

Hypothetical

Real

Hypothetical

Real

Hypothetical

TotalCluster Bucket Path/Cover/Cell

 2 
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Figure Captions 1 

Figure 1.  Best- and worst-case performance analysis - 0.01% target gap runs 2 

 3 

Table Titles 4 

 5 

Table 1.  Initial age-class distribution and yield table for the hypothetical forests 6 

Table 2.  Test problem characteristics (some of the information in this table is based on Table 1 in Tóth 7 

et al. 2012) 8 

Table 3.  Test problem formulation characteristics: cover/path size distribution 9 

Table 4.  Test problem formulation characteristics: problem size and formulation time 10 

Table 5.  Solution characteristics for 0.05% target gap runs: real problems 11 

Table 6.  The number and percentage of path constraints used during optimization under three different 12 

optimality gaps 13 

Table 7.  Solution characteristics: the number of “wins” for each model/method 14 
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