
Temporal Connectivity of Mature Forest Patches In

Spatially-Explicit Harvest Scheduling Models

Abstract. We present a forest harvest scheduling model that can ensure the temporal con-1

nectivity of mature forest habitat over time in a landscape managed for timber production.2

Past models addressed the spatial aspects of habitat connectivity by requiring that a certain3

amount of mature forest habitat is retained throughout a planning horizon in contiguous4

patches of minimum size and age. These models failed to recognize, however, that the dy-5

namic patches of a managed forest ecosystem might not provide escape routes for certain6

wildlife unless there is temporal overlap among the patches. According to biologists, the7

lifespan of the patches is often more important than their size and contiguity for species sur-8

vival. We propose a mixed integer programming formulation that guarantees escape routes9

among patches of mature forest habitat that arise and diappear over time as the forest ages10

and gets harvested. Using four real forests as examples, we illustrate the mechanics of the11

approach and show that the new model is not only tractable computationally, but it can also12

make harvest scheduling models with minimum patch size constraints easier to solve.13

Keywords: forest fragmentation, temporal connectivity, mature forest patches, spatial14

harvest scheduling, mixed integer programming15
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1 Introduction16

Anthropogenic land use such as agriculture, forestry or urban sprawl can transform natural17

landscapes and fragment wildlife habitat. Sensitive species might not be able to persist in18

an ecosystem if dispersing individuals cannot utilize remaining patches of suitable habitat19

(Fischer and Lindenmayer, 2007; Kindlmann and Burel, 2008). Individual patches might be20

too small in size, too elongated in shape, or too far from each other to provide sufficient21

protection. In response to these concerns, connectivity modeling has become an important22

research area in the context of reserve design (e.g., Conrad et al., 2012; Önal and Briers,23

2006; Tóth et al., 2009; Rebain and McDill, 2003). While both Conrad et al. (2012) and24

Önal and Briers (2006) focus on the optimal selection of a spatially connected network, the25

Tóth et al. (2009) and Rebain and McDill (2003) models target problems where, as opposed26

to full connectivity, only minimum contiguity thresholds need to be met by the reserves.27

In managed ecosystems, such as timberlands, or in dynamic systems that are subject to28

frequent and catastrophic disturbances such as fire, habitat connectivity has both spatial29

and temporal dimensions. A forest stand that provides suitable habitat for a certain species30

today might be gone tomorrow due to a timber harvest or wildfire. Similarly, a forested site31

that is in an early successional stage of its development today, might become mature habitat32

in a future time period. The lifespan of different habitat patches might have important33

implications on just how well certain wildlife populations persist in the landscape over time.34

In fact, Fahrig (1992) has shown that the temporal dimension of habitat is often far more35

important than the spatial dimension for persistence. This is expecially true for species that36

are limited in mobility such as insects or amphibians. A forest planner might ask if it was37

possible to schedule timber harvests across the landscape and over time in such a way so38

that contiguous forest patches of a minimum size and age would always be overlapping with39

or adjacent to patches that develop in subsequent periods. If it was possible to ensure such40
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dynamic ”escape routes” in the landsacpe, how much would the effort cost to the landowner41

in forgone timber revenues? None of the connectivity models that are currently available in42

the forest planning or reserve selection literatures can answer these questions. This is the43

knowledge gap that we would like to fill by introducing the temporal connectivity models.44

Before describing the formal, mathematical details of these model, we give an overview of45

the work that had been documented in the literature about habitat connectivity planning46

both in the context of forest harvest scheduling and reserve design.47

The term connectivity can be defined based in the landscape structure (structural con-48

nectivity) and based on the needs and dispersal characteristics of a species (functional con-49

nectivity) (Kindlmann and Burel, 2008). Kindlmann and Burel (2008) define connectivity as50

’the ease with which individuals of a species can move about within the landscape’, which high-51

lights the structural aspect of connectivity in concert with the functional or species-specific52

aspect of it.53

Forest management is one of the land use forms that is often associated with habitat54

loss and fragmentation. The loss of mature – likewise late seral or old growth – forest55

patches is one of the reasons for the criticism. Mature forest patches provide irreplaceable56

habitat for numerous species (e.g. Franklin, 1997; Franklin and Forman, 1987; Lindenmayer57

and Franklin, 2002), and ecological guidelines suggest the protection of large mature forest58

patches in the landscape (e.g. Lindenmayer et al., 2006). As a result, models that aim to59

maintain mature forest habitat emerged from both the conservation reserve design and the60

harvest scheduling literature.61

The reserve design problem (e.g. Haight and Travis, 2008; Williams et al., 2005; Önal and62

Briers, 2006) can be stated as (1) what is the minimal area that provides adequate habitat63

for the population of a group of species, or (2) what is the largest group of species that can be64

protected given a budget constraint (Önal and Briers, 2006). The spatial aspect of habitat65

connectivity – i.e. the design of wildlife corridors – has received attention in the reserve design66
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literature including studies on the mathematical background of the problem (Cerdeira and67

Pinto, 2005), modeling approaches (Cerdeira et al., 2010; Conrad et al., 2012; Önal and68

Briers, 2006; Sessions, 1992; Williams, 1998), case studies on implementation (Fuller et al.,69

2006) as well as survey papers (Galpern et al., 2011; Williams et al., 2005). Notably, Önal70

and Briers (2006) have devised an MIP model in which they added spatial contiguity as an71

additional criterion for reserve site selection using graph theory. The study of Conrad et al.72

(2012) is also worth mentioning. Formulated as a so-called ’connected subgraph problem’,73

their model not only ensures the connectivity of reserve sites at minimal cost, but it can also74

maximize the suitable habitat area along the corridor subject to a budget constraint. The75

temporal aspect of habitat connectivity has not been addressed in reserve design models as76

these models designate the chosen mature forest stands to be reserves. Therefore, reserve77

design models are static models, guaranteeing persistence of habitat patches over time.78

The harvest scheduling problem that requires sufficiently large patches of mature forest79

habitat in a managed forest is called the Minimum Patch Size (MPS) problem (Rebain and80

McDill, 2003). Minimum size of mature patches, minimum area of mature habitat, and the81

minimum age requirement for maturity are predefined parameters of the forest management82

problem. The MPS problem allows the composition of mature forest habitat to change over83

time and space without restrictions. Thus, the problem is dynamic, a feature that may84

be crucial for ecologically and economically sustainable forest management. However, it85

does not guarantee persistence of habitat patches over time. While some species (such as86

birds or larger mammals) can easily relocate and find distant mature forest patches to be87

functionally connected, proximity of mature forest patches over time is fundamental for less88

mobile species. Such species are for example some amphibian (e.g. Baldwin et al., 2006) and89

arthropod species (e.g. Schowalter, 1995). This study addresses the above shortcoming of the90

MPS problem and proposes a temporal connectivity model that guarantees that mature forest91

patches provide persistent habitat even for species with limited capabilities for dispersal.92
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Therefore, this study considers habitat patches to be connected over time if patches of93

consecutive time periods overlap.94

Many studies have modeled minimum patch size requirements (e.g. Bettinger et al.,95

2002; Caro et al., 2003; Falcão and Borges, 2002; Martins et al., 2005), but have used various96

heuristic methods to solve the resulting combinatorial problem. Bettinger et al. (2002)97

have compared eight heuristic algorithms applied to spatial forest planning problems (7498

stands) with wildlife habitat objectives. They have reported that although most heuristic99

techniques find very good solutions of spatially unrestricted planning problems, the more100

complex the spatial requirements the less likely that these techniques find a solution within101

1% of the global optimum. Falcão and Borges (2002) have proposed and tested a new102

heuristic algorithm (sequential quenching and tempering) that was able to provide solutions103

within 1.5% of the global optimum 90% of the time for forest planning problems (300-900104

stands) with volume flow, minimum clearcut size and minimum mature patch size constraints.105

Caro et al. (2003) have developed and tested another heuristic technique (2-Opt tabu search)106

for forest planning problems (574-27,000 stands) with volume flow, minimum clearcut size,107

green-up period, and minimum mature patch size constraints. Their technique has found the108

optimal solution of 20-stand test problems and a solution within 8% of the global optimum109

of a real-size problem. Martins et al. (2005) have proposed an integer programming model110

and a heuristic technique based on column generation for solving forest planning problems111

with maximum clearcut size and mature patch size constraints. The technique is suited for112

problems with 100-225 stands, but it was unable to handle larger ones.113

Rebain and McDill (2003) have proposed the first exact, mixed integer programming114

(MIP) formulation for the MPS problem along with volume flow, average ending age, and115

maximum clearcut size restrictions. Computational capacity at the time of the publication116

allowed for solving only a small, hypothetical problem consisting of 50 stands and 3 planning117

periods. The model has the following limitations. First, it does not consider the shape of,118
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and therefore the ratio of interior space and edge habitat within mature patches. Although119

compact shape and high interior space - edge habitat ratio is desirable, managed forests tend120

to have less interior space. Therefore, it is important to address the issue of compactness.121

Second, the model does not guarantee temporal connectivity of the mature forest patches,122

a consideration that is the primary focus of this paper. Third, an enumeration algorithm is123

necessary to formulate the model. The algorithm used in the study was impractical for cases124

where the MPS was large relative to the average stand size. An improvement on the cluster125

enumeration algorithm is the secondary contribution of this paper.126

Building on the above study, Tóth and McDill (2008) have addressed the compactness127

of mature forest patches using the total perimeter of the patches as shape indicator. They128

have tested the model on a hypothetical problem with 50 stands and 3 planning periods.129

They have found that enforcing low or minimal perimeter of mature patches results in not130

only fewer, larger and more compact patches, but it is also more likely that the same patches131

would form mature habitat in consecutive periods. This finding suggests that the lack of132

temporal connectivity among mature forest patches, what was a limitation of the MPS model133

Rebain and McDill (2003) proposed, can be addressed indirectly. However, the model may134

promote static instead of dynamic mature patches.135

Hof et al. (1994) have considered connectivity of wildlife habitat over time indirectly in136

an MIP framework. They devised a model that can optimize the spatial layout of harvesting137

activity so that it maximizes wildlife viability over time. Temporal connectivity of habitat138

patches increases the viability of a wildlife population, it is therefore incorporated indirectly139

into the model. However, the devised MIP is not a harvest scheduling model. It considers140

no timber objective or constraints on harvesting.141

According to our knowledge, there has been no peer-reviewed publication that addressed142

temporal connectivity of mature forest patches in harvest scheduling models. The temporal143

dimension of habitat connectivity has been addressed in other fields of natural sciences, for144
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example in agriculture (Baudry et al., 2003), in marine conservation (Treml et al., 2008),145

and in wetland science (Leibowitz and Vining, 2003). Most of those studies, however, report146

analytical investigations or simulation efforts rather than optimization approaches.147

This paper builds on the MPS model of Rebain and McDill (2003). As the primary148

contribution, we introduce a new MIP model ensuring that mature forest patches spatially149

overlap in consecutive planning periods while they may change place over time. We refer150

to this model as Simple Temporal Connectivity model (TC.0). We also propose two mod-151

eling improvements on TC.0. The first improvement (called TC.1) reduces the number of152

constraints that are necessary to describe the temporal connectivity relationships. The sec-153

ond improvement (called TC.2) is a preprocessing procedure that one can apply if the MPS154

problem satisfies a special condition, i.e. the minimum mature habitat requirement is not155

increasing in consecutive planning periods. The procedure eliminates those potential mature156

patches from the MPS model that cannot satisfy the temporal connectivity requirement in157

the special setting. The two improvements can be utilized simultaneously, and the resulting158

model is referred to as TC.1+2. As a secondary contribution of this paper, we introduce the159

Age Discriminative Cluster Enumeration algorithm (ADCE) that can significantly reduce160

the formulation time of the MPS model, and therefore, the formulation time of the temporal161

connectivity model.162

The rest of the paper is organized as follows. Section 2.1 describes the existing exact163

model of the MPS problem extending the harvest scheduling problem. In Section 2.2, the164

ADCE is introduced. Section 2.3 introduces the temporal connectivity concept and models165

TC.0, TC.1, TC.2, and TC.1+2. Section 3 presents the design of a computational experiment166

with four real forest planning problems in which we tested TC.0, TC.1, TC.2, and TC.1+2,167

using the existing exact MPS model (Rebain and McDill, 2003) as a benchmark. Finally, in168

Sections 4-6, we present, analyze, and discuss the results of the experiment, and conclude.169
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2 Methods170

2.1 The Minimum Patch Size (MPS) Problem171

2.1.1 Terminology172

Harvest scheduling models maximize timber revenues from a forest over a planning horizon173

P , subject to a set of ecological and other constraints. Let p = 1, 2, ...P represent the periods174

of the planning horizon. Let N represent the set of management units or stands i ∈ N in175

the forest. Each stand i has the following attributes: area ai, initial age ti (in terms of176

planning periods), forest type ki, volume in period p vip, the set of adjacent stands Di, and177

the expected revenue coefficient in period p rip.178

For the purpose of this study, we considered two stands adjacent if they shared a common179

boundary. In any period p, a stand may either be harvested completely, or left unharvested.180

Therefore, a binary decision variable xip is assigned to each stand for each period, indicating181

that stand i is harvested in period p. Furthermore, we declare a binary decision variable xi0182

for each stand, which represents the case when stand i is not harvested over the planning183

horizon. For simplicity, let p = 0 represent this ’no action’ management alternative. A stand184

may not be harvested until it has reached the minimum rotation age of forest type k Rk. We185

assume that Rk ≥ P , therefore, each stand may be harvested only once over the planning186

horizon. Consequently, volume and revenue coefficients are assumed to remain zero after a187

stand is harvested.188

We consider four constraints: logical, harvest fluctuation, average ending age, and min-189

imum clearcut size constraints. The logical constraint ensures that each stand may be har-190

vested only once over the planning horizon. This constraint is the corollary of the assumption191

that Rk ≥ P . The harvest fluctuation constraints ensure that harvested volume of one period192

is not less or more than some portion (L lower and U upper bound) of that in the preceding193
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period. The average ending age constraint guarantees that the area-weighted average age of194

the forest by the end of the planning horizon is at least a certain target age ET (in terms195

of planning periods). Finally, the maximum clearcut size constraint ensures that the total196

area of any contiguous group of stands that are harvested in any period is less than a prede-197

fined limit Amax. We modeled the last restriction with the Path formulation (McDill et al.,198

2002) that uses minimal cover constraints to prohibit maximum clearcut size violations from199

occurring. A cover in this context represents a group of stands that are connected in the200

landscape and the sum of their areas just exceeds the maximum clearcut size. A cover is201

minimal if its area drops below the maximum clearcut size if we remove any stand from the202

group. Let C denote a cover and Λ+ denote the set of minimal covers. Using this notation,203

C ∈ Λ+ if and only if
∑

i∈C ai ≥ Amax, and
∑

i∈C\{j} ai ≤ Amax ∀j ∈ C.204

2.1.2 Harvest scheduling model205

The spatially-explicit harvest scheduling models is:206

max
∑
i∈N

P∑
p=1

ripxip (1)
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Subject to

P∑
p=0

xip = 1 ∀i ∈ N (2)

∑
i∈N

vi,p+1xi,p+1 ≤ U
∑
i∈N

vipxip ∀p = 1, 2, ...P − 1 (3)

∑
i∈N

vi,p+1xi,p+1 ≥ L
∑
i∈N

vipxip ∀p = 1, 2, ...P − 1 (4)

∑
i∈N

[
(ti + P − ET )xi0 +

P∑
p=1

(P − p− ET )xip

]
ai ≥ 0 (5)

∑
i∈C

xip ≤ |C| − 1 ∀C ∈ Λ+, p = 1, 2, ...P (6)

xip ∈ {0, 1} ∀i ∈ N, p = 0, 1, ...P (7)

Equation (1) is the objective function that maximizes net present value (NPV) of timber207

revenues over the planning horizon. Constraints (2)-(5) are logical, harvest fluctuation, and208

average ending age constraints, respectively. Constraint (6) describes the maximum clearcut209

size restriction. Constraint (7) is a binary restriction on the decision variables.210

2.1.3 Minimum Patch Size Constraints211

Rebain and McDill (Rebain and McDill, 2003) used the following set of constraints to ensure212

that (1) the total area of mature forest habitat is not smaller than the minimum mature213

habitat Kp in each period; (2) the size of the patches constituting the mature habitat is not214

smaller the minimum patch size Amin; and (3) each stand in a mature patch is at least of215

age T (in terms of planning periods).216
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∑
i∈M

∑
j∈Jip

xi,j − |M |OM,p ≥ 0 ∀M ∈ Ω, p = jM , ...P (8)

∑
M∈Ω

OM,p −BOip ≥ 0 ∀i ∈ N, p = ji, ...P (9)

∑
i∈Nj,p

aiBOip ≥ Kp ∀p ∈ P (10)

OM,p ∈ {0, 1} M ∈ Ω, p = jm, ...P (11)

BOip ∈ {0, 1} i ∈ N, p = ji, ...P (12)

where217

M is a cluster i.e. a group of contiguous stands with a combined area just exceeding the218

minimum patch size Amin (
∑

i∈M ai ≥ Amin and
∑

i∈M\{j} ai ≤ Amin for some j ∈M),219

Ω is the set of all clusters,220

Jip is the set of all prescriptions under which stand i can be mature in period p,221

OM,p is a binary variable indicating if cluster M is old enough to be a mature patch in222

period p (OMp = 1 if and only if M ∈ Ω : ti + p ≥ T ∀i ∈M)223

jM is the first period in which cluster M meets the age requirement for maturity (jM =224

maxi∈M(T − ti)),225

ji is the first period in which stand i meets the age requirement for maturity (ji = T − ti),226

BOip is a binary variable indicating if stand i in period p is part of at least one cluster that227

meets the age requirement for maturity (BOip = 1 if and only if i ∈ N : i ∈M, jM ≤228

p),229

Nj,p is the set of stands that can be mature in period p (Nj,p := {i ∈ N : ti + p ≥ T}).230
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Constraint set (8) determines if a cluster can reach the mature age in a given period.231

Constraint set (9) indicates if a stand is part of at least one mature patch in a given period.232

Moreover, this set ensures that only one of the possibly overlapping clusters is chosen as a233

mature patch (Rebain and McDill, 2003). Constraint set (10) ensures that the total area of234

mature forest habitat meets the predefined requirement in each period. Constraint sets (11)235

and (12) are binary restrictions on the indicator variables. We refer to the MPS model of236

Rebain and McDill (Rebain and McDill, 2003) as the Benchmark model from here on.237

2.2 Formulating the cluster set – Age Discriminative Cluster Enu-238

meration (ADCE)239

Enumerating the clusters in set Ω is not trivial. The Benchmark model used a modification240

of the Path Algorithm (McDill et al., 2002) for cluster enumeration, that takes the area ai241

and the adjacency relationships Di of each stand i ∈ N , and the minimum patch size Amin242

as inputs. It gives the set Ω as output.243

Let the function f(E,Amin) 7→ Ω represent the modified Path Algorithm, where matrix244

E is defined on N ×N by e(i, j) =


ai if i = j

1 if j ∈ Di

0 otherwise

. It contains the adjacency relationships245

for the entire forest and the area of each stand. This algorithm generates all possible stand246

combinations just exceeding the MPS regardless of the maturity of the stands building up247

the cluster. Maturity of the clusters is only considered during model formulation. However,248

excluding all the stands from the forest that cannot meet the minimum age requirement in249

a given period may reduce the complexity of the enumeration problem by reducing both the250

number of relevant stands in the forest and the vertex degree (i.e. the number of stands251

adjacent to each stand).252
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The ADCE (Figure 1) modifies the input and output of function f such that f(EP , Amin) 7→253

ΩP , where matrix EP is defined on NP × NP . NP is the set of stands that can reach the254

age of maturity by the last planning period, and ΩP contains only clusters that can form a255

mature patch in some planning period.256

Note that ΩP ⊆ Ω. Hence, the ADCE performs at least as well as the modified Path257

algorithm. The difference in size between the two sets and the efficiency gain of ADCE258

depends on the age class distribution, the mature age requirement, and the length of planning259

horizon in a particular forest.260

2.3 Temporal connectivity261

This study considers mature patches in a harvest scheduling model to be connected over262

time if patches in consecutive periods overlap. We add temporal connectivity constraints263

to the Benchmark model to guarantee temporal connectivity among mature forest patches.264

Temporal connectivity constraints must enforce that mature patches in consecutive periods265

have at least one stand in common. In other words, the constraints must enforce that at266

least one stand of a mature patch in a planning period must be part of a mature patch in267

the next period. Extending the MPS model with temporal connectivity constraints results268

in a temporal connectivity model that allows for a dynamic change in the composition of269

mature forest habitat in the landscape and concurrently ensures a smooth transition between270

mature patches in consecutive periods. The first point is important from timber management271

perspectives, whereas the second one may be crucial for species with limited capabilities272

for relocation. Although our definition of temporal connectivity may be conservative, it273

provides less mobile species with the possibility to find new suitable habitat without leaving274

the mature forest.275

Ensuring temporal connectivity in the MPS model requires that the Kp, the minimum276

mature habitat in period p, is nondecreasing over the planning horizon. Nevertheless, Kp277
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may increase from period to period. Hence, temporal connectivity in general allows the278

development of new mature forest patches in later periods, but guarantees that the new279

patches persist in the landscape via temporal connectivity.280

Figure 2 illustrates the temporal connectivity problem between two periods on a hypo-281

thetical forest. In period 1, ten stands reached the age of maturity: N1={10, 12, 16, 18, 19,282

20, 27, 29, 49, 67}, and they form the following clusters that exceed the minimum patch size283

of 100 ha: Ω1 = {{10, 49, 19, 20}; {10, 49, 16, 19, 20}; {12, 18, 27}; {12, 27}; {16, 20, 49, 19}}.284

In period 2, fifteen stands reached the mature age: N2 ={5, 7, 10, 12, 16, 18, 19, 20,285

27, 29, 34, 48, 49, 54, 67}. The set of clusters just exceeding the MPS is: Ω2 ={{5,12};286

{5,27,12}; {5,34}; {7,67}; {10,49,19,20}; {10,49,16,19,20}; {12,27}; {12,18,5}; {12,18,27};287

{16,20,49,10,19}; {16,20,19,54}; {16,20,49,54}; {19,49,54}; {27,5,34}; {29,34,5}; {29,34,48};288

{34,48}; {54,20,19,49}}.289

We use this example to illustrate how the Simple Temporal Connectivity model (TC.0)290

works, and how the first improvement – Merged Superclusters (TC.1) –, and the second291

improvement that one may apply only if Kp does not increase over time – Cluster Elimination292

(TC.2) – can reduce its size.293

2.3.1 Simple Temporal Connectivity model (TC.0)294

We can enforce temporal connectivity by requiring that each cluster that was a mature patch295

in some period must have an overlapping successor in the next period (i.e. a mature patch296

in the next period that has at least one stand in common with a current mature patch).297

Formally:298

OM,p ≤
∑

L∈Ωp+1:M∩L6=∅

OL,p+1 M ∈ Ωp, p = 1, ...P − 1 (13)

where L is a cluster in the next period that contains at least one stand of cluster M . This

formulation imposes a constraint for each cluster and each period except for the last one.
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For the example on Figure 2, this would mean:

O{10,49,19,20},1 ≤ O{10,49,19,20},2 + O{10,49,16,19,20},2 + O{16,20,49,10,19},2

+ O{16,20,19,54},2 + O{16,20,49,54},2 + O{19,49,54} + O{54,20,19,49},2 (14)

O{10,49,16,19,20},1 ≤ O{10,49,19,20},2 + O{10,49,16,19,20},2 + O{16,20,49,10,19},2

+ O{16,20,19,54},2 + O{16,20,49,54},2 + O{19,49,54} + O{54,20,19,49},2 (15)

O{12,18.27},1 ≤ O{5,12},2 + O{5,27,12},2 + O{12,27},2 + O{12,18,14},2 + O{27,5,34},2 (16)

O{12,27},1 ≤ O{5,12},2 + O{5,27,12},2 + O{12,27},2 + O{12,18,14},2 + O{27,5,34},2 (17)

O{16,20,49,19},1 ≤ O{10,49,19,20},2 + O{10,49,16,19,20},2 + O{16,20,49,10,19},2 + O{16,20,19,54},2

+ O{16,20,49,54},2 + O{19,49,54} + O{54,20,19,49},2 (18)

2.3.2 Merged Superclusters (TC.1)299

Some clusters in Ω, which are necessary for the problem formulation, are supersets or super-300

clusters. Superclusters are clusters that have at least one subset (subcluster) that also qual-301

ifies as a cluster M ∈ Ω. In mathematical terms:
∑

i∈M ai ≥ Amin and
∑

i∈M\{j} ai ≤ Amin302

for some j ∈M and
∑

i∈M\{l} ai ≥ Amin for some l 6= j ∈M .303

For example, the cluster on the left hand side of Equation (16) is a superset of the left304

hand side of Equation (17); and the left hand side of Equation (15) is a superset of both305
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Equations (14) and (18). By constraint set (8), any indicator variable that corresponds to306

a cluster that is a subset of another cluster is satisfied if any of the indicator variables that307

correspond to the superclusters of the cluster have positive value. Therefore, Equations (14)308

and (18) together fully describe Equation (15).309

Hence, we can write constraint set (13) for a subset of Ω only, that we call minimal cluster310

set and denote by Ω∗. Let the minimal cluster set contain all such clusters that are minimal311

with respect to a mature stand i ∈ Np in a period p ∈ P , meaning that if we removed any312

stand other than i from the cluster, its area would become lower than the threshold size.313

Formally:314

M is a minimal cluster if and only if
∑
l∈M

al ≥ Amin,
∑

l∈M\{j}

al ≤ Amin for some j ∈M, i 6= j

(19)

Thus, if any cluster formed a mature patch in one period, there is at least one constraint315

to ensure a successor for that cluster in the following period. Furthermore, we omit no316

stands that can provide a link between two periods. Set Ω∗ may be larger than the set of317

minimal covers (that can prohibit maximum clearcut size violations from occurring) for the318

same problem. For example, let Ĉ denote minimal covers in the minimal cover set Λ̂ and319

let M̂ denote clusters in minimal cluster set Ω̂∗ associated with forest and let Amax = Amin.320

Minimal covers Ĉ ∈ Λ̂ do not contain any stand v such that
∑

i∈C\{v} ai ≥ Amin ∀Ĉ ∈321

Λ̂, ∀i, v ∈ N , assuming that
∑

i∈N ai ≥ Amin (see Figure 3 for an example).322

Thus, we propose the TC.1 formulation with the following constraints:323

OM,p ≤
∑

L∈Ωp+1:M∩L6=∅

OL,p+1 ∀M ∈ Ω∗p, p = 1, ...P − 1 (20)

This formulation requires a constraint for each minimal cluster and each period except the324

last one. For the earlier example, one would omit Equation (15), but would keep Equation325
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(16), because the cluster {12,18,27} is minimal with respect to stand 18.326

2.3.3 Cluster Elimination (TC.2)327

The temporal connectivity requirement provides us with an opportunity to reduce the num-328

ber of eligible clusters if the minimum area of mature habitat is constant over the planning329

horizon (Kp = K = constant, p = 1, 2, ...P ). This condition is satisfied if forest managers330

prioritize the persistence of populations that already exist in the landscape and target their331

resources at protecting existing refugees of habitat.332

If the minimum area of mature habitat is constant over time, new mature patches are333

not required to develop, but mature patches of the first period may ’float around’ in the334

forest in consecutive planning periods. (Note, however, that the total area of mature forest335

habitat is not forced to be constant in this model.) Thus, clusters that cannot be connected336

to any cluster in the previous period may be omitted from the entire problem formulation. In337

mathematical terms, let Ω−p denote the set of clusters in period p that can potentially overlap338

with a cluster in the previous period. Ω−p = {L ∈ Ωp : M ∩L 6= ∅, M ∈ Ω(p−1), p = 2, ...P}.339

Note that Ω1 = Ω−1 .340

TC.2 is a preprocessing procedure that can simplify both TC.0 and TC.1 if Kp = K341

condition holds. If applied to TC.0, the resulting model is called TC.2; if applied to TC.1,342

the resulting model is called TC.1+2. The procedure may reduce the set of potential mature343

clusters, affecting Equations (8)-(12). In our example, clusters {5,34}, {7,67}, {29,34,48},344

and {34,48} may be eliminated in period 2.345

3 A computational experiment346

We tested the TC.0, TC.1, TC.2, and TC.1+2 models in a computational experiment includ-347

ing four real forest planning problems by comparing formulation and solution characteristics348
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of the four temporal connectivity approaches and the Benchmark model. We used constant349

minimum mature habitat requirement for each planning problem to test TC.2 and TC.1+2350

in the same experiment. The purpose of the computational experiment was (1) to illustrate351

how the proposed models work in practice, (2) to show that real forest planning problems352

are tractable using these models, and (3) to evaluate the models by comparing their size and353

performance to the most similar model in the literature. Furthermore, we tested whether354

using the ADCE can improve the efficiency of model formulation.355

The experiment was implemented in Java using IMB-ILOG CPLEX v. 12.2 Concert356

Technology (4-thread, 64-bit, released in 2010) (IBM ILOG CPLEX, 2009) as the optimiza-357

tion software. The experiment ran on a Power Edge 2950 server (four 3 GHz Intel Xeon358

5160 processors, 16GB RAM, MS Windows Sever 2003 R2). We used a 0.05% optimality359

gap and 6 hours (21,600 seconds) time limit as stopping criteria for optimization and the360

default settings for other optimization parameters.361

We used the software referred to in (Könnyű and Tóth, 2011) to generate harvest schedul-362

ing models with maximum clearcut size restrictions and the algorithms described in Section363

2.2 to formulate MPS models.364

3.1 Test problems365

We used the following four real forest planning problems for the computational experiment:366

Pack forest (186 stands), Shulkell (1,039 stands), El Dorado (1,363 stands) and NBCL5367

(5,224 stands). The datasets are available in the FMOS repository (FMOS – Forest Man-368

agement Optimization Site, 2011). Tables 1 and 2 summarize initial conditions of the test369

forests: stand and age class characteristics, respectively. These characteristics influenced the370

choice of planning parameters shown in Table 3.371
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4 Results372

4.1 Computational results373

4.1.1 Formulation characteristics374

Table 4 compares model size and formulation time of TC.0, TC.1, TC2, TC.1+2, and the375

Benchmark model on the four test problems. The table shows that the TC.0 model always376

required more constraints than the Benchmark model. TC.1 always had fewer constraints377

than TC.0, but more than the Benchmark model. TC.2 and TC.1+2 reduced the number378

of eligible clusters and therefore the number of constraints and binary indicator variables379

relative to TC.0 in three of the four cases (Pack, Shulkell, NBCL5). The TC.2 and TC.1+2380

models of Shulkell and El Dorado had fewer variables and fewer constraints than the Bench-381

mark model of the same forests. There was no significant difference among the formulation382

time values of TC.0, TC.1, TC2, and TC.1+2. However, in one of the four cases (El Do-383

rado), formulation time of the temporal connectivity model variations approximately doubled384

relative to the Benchmark model.385

Comparing the cluster enumeration algorithms, the ADCE always generated fewer clus-386

ters in shorter time than the modified Path Algorithm. In Pack forest, where 31% of the387

area reached the mature age over the planning horizon, the proposed algorithm reduced the388

number of necessary clusters to 0.8%. In Shulkell, 65% of the area reached maturity, and389

the reduction in the number of clusters was 2.0%. In El Dorado, 73.8% of the area was one390

mature block; the ADCE reduced the number of necessary clusters to 47.4%. In NBCL5,391

20% of the area reached maturity over the planning horizon and enumerating 0.5% of the392

clusters was sufficient. Moreover, based on four different MPS and three mature age values393

for each forest, we found that the higher the mature age and the larger the MPS, the better394

the ADCE performed.395
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4.1.2 Solution characteristics396

Figure 4 compares solution time, and the upper and lower bounds on the objective functions397

of TC.0, TC.1, TC2, TC.1+2, and the Benchmark model on the four test problems. The398

figure shows that TC.0, TC.1, TC.2, and TC.1+2 provided a better quality solution within399

6 hours than the Benchmark model in two cases (Pack, NBCL5), while they satisfy an400

additional requirement (temporal connectivity) that the Benchmark model does not.401

TC.1. improved solution time and quality relative to the TC.0 model in two cases402

(Shulkell, El Dorado). Moreover, for few problem instances not shown on the figure (e.g.403

Shulkell: MPS = 20ha, K = 200ha, T = 80 years, and other parameters as defined in Table404

3; El Dorado: MPS = 40 ha, K = 800 ha, T = 100 years, and other parameters as defined in405

Table 3), TC.1 and TC.1+2 found feasible solutions with non-zero objective function value406

within the time limit, but TC.0 and TC.2 did not. TC.2 improved solution time or solution407

quality relative to TC.0 in the cases of Shulkell and NBCL5. TC.1+2 improved solution408

time or solution quality relative to TC.0 in all four cases, improved solution time or qual-409

ity relative to TC.2 in three cases (NBCL5 was an exception), and improved solution time410

relative to TC.1 in the case of NBCL5.411

In Pack forest and NBCL5, the temporal connectivity requirement inferred lower objec-412

tive function values. However, we observed no cost associated with the temporal connectivity413

constraints in the reported instance of Shulkell and El Dorado.414

Values of the MPS, mature age (T), and minimum area of mature habitat (K) parameters415

had major effect on the solvability of the problems. The larger the MPS and lower the mature416

age, the larger the model was. Although changing the minimum area of mature habitat has417

no effect on model size, we observed an increase in solution time. For example, we found no418

feasible solution with positive objective function value for any of the temporal connectivity419

models within 50,000s (about 14 hours) for El Dorado: MPS = 40 ha, K > 1200 ha, T =420

100 years; and NBCL5: MPS = 40 ha, K > 120 ha, T = 100 years; and other parameters as421
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in Table 3.422

4.2 Management plans423

Figures 5 and 6 illustrate the first four periods of the forest management plans for El Do-424

rado with and without temporal connectivity constraints. Maps show that the Benchmark425

model suggested a plan in which mature patches develop in different parts of the forest in426

consecutive planning periods. Temporal connectivity constraints ensured overlap between427

mature patches of consecutive periods, however, restricted their movement over time.428

In some cases, (e.g. the Pack forest problem with MPS = 40 ha, K = 120 ha, T = 100429

years and other parameters as defined in Table 3) we observed that the temporal connectivity430

requirement restricted the problem to a static one, in which the mature patches chosen in431

the first period constituted to the mature habitat over the planning horizon.432

5 Discussion433

Experimental results show that in most cases, the temporal connectivity requirement in-434

creased computational complexity of the MIP. Yet, in two out of four cases cases, the tem-435

poral connectivity model variations (TC.0, TC.1, TC.2, and TC.1+2) were smaller than the436

Benchmark model, and they provided a solution faster in one case. We found that both437

improvements (TC.1, TC.2), and their combination (TC.1+2) are useful in reducing the size438

of the simple temporal connectivity model (TC.0), and they can improve solution time and439

solution quality.440

The temporal connectivity constraints allows for a dynamic change of mature patches441

over time. However, in some cases, the temporal connectivity condition limits the solution442

to be static. The more dispersed mature forest stands are in the forest, the larger the MPS is,443

and the fewer stands can meet the age requirement for maturity over the planning horizon,444
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the less likely the composition of mature forest patches changes over time in the temporal445

connectivity model. This result is similar to that of Tóth and McDill (2008), who found446

that minimizing the perimeter of mature forest patches may also significantly restrict the447

movement of the patches over time.448

The temporal connectivity model proposed in this study does not take the shape and449

compactness of the mature forest patches into consideration. This may be a limitation450

of the model, because the shape of a habitat patch is important for species persistence.451

However, there is no clear consensus in the ecology literature regarding the ideal shape of452

a habitat patch. While numerous ecological studies support compact patches with low or453

minimal edge-to-area ratio, some evidence supports elongated ones (Williams et al., 2005).454

If the compactness of the patches is important, further constraints can be incorporated in455

this temporal connectivity model based on Tóth and McDill (2008) or Öhman and Wikström456

(2008) to avoid unfavorable patch shapes.457

Temporal connectivity constraints might not be always costly. We reported examples458

where temporal connectivity constraints inferred forgone timber revenues, and other exam-459

ples, where the new constraints did not change the objective function value of the solution.460

We can think of two reasons why the new constraints would not change the objective function461

value. First, the Benchmark model might give a solution that satisfies the new conditions.462

Second, a different combination of mature patches might be possible without significantly463

changing the optimal harvest schedule. The latter case might happen if the properties of the464

forest allow, or other constraints (e.g. average ending age) otherwise require mature forest465

stands in the landscape.466

Initial conditions of the forest, such as age class distribution and spatial configuration467

of mature patches, as well as planning parameters have key impact on the solvability of the468

temporal connectivity model. Choosing a larger MPS, lower mature age, longer planning469

horizon or even larger minimum area of mature habitat may have significant computational470
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cost. In cases such as El Dorado, it might be more practical to apply a static reserve design471

model, as there are no potential mature patches that emerge later in the planning horizon.472

Some might argue that the temporal connectivity model is overly restrictive about the473

definition of connectivity. We can relax this definition and require that mature patches of474

one period have a successor in the next period that is within a maximum distance. Both475

the TC.0 and the TC.1 models can be extended to satisfy this definition by appending the476

right hand side of constraint sets (13) and (20) with all clusters that are within the given477

maximum distance. The Floyd-Warshall all-pair shortest path algorithm (Floyd, 1962) can478

be used to find all stands that are within the maximum distance. The Cluster Elimination479

procedure can also be adapted for the new definition, using the same algorithm, to formulate480

TC.2 and TC.1+2.481

6 Conclusion482

This study introduced a model that ensures temporal connectivity of mature forest patches483

in spatially-explicit harvest scheduling models. It also proposed two improvements on the484

model. With the first improvement, we can reduce the number of constraints that are485

necessary to describe temporal connectivity relationships. With the second improvement,486

we can reduce the number of potential mature patches by eliminating those that cannot487

meet the temporal connectivity requirement if a special condition holds, i.e. the minimum488

area of mature habitat does not increase over time. We tested the proposed model and489

its improvements in an illustrative computational experiment with four real forest planning490

problems. Experimental results indicate that (1) it is possible to use exact programming491

to solve the MPS problem with temporal connectivity constraints for real, relatively large492

forest planning problems; (2) the temporal connectivity model might be smaller and easier493

to solve than the MPS model in some cases; and (3) the temporal connectivity requirement494

23



may not reduce timber revenues significantly.495
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Table 1: Stand characteristics of the test forests (vertex degree is given by the ratio of the
number of adjacencies and the number of stands in the forest).

Problem Number of stands
Stand size distribution (ha)

Total area (ha) Vertex degree

min max average

Pack 186 0.55 24.27 9.18 1,708 4.78

Shulkell 1,039 0.13 15.92 3.75 3,821 3,97

El Dorado 1,363 4.05 47.09 15.52 21,147 5.30

NBCL5 5,224 0.99 20.23 6.65 34,739 2.87
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Table 2: Age characteristics of the test forests. (Data in bold represent the area of mature
forest given the minimum mature age we chose for the experiment.)

Problem
Relative forest area in age class (%)

0-20 21-40 41-60 61-80 81-100 100+

Pack 41 27 2 20 2 8

Shulkell 0 23 18 49 10 0

El Dorado 25 1 0 0 0 74

NBCL5 16 15 18 32 15 4

Problem
Total forest area above age (ha)

70 yrs 80 yrs 90 yrs 100 yrs 120 yrs

Pack 501 211 147 147 138

Shulkell 1,539 449 75 18 0

El Dorado 15,612 15,612 15,612 15,612 0

NBCL5 17,457 12,046 6,510 3,253 356
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Table 3: Planning parameters for the computational experiment. (Minimum rotation age
and average ending age values differ by forest type in NBCL5.)

Problem Pack Shulkell El Dorado NBCL5

Planning horizon (P , yr) 7x5 5x5 5x5 4x10

Rotation age (Rk, yr) 45 40 40 40,50,60,70,80,100

Average ending age (ET , yr) 50 40 40 20,25,30,35,40,50

Fluctuation bounds (L-U) 0.9-1.2 0.85-1.15 0.85-1.15 0.8-1.3

Max. clearcut size (Amax, ha) 40.5 16.2 48.6 21

Min. patch size (Amin, ha) 30 20 40 40

Mature habitat (K, ha) 120 20 400 120

Min. mature age (T, yr) 80 90 100 120
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Table 4: Size and formulation characteristics of the temporal connectivity model variations

Model Clusters
Binary

Constraints
Total formula-

variables tion time (s)

P
ac

k
fo

re
st

Benchmark 3,971 5,753 40,183 164,080.9

TC.0 3,971 5,753 43,393 164,085.6

TC.1 3,971 5,753 42,321 164,092.1

TC.2 3,770 5,500 42,994 164,085.3

TC.1+2 3,770 5,500 42,990 164,092.5

S
h
u
lk

el
l

Benchmark 7,382 14,377 59,757 550.2

TC.0 7,382 14,377 61,101 572.5

TC.1 7,382 14,377 60,773 585.2

TC.2 649 7,010 52,643 549.8

TC.1+2 649 7,010 52,928 579.9

E
l

D
or

ad
o

Benchmark 100,570 113,694 160,645 1,505.1

TC.0 100,570 113,694 241,101 3,143.4

TC.1 100,570 113,694 213,065 2,646.9

TC.2 100,570 113,694 241,101 3,154.7

TC.1+2 100,570 113,694 213,065 2,983.4

N
B

C
L

5

Benchmark 4,676 28,745 182.1 183.8

TC.0 4,676 28,745 43,818 189.7

TC.1 4,676 28,745 43,543 186.3

TC.2 1,656 25,259 40,240 185.1

TC.1+2 1,656 25,259 40,020 184.4
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Figure 1: Age Discriminative Cluster Enumeration: f(EP , Amin) 7→ ΩP .
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mature patch in period 1 

mature stands in period 1 

mature patch in period 2 with temporal connectivity 

mature patch in period 2 without temporal connectivity 

mature stands in period 2 

Figure 2: Connectivity of mature patches over time. (The bold number in each polygon
represents the stand ID, the additional italic number in each highlighted polygon gives the
area of the stand in hectares. We used the map of WLC forest (data available in the FMOS
repository (FMOS – Forest Management Optimization Site, 2011)) to create this example.
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Figure 3: Difference between minimal covers and minimal clusters.
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Figure 4: Size and formulation characteristics of the temporal connectivity model variations
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