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A Voronoi tessellation based approach to generate hypothetical forest
landscapes
Gregor Passolt, Miranda J. Fix, and Sándor F. Tóth

Abstract:Optimizationmodels used for forest planning can be computationally complex and the demand for real forest data to
test them far exceeds the supply. As a result, hypothetical forest landscapes are often used, although their capacity to match the
characteristics of real forests is limited and they offer little control over important landscapemetrics such as average adjacency.
Using four landscape metrics that are believed to be relevant to the computational efficiency of forest harvest scheduling
models, we describe a new method for generating hypothetical landscapes of prespecified characterization. The new approach
produces landscapes based on Voronoi tessellation, created from points chosen by a combination of random point processes.
Through a series of multiple regressions, the proposed algorithm determines appropriate control parameters to ensure that the
output landscapewillmatch target characteristics within a given statistical tolerance andwith a predefined probability. The new
method can produce landscapes with a wide range of specifications, covering the characteristics of real forests and extending
into extreme cases unlikely to be encountered in reality. At the same time, the method provides greater flexibility and control
over the generated landscapes than previous methods.

Résumé : Les modèles d'optimisation utilisés pour la planification forestière peuvent nécessiter des calculs complexes et la
demande pour de vraies données forestières afin de les tester surpasse largement l'offre. Par conséquent, des paysages forestiers
hypothétiques sont souvent utilisés bien que leur capacité à reproduire les caractéristiques de vraies forêts soit limitée et qu'ils
offrent peu de contrôle sur les métriques importantes du paysage, telles que la contiguïtémoyenne. À l'aide de quatremétriques
du paysage considérées comme pertinentes pour l'efficacité des calculs de modèles de planification des coupes, nous décrivons
une nouvelle méthode pour générer des paysages hypothétiques dont les caractéristiques sont prédéterminées. La nouvelle
approche produit des paysages basés sur la tessallation Voronoi, créée à partir de points choisis par une combinaison de
processus ponctuels aléatoires. Au moyen d'une série de régressions multiples, l'algorithme proposé détermine les paramètres
de commande appropriés pour s'assurer que le paysage ainsi généré possèdera les caractéristiques cibles avec une tolérance
statistique donnée et une probabilité prédéterminée. La nouvelle méthode peut produire des paysages avec une vaste gamme de
spécifications qui correspondent aux caractéristiques de vraies forêts mais qui peuvent aussi représenter des cas extrêmes qui
ont peu de chances d'être rencontrés dans la réalité. Cette méthode offre en même temps une plus grande flexibilité et un
meilleur contrôle que les méthodes précédentes sur les paysages qui sont générés. [Traduit par la Rédaction]

Introduction
Spatial optimization is often used in forest management to

identify harvest plans that maximize timber revenues or other
objectives. Historically, timber production was the top priority,
but Tóth andMcDill (2009) showed thatmany objectives for forest
use, including recreational value, carbon sequestration, wildlife
habitat management, and watershed protection, can be consid-
ered jointly to develop management schemes that balance all of
these considerations and use the forest resources as efficiently as
possible. Forests are typically divided into management units to
give forest managers small, well-defined regions on which differ-
ent management actions can be carried out (Petroski 2006); such
actions could include diverse treatments such as thinning, cut-
ting, doing nothing, or developing recreational facilities. Optimi-
zation models are often required to find management schedules
for each unit extending for a given planning horizon, sometimes
close to a century in length, and subject to a variety of financial,
logistical, and environmental constraints.

Spatially explicit harvest scheduling models are typically clas-
sified based on the spatial constraints present in the problems
they are used to solve. One of the most common spatial restric-
tions are the adjacency or greenup constraints. These constraints

limit the size of contiguous clearcuts within a predefined time
period called greenup or exclusion period. Problems with adja-
cency constraints are divided into twomain types. Unit restriction
models (URMs) are for problems where no two adjacent manage-
ment units can be harvested within the greenup period because
the total area of any pair of adjacent units would exceed the
maximum allowable harvest opening size. Area restriction mod-
els (ARMs) are a generalization of the URM: adjacent units may be
harvested within the greenup period as long as their combined
area is less than the maximum clearcut size. Thus, in an ARM, the
area of each management unit must be taken into account to
determine whether a specific prescription (i.e., harvest regime) is
feasible (Murray 1999). ARMs are more difficult to formulate and
to solve to optimality.

Other classes of spatial harvest scheduling models include the
minimum patch size problem, which requires a given forest hab-
itat type, such as old-forest habitat, to occur in contiguous patches
of a certain minimum size (Rebain and McDill 2003). Spatial re-
strictions also arise in the related reserve selection literature. One
example is the connectivity problem (Önal and Briers 2006;
Conrad and Smith 2012) where the selected sites must be con-
nected by a network of other protected sites.
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The above models rely on complex systems of linear inequali-
ties and objective functions, called mathematical programs, to
ensure that the spatial restrictions are met. Forest analysts need
to test the models by using real or hypothetical forest data to see
if themodels are computationally feasible. Ideally, themodels are
tested on data sets covering a wide range of potential topologies
and geometries to understand the conditions under which they
perform well and, more importantly, under which they do not
perform well. Unfortunately, real forest data are in short supply
for proprietary and other reasons, often leaving hypothetical data
as the only option (e.g., McDill and Braze 2000; McDill et al. 2002;
Rebain andMcDill 2003; Constantino et al. 2008;McNaughton and
Ryan 2008). Moreover, the tools used to produce these hypotheti-
cal forests do not provide explicit control over most of the output
characteristics; thus, they limit the value of the computational
tests for new harvest scheduling models.

For the purposes of forest planningmodels, a forest landscape is
defined as a set of polygons representing the management units.
In a review of existing generators, Li et al. (2010) divided the exist-
ing algorithms by method. The two most promising candidates
were based on random graphs and Voronoi diagrams, but in their
current states, none of the existing methods meet the goals out-
lined above. Specifically, the ability to vary the output character-
istics in a controlled manner is absent. Next, we provide an
overview of the relative merits of existing methods.

Optimization models “see” a landscape as a table of adjacency
relations among management units and a list of corresponding
areas and other information pertinent to each unit. Thus, it is
natural to think of a forest landscape as a graph where manage-
ment units correspond to nodes and adjacencies are indicated by
edges, with a vector of areas mapped in correspondence with the
nodes. Associating other characteristics with the nodes, such as
initial age or road access, is a trivial addition. Under this abstrac-
tion, every possible landscape corresponds to a planar graph with
an area mapping. The generation of random graphs has been a
topic of significantmathematical research. Erdős and Rényi (1960)
analyzed the properties of random graphs created on the basis of
a specific degree (number of nodes) and then selecting a certain
number of edges uniformly from the set of all possible edges.
Unfortunately for this application, their results show that it is
unlikely for purely random graphs that have more than half as
many edges as nodes to be planar. This low upper bound on the
number of adjacencies for planarity would be a challenge for
following a random graph-based approach to generate hypothet-
ical forests.

Constantino et al. (2008) generated hypothetical forests in a
deterministic way by using as building blocks two specific graphs,
a four-node cycle denoted as “F-instance” and amore complicated
10-node graph called “G-instance”. Grids of F- and G-instances are
connected to each other, with each node having an assigned area.
This method gives good control over the number of management
units, but is in no way random. Topologically, there is little or no
difference between hypothetical landscapes of equal sizes con-
structed by this method. Many implementations of the ARM and
the URM problems exhibit improved computational performance
if supplemental information on specific subgraphs, like cycles or
cliques of certain sizes, are incorporated in them as inequalities
(e.g., Goycoolea et al. 2005). It is possible that a model implemen-
tation works very efficiently or inefficiently on a certain local
topology, so when hypothetical test forests are composed entirely
of repeating subgraphs carrying that specific topology (as in
Constantino et al. 2008), the evaluation of computational perfor-
mance could be biased. To control for such possibilities in testing
a model, some degree of randomness should be present in gener-
ated data.

TheMAKELANDprogramofMcDill and Braze (2000) operates by
first generating a set of random nodes and then connecting each
node to a given number of its nearest neighbors. These initial

nodes are placed randomly with an inhibition parameter, a min-
imum separation distance between the points. To create planar-
ity, the algorithm deletes intersecting lines until there are no
crossings, always deleting the line that has the most intersections
per unit length. The faces of the graph are taken as the forest
management units, and lines continue to be deleted until the
number of faces matches a user-defined level. This approach of-
fers control over the resulting adjacencies through two parame-
ters: the inhibition parameter governing point placement and the
connection parameter giving the number of connections per
point initially drawn. The authors note that a high inhibition
parameter “tends to create maps with a more even distribution of
polygon sizes.” In sum, theMAKELAND algorithm allows for some
control over area distribution, but not over vertex degree (average
number of adjacent units per unit) distribution.

Another hypothetical landscape-generating approach that
yields planar maps uses Voronoi tessellations or diagrams.
Voronoi diagrams (also called Thiessen polygons) are defined
based on a set of points, where a polygon for each point is created
enclosing all of the area that is closer to it than to any other point.
Voronoi diagrams have wide-ranging applications, such as behav-
ioral ecology, image compression, and cell biology (Du et al. 1999),
and algorithms for computing Voronoi diagrams are readily avail-
able. Barrett (1997) applied Voronoi tessellations to a related forest
management problem where the goal is to delineate the units
within a real, undivided forest. Others who used Voronoi dia-
grams include Wyszomirski and Weiner (2009) who looked at
crowding and competition in plants and found that the area dis-
tribution of the polygons was dependent on the level of clustering
in the initial points. As Li et al. (2010) pointed out, one problem
with the landscapes generated from Voronoi diagrams is that the
resulting polygons are always convex. Additionally, the corners of
the Voronoi polygons are formed by the intersection of three
boundaries, whereas corners of degree 4 (as would be formed by
two intersection lines) are common in landscapes that have been
divided into management units by humans. We show that these
limitations can be overcome in the initial point placement pro-
cess for Voronoi diagrams and in postprocessing the resulting
hypothetical landscape.

This paper describes the development of another Voronoi dia-
gram based algorithm, called rlandscape, that improves on the
existing methods. We identify four landscape characteristics
thought to affect the computational performance of harvest
scheduling models and present a procedure that allows tight user
control over these parameters. By drawing the initial points from
a mixture of four random distributions and editing the resulting
diagram, all of the known weaknesses of the Voronoi diagram
method are eliminated. We show that the range of landscape
characteristics provided by the newmethodmore than covers the
range of characteristics observed in real landscapes and in those
generated by MAKELAND. The ability to target characteristic
ranges is shown to work efficiently enough to quickly produce a
large number of landscapes with prespecified characteristics.

Methods
We start with a description of the metrics we will use to char-

acterize a landscape and then detail the point processes used to
create Voronoi tessellations. A description of postprocessing to
allow for polygon nonconvexity is next. Finally, we describe the
modeling performed to relate input parameters and output char-
acteristics through the stochastic landscape creation process.

Choosing metrics
The number of polygons, area distribution, and degree distribu-

tion are the primary landscape characteristics that have been
shown to affect the computational complexity of harvest sched-
uling models (see McDill and Braze 2000; Constantino et al. 2008;
Tóth et al. 2012). Presented below are the metrics used to describe
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the area and degree distributions. Taken together, all of these
metrics define what we refer to as the characteristics of a given
landscape.

Number of management units (n)
There is a strong agreement among researchers that the num-

ber of management units (n) in a spatial forest planning problem
has a large impact on the computational properties of harvest
scheduling models. While many argue that a larger number of
units makes the problems harder to solve (e.g., Goycoolea et al.
2005), some of the empirical evidence ismixed in this regard (Tóth
et al. 2012). Our proposed landscape generator will allow the user
to control for this metric.

Management unit area (CV)
The second landscape characteristic that we use in our pro-

posed Voronoi approach is total forest area or average manage-
ment unit area. It is important to emphasize that for a
hypothetical landscape, total forest area (or average unit area) can
be set post hoc without affecting the geometry of the landscape.
This is because the distance units used are arbitrary. However,
the distribution of area among the polygons is also important. The
difference between the ARMs and URMs introduced above is the
size of management units relative to the maximum allowable
contiguous harvest area (Murray 1999), and the solution methods
of the much more difficult ARM problems usually involve group-
ings of small polygons (Goycoolea et al. 2005; Önal and Briers
2006; McNaughton and Ryan 2008). Thus, we need to consider a
measure of the spread of the distribution of areas. Standard devi-
ation is a poor choice because in a hypothetical landscape, the
units of standard deviation are just as arbitrary as the units of
area. The mean polygon area, and thus the standard deviation as
well, will vary significantly with both the number of polygons and
the area of the total landscape, which would prevent comparisons
between landscapes; thus, a relative measure is required. The co-
efficient of variation (CV) (defined as standard deviation divided
by mean times 100%) is an appropriate measure of the spread of
the area distribution because it is a standardized standard devia-
tion and allows for comparisons between forest landscapes, both
real and hypothetical, at any scale.

Vertex degree distribution (�d, �d)
Vertex degree (also known as degree) denotes the number of

management units adjacent to a given unit. Many believe that the
distribution of vertex degrees across the forest landscape has an
impact on the solvability of harvest scheduling models. As an
example, Tóth et al. (2012) argued that degree distribution directly
affects the extent to which some of the critical constraints used in
many ARMs can be strengthened for better computational perfor-
mance. This finding agrees with work done on even broader gen-
eralizations of similar graph theoretical problems that use
degrees extensively in bounding complexity and simplifying
problem formulation (Berman and Fürer 1994). Unlike area, the
degree distribution is scale invariant; thus the standard measures
of a distribution, mean and standard deviation, �d and �d, are
appropriate in this case. In spatially explicit harvest scheduling
models, both weak and strong notions of adjacency are used. Two
polygons areweakly adjacent if they share a finite number of points
(e.g., touching only at one corner) and are strongly adjacent when
they share an infinite number of points, i.e., they have a common
border (Goycoolea et al. 2005). In this study, we consider only the
strong adjacency type, and as a result, the hypothetical landscapes
generated will be equivalents of planar graphs, where each node
corresponds to a polygon and edges between nodes correspond to
a shared border. Bollobás (1998) gave a proof that in a planar graph
with n > 3 vertices, the maximum number of edges is e = 3n – 6.
Since each edge connects two vertices, the maximum average
degree is max(�d) = 2(3n – 6)/n = 6(n – 2)/n, which approaches 6 in

the limit as n approaches infinity. The lower bound on �d is de-
pendent on how connected the landscape is. Technically, �d

would be 0 if each polygon was completely isolated, but it ap-
proaches 2 for connected graphs. Our Voronoi tessellation based
method will not enforce full connectivity, as real forests often
contain disjoined regions.

In summary, the four landscape statistics that our proposed
landscape generator will have control over are the number of
units, n, coefficient of variation for unit area, CV, and mean and
standard deviation of vertex degree, �d and �d, respectively. Since
these metrics are readily calculated from typical forest data, adja-
cency and area tables, the outputs of the proposed generator can
easily be compared with real data. As a reference point, we calcu-
lated statistics for forests with adjacency tables or area tables
posted as public data on the University of New Brunswick's Inte-
grated Forest Management Lab website (http://www.unb.ca/
fredericton/forestry/research/ifmlab/index.html). Posted forests
were omitted only if they were hypothetical, and statistics de-
scribing the degree distribution were omitted if the published
adjacencies included weak adjacencies.

Generating a landscape
This section describes how a landscape is generated with the

proposed approach. First, points are chosen using a combination
of point processes, then a Voronoi diagram is created from the
points, and finally the diagram is edited to allow nonconvexity in
the polygons. Voronoi diagrams are well-established mathemati-
cal objects. Our contribution is in the use of point processes to
establish the initial points and in the editing algorithm per-
formed on the diagrams. These two critical steps in our method-
ology are described below in detail.

Point processes
Voronoi diagrams depend entirely on the points used to create

them; thus the selection of initial points is fundamental to the
creation of a hypothetical landscape. We used random point pro-
cesses, algorithms for creating random points. While many such
algorithms exist with various properties (see Baddeley and Turner
2005), we settled on the use of four point processes: random uni-
form, cluster, simple sequential inhibition, and the lattice grid
processes. Other processes were tried, but they were found to be
redundant relative to the four methods chosen and they often
produced landscapes with unpredictable characteristics. Explicit
control over some aspects of the landscape, such as the number of
units, is good to keep.

The baseline point process we used was the random uniform
process, where x and y coordinates are determined by indepen-
dent random draws from uniform distributions covering the fea-
sible x and y ranges. This approach offers no control over point
placement other than the bounds. The only control parameter for
this method is the number of points to place.

A clustering process, where groups of points are placed in small
groups, produces a landscape with high area CV because the poly-
gons near the centers' clusters tend to be small. Initial trials used
a Thomas clustering point process, where “parent” locations are
chosen uniformly randomly, and then a random number of
“child” points are created around each parent, with their displace-
ment from the parent points determined by a bivariate Gaussian
distribution. This introduced an unwanted level of variability in n,
as the numbers of both parent and child points were determined
by randomdraws from a Poisson distribution. Instead, we adapted
the method by making the number of points per cluster an ex-
plicit parameter rather than a random variable and calculating an
appropriate number of clusters based on the total number of
points to place while preserving the Gaussian displacement from
parent points.

To achieve the opposite extreme, i.e., landscapes with low area
CV, we introduced an inhibition process, where points are placed
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uniformly randomly but never within a certain inhibition distance
from another point. This produces a landscape with regularly
sized polygons. Higher inhibition distance results in more evenly
spaced points, which creates a more regular landscape, lowering
the CV of unit area. Setting the inhibition distance to 0makes this
method equivalent to the random uniform process, which allows
for clustering without actively creating clusters. This algorithm is
commonly known as the simple sequential inhibition (SSI) point pro-
cess (Baddeley and Turner 2005). McDill and Braze (2000) used a
similar point process in MAKELAND.

When comparing the polygons created from these three point
processes (uniform, cluster, and SSI) with the management unit
boundaries in real forests, the lack of right angles was striking. In
a Voronoi diagram based on points with coordinates drawn from
continuous distributions, all border corners will be adjacent to
three polygons, and there will be no weakly adjacent polygons.
The only way for the corner of a border to be adjacent to four (or
more) polygons is if it is equidistant from the four closest chosen
points, an event that has probability 0 in any point process with
continuous probability density. However, in actual landscapes
with borders delineated by humans, right-angle intersections are
not uncommon. By restricting point coordinates to a regular dis-
crete scale, orthogonal border intersections become possible. We
opted for the use of the lattice grid method that was specifically
designed to allow for right-angled intersections of polygon bor-
ders. The lattice grid method overlays a grid over the feasible area
and samples points from the lattice points of that grid. The num-
bers of horizontal and vertical grid lines are control parameters.
In addition to right angles, this method tends to produce horizon-
tal and vertical borders, reminiscent of how a forester might di-
vide a forest section into management units in the absence of
natural breaks. The lattice gridmethodworks in conjunctionwith
other processes to mimic a landscape that has natural breaks in
management units as well as some imposed artificial boundaries.

The proposed landscape generator allows the use of the four-
point processes outlined above both individually or in any combi-
nation. Figure 1 shows examples of Voronoi tessellations resulting
from points used by each of the point processes individually. Us-
ing amixture of these point processes allows for greater flexibility
in the characteristics of the output landscape.

Editing the Voronoi tessellation
Landscapes produced by Voronoi tessellations have certain spa-

tial properties that do not apply to real landscapes. While right
angles of boundary intersections are imposed by using the lattice
point process, additional differences remain. First, Voronoi land-
scapes are completely connected with no gaps or holes. Second,
the resulting polygons are strictly convex. Since such restrictions
are not present in real forest configurations, we edit the polygons
of the Voronoi tessellation.

Polygon deletion creates holes in the landscape and opens the
possibility of a disconnected forest, which occurs in real forests
when a river or road cuts through the region. The final patchiness
of the landscape is controlled by parameter pH denoting the pro-
portion of the polygons in the final landscape that are classified as
holes. Deleted polygons that become holes in the final landscape
are omitted from the calculation of other landscape statistics.
Polygons are selected for deletion randomly with no preference
given for size or adjacencies. When a polygon is deleted, the ver-
tex degrees of all of its neighbors decrease by 1, effectively lower-
ing the degree mean. The effects of polygon deletions on �d and
area CV are negligible.

We address the convexity issue in a similar way: by deleting
borders between two polygons and merging them into one. As in
polygon deletion, a control parameter pM is defined to denote the
proportion of polygons in the final landscape that are products of
merges. Borders are selected for deletion with uniform probabil-
ity, thereby merging the polygons they had been separating.

Merging is more complicated than simply deleting polygons be-
cause it is possible that more edges than those selected must be
deleted for a merge to occur. For example, if polygon A is merged
with polygon B, and B with C, the adjacencies must be checked so
that if there is a border between A and C, it is also deleted. Both
deleting and merging reduces the number of polygons; thus the
number of points chosen initially, ntot, is inflated from the target
n so that the expected value of n for the final landscape matches
the target after merges and deletions. For both edge and polygon
deletion, the number of deletions is not random; it is determined
explicitly from the control parameter. Only the selection of which
item to delete is random. However, the nature of the merging
prevents precise knowledge of the output n, as we cannot tell a
priori (continuing the above example) whether the border be-
tween A and C will also be selected for deletion or if it must be
deleted afterwards in the cleanup phase. Thus, merging intro-
duces some randomness with respect to the final n.

Control
The previous section described how the new method creates

landscapes; this section describes our method for producing land-
scapes with prespecified characteristics. While the proposed
Voronoi tessellation algorithm is highly stochastic due to the
many random processes used, the control parameters that are
inputs for landscape creation are related to the characteristics of
the output landscape. The control parameters relating to point
processes are the proportion of points to be placed by each
method, punif, pclust, pSSI, and plat (subject to the constraint that
punif + pclust + pSSI + plat = 1), the number of horizontal and vertical
gridlines for the latticemethod, the inhibition distance for the SSI
method, and the number of points per cluster and cluster spread
for the cluster method. Control parameters not corresponding to
point placement are the two editing parameters pH and pM, which
set the proportion of polygons in the final landscape that are
deleted or are the result of merging, respectively. As an example,
a value of 0.5 for pH instructs the algorithm to delete half of the
polygons, while the same value for pM instructs the algorithm to
delete half of the common boundaries between polygons. The
numbers of deletions and merges are determined exactly (rather
than randomly with uniform probabilities pH and pM) to keep the
variance of n small. The last control parameter is the horizontal to
vertical aspect ratio of the entire landscape, a.

Extensive simulations were run to generate data fromwhichwe
could learn how to choose control parameter values with a high
probability of generating landscape of specified characteristics.
(Data generation is described in the next section.) We considered
three options for determining appropriate control parameter val-
ues from landscape characteristics. Two involvemodeling explicit
relationships: parametrically using linear models or nonpara-
metrically using generalized additive models (GAMs). The third is
to estimate the distributions of control parameters for specific
landscape characteristics through a Monte Carlo simulation with-
out making any assumptions or inferences about the relation-
ships between the two. The third distribution-based approach has
one major drawback: to provide good estimates, it relies on re-
peatedly estimatingmultivariate distributions, which, depending
on the amount of data used, could be computationally expensive
and rely on constant access to a large amount of data. In the
modeling approach, relationships are determined from data that
can then be discarded; subsequent evaluations is as easy as evalu-
ating an expression. Given these considerations, we decided to
start with the linear model approach.

Generating data
Preliminary analysis revealed that CV is strongly dependent on

the point processes used, with the inhibition and lattice methods
lowering CV and the cluster method elevating CV. Thus, to serve
as a baseline, we simulated 500 landscapes using only the uniform

Pagination not final/Pagination non finale

4 Can. J. For. Res. Vol. 43, 2013

Published by NRC Research Press

F1

rich2/cjr-cjfr/cjr-cjfr/cjr99912/cjr0026d12z xppws S�1 1/14/13 22:01 Art: cjfr-2012-0265 Input-1st disk, 2nd ??



method (punif = 1) allowing pH, pM, and a to vary uniformly ran-
domly (with pH and pM bounded above by 0.8 and a restricted
between 1 and 5). Then, for each other point process, 50 000 land-
scapes were generated with points placed by a randommixture of

that process and the uniform point process, with the mixing pro-
portion varying from 0 to 1. Other parameters were varied uni-
formly randomly as above, except for some of the point process
related control parameters that were given scale-dependent de-

Fig. 1. Sample Voronoi tessellations of 100 polygons created using each of the four point processes. The locations of the initial points are
marked with circles. Visually, the difference in area distributions is readily apparent: the lattice and inhibition methods produce regularly
sized cells, the uniform method produces more variation, and the clustering method produces very high area variation. Also evident are the
right angles and intersections of more than three borders produced exclusively by the lattice grid method.

Table 1. Summary of parameters used in modeling.

Landscape characteristics
n Number of management units in the final landscape
CV Coefficient of variation of the area distribution of the management units
�d Mean of the management unit adjacency degree distribution
�d Standard deviation of the management unit adjacency degree distribution

Control parameters
ntot Total number of points to be generated in the random point patterns
a Horizontal to vertical aspect ratio of the rectangle that the landscape is generated in. Specified or drawn

randomly; used only as a predictor in the modeling process
punif, pclust, plat, pSSI Proportions of points in the pattern generated by each method (must sum to 1)
pH “Hole fraction”, the proportion of polygons deleted from the initial tessellation
pM “Merge fraction”, the proportion of edges (postpolygon deletion) deleted from the tessellation
� Spread of points in the cluster method, i.e., the standard deviation of the isotropic Gaussian distribution

of offspring points about their parents

Note: The landscape characteristics, along with a, are always independent predictors, while the control parameters are treated as dependent.
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faults (described below). These data formed the bases for sequen-
tial regressions to find each necessary model parameter based on
the specified landscape characteristics.

To deal with bounding issues and to reduce dimensionality, we
set default values for some of the point process related control
parameters. This is necessary because the possible ranges for
these variables depend on area (determined by a) and the number
of points to place. For example, if the inhibition distance is set too
high, it will be impossible to place enough points, and number of
possible points placed by the lattice method is clearly limited by
the total number of lattice points. To avoid confounding, in these
two cases, we selected default values for the point process related
control parameters, excepting the number of points placed by
each method. The inhibition distance is set at 0.639�a/ntotpSSI,
where a is the horizontal to vertical aspect ratio of the entire

landscape and ntotpSSI is the number of points to be placed by the
SSI method. This value was selected because in simulations at-
tempting to place between 50, 100, 300, 500, and 1000 points
in unit area with increasing inhibition distances, with each
point−distance pair replicated 100 times, this was the (approxi-
mate) largest distance that resulted in all of the points being
placed. For the lattice method, the number of horizontal and
vertical grid lines, h and v, respectively, are set to defaults given by
h� >�ntotplat/a? and v� >�ntotplat × a?, theminimumvalues such
that h� ≥ ntotplat with the number of horizontal and vertical seg-
ments corresponding to the aspect ratio of the landscape. In the
clustering process, preliminary results initially tended to increase
the number of points per cluster to absurdly high levels when the
CV was higher than average (often on the order of 50 points per

Fig. 2. This flowchart shows the approach taken to produce hypothetical forest landscapes with statistics that meet input criteria. The right
column shows the flow of the rlandscape program, which generates a single landscape by editing a Voronoi tessellation created from points
chosen using a mixture of random point processes. The left flow chart shows how the wrapper program rland estimates parameters for
rlandscape based on input landscape statistics, tests the output for compliance, and saves a summary of the results when the run is complete
(or aborts if a maximum allowable failure rate is exceeded).
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cluster, which results in polygons of near 0 area at the cluster
center). To prevent this, the default number of points per cluster
is set to 5, with the spread left to be determined from the required
landscape characteristics.

Modeling relationships
From a cause−effect viewpoint, it is the landscape characteris-

tics that depend on the control parameters. However, to find ap-
propriate control parameters, we turn that relationship on its
head and use the characteristics as predictors in the linearmodels
and the control parameters as responses. See Table 1 for a sum-
mary of the parameters involved. Due to the difficulties of param-
eter and transformation selection in multivariate multiple
regression, our strategy was to perform a series of sequential re-
gressions beginning with a single control parameter as a response
and all of the characteristics as predictors and then take each
successive control parameter in turn, adding previously esti-
mated parameters to the set of predictors. The exception is the
aspect ratio a. Values of a that are not extreme (say a < 10) do not
restrict the possible landscape characteristics, so rather than se-
lect an a, we ask the user to specify a value or range of values from
which an aspect ratio will be drawn randomly. If an extreme value
of a is desired, then this can also be specified. Also, as the mixing

proportions for the point processes must sum to 1, selecting val-
ues for three of them determines the last.

From N simulations, we have k vectors of predictors, one for
each landscape characteristic (and one for the aspect ratio), x1, . . .,
xk, each vector of length N, and a similar set ofm vectors of control
parameters, y1, . . ., ym. We then fit a linearmodel, with interaction
terms and a Box−Cox transformation of the response, as neces-
sary, to give ŷ1 � f1(x1,…,xk).

We selected candidate models using stepwise model selection
based on Bayesian information criterion (BIC). The Bayesian infor-
mation criterion was used rather than the Akaike information
criterion due to the large sample size. Parameter and interaction
term inclusion significance was evaluated using t tests. This pro-
cess was then repeated for y2 with the fitted values from f1, ŷ1
included in the set of predictors, and so on iteratively until all
control parameters were estimated.

Producing specified landscapes
Mass landscape creation with specific targets is handled by

two algorithms illustrated in Fig. 2. Both are implemented in R
(R Development Core Team 2011), making use of the Voronoi tes-
sellation function provided in the deldir package (Turner 2012).
We follow the naming convention of an “r” prefix to denote a

Fig. 3. Landscape statistics from 17 real forests (triangles), 20 landscapes generated by MAKELAND (open circles), and 500 landscapes
generated by rlandscape (shaded circles) with targets varying over the range of the real forest statistics. Landscapes generated by rlandscape
more than cover the characteristic space of the real forests. MAKELAND's output has somewhat varied �d, correlated with the small variation
in �d; however, in this output the MAKELAND CV is static. The real forests are those with publicly posted adjacencies and areas on the
University of New Brunswick's Integrated Forest Management Lab (http://ifmlab.for.unb.ca/fmos/datasets/).
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random generating function. The function rlandscape gener-
ates a single landscape from control parameters following the
steps in the “Generating a landscape” section above. The sec-
ond algorithm, rland, takes as inputs the number of landscapes
to be produced and the acceptable bounds for their character-
istics. It then picks specific targets for each landscape to be
generated and uses the pregenerated linear models to select
control parameters for these targets. Then, rland calls rland-
scape to generate landscapes, tests to see if their characteristics
are within bounds, and repeats this process until enough land-
scapes have been generated.

Testing
We have two goals to test. (1) Can rlandscape produce hypothet-

ical landscapes with similar characteristics to actual forests? (2)
Can rland select control parameters to meet specified character-
istics? To test the first goal, we calculated characteristic statistics
for landscapes with publicly posted adjacencies and areas on the
University of New Brunswick's Integrated Forest Management
Lab's website (http://ifmlab.for.unb.ca/fmos/datasets/). We then
simulated 500 landscapes using rlandscape with control parame-
ters varying randomly (the mixing proportions chosen uniformly
between 0 and 1, then normalized, n between 20 and 1000, a
between 1 and 5, and the individual point process parameters
chosen from their feasible ranges). We also compared this output
with landscapes created by MAKELAND. To test the efficiency, we
recorded the number of tries needed and required time to pro-
duce 500 landscapes under a variety of specifications. All simula-
tions were run on a 2.4 GHz Intel Core 2 Duo Macintosh with 6 GB
of RAM.

Results and discussion

Comparison with real forests
The results of the range test are shown in Fig. 3, along with the

characteristics of 20 landscapes produced by MAKELAND. The fig-

ure makes clear that rlandscape exceeds the ranges seen in these
real forests, whereas MAKELAND is constrained in both area CV
and �d.

Timing
Figure 4 shows the relationship between run time and the num-

ber of polygons in a landscape. Run time increases approximately
linearly with n (at least for n < 700) with a large part of the varia-
tion explained by pH and pM. This is because they effectively in-
crease the number of initial points placed and polygons that must
be generated, e.g., a 100-polygon landscape with no holes or
merges is 100 polygons pre- and postedit, but if pH = 0.5, then 200
polygons must be generated so that 100 remain after 50% are
deleted in the edit step, which takes longer to run. As imple-
mented, we have successfully created landscapes of up to 10 000
polygons (see Fig. 5). Capable of producing 1000-polygon land-
scapes in under 10 s, rlandscape works efficiently enough to be a
practical landscape generator.

Control
Some of the relationships between control parameters and

landscape characteristics can be readily intuited. For example,
when a polygon is deleted, the vertex degrees of its neighbors all
decrease by 1. As a result, �d will also decrease (Fig. 6). As another
example, the choice of point processes has a strong effect on the
area CV as demonstrated clearly in Fig. 7.

Based on the baseline simulations, the random uniform point
process produces landscapes with a distribution of CV with mean
56.1 and standard deviation 5.8 when no other point processes are
used. We use this mean of the CV distribution as a “spline point”
in regressions, fitting different models on either side to increase
the proportion of cluster points if CV >56.1 or to increase the
proportion of lattice and SSI points if CV <56.1.

As an example of the modeling results, the model for plat in the
low-CV case is presented below. The proportion point process

Fig. 4. Run time to produce a single landscape is plotted against the total number of polygons in that landscape, with shading showing the
product of the hole proportion and merge proportion terms for about 45 000 simulations.
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parameters are the first estimated parameters, so they depend
only on the characteristics; however, once they are estimated,
they are added in as predictors for estimating the remaining
parameters:

[1]
plat
2.6 � �0��1CV��2�d��3�d��4a��5CV�d��6CV�d

��7�d�d��8aCV��9a�d��10a�d��11CV�d�d

��12aCV�d��13aCV�d��14a�d�d��15aCV�d�d

The �'s from the above model are all significant at the 0.001
level, and the 2.6 power transformation of plat was determined by
a Box−Cox test. The fitted coefficients are presented in Table 2.
This particular regression is unusual in that the aspect ratio is
significant; it is insignificant for all of the other parameters. This
is understandable because the geometry of the lattice grid de-
pends on the aspect ratio, while all of the other point processes
ignore it. The next sequential regression, for pH, adds plat to the
pool of predictors. We apply a similar series of multiple regres-
sions to determine appropriate parameters for the high-CV case.

Meeting specifications
There is appreciable stochasticity built into rlandscape. To

show this, 2000 landscapes of 100 polygons were generated using

identical control parameters. The characteristics of the resulting
landscapes were roughly normally distributed (summary statis-
tics in Table 3). However, the regression methods are effective in
selecting control parameters to produce acceptable landscapes.
Some results of the efficiency tests are shown in Fig. 8. For com-
mon characteristic values overlapping with observations of real
forests, the efficiencies tend to be above 50%. At the extreme
values of the ranges, there is higher variability, which results in
lower success rates. This is particularly apparent in the case of
high CV; however, the steep increases in time needed occur beyond
the range of CV exhibited in real landscapes. High values of �d re-
quiremany tries, but as pH and pM remain very low in these cases, the
run time remains relatively short. Placing specifications onmultiple
characteristics compounds the efficiency reductions, typically result-
ing in efficiencies of between 10% and 20%. The parameter picking
algorithm is calibrated forproducing intermediate values efficiently;
however, it could be adjusted to evaluate the specifications and
change methods if they are outside certain thresholds.

Conclusions
We presented an article that accomplished two goals. First, we

described a Voronoi tessellation based method that can produce
varied, realistic forest landscapes. Second, we showed that the

Fig. 5. A landscape with 10 000 polygons, 25% placed by each point process. For this landscape, �d = 5.4, �d = 1.6, and CV = 42.9. This
landscape took 199 s to generate. Black polygons indicate management units that have been deleted. Deleted edges are not printed at all.
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new method can produce landscapes en masse with targeted spa-
tial characteristics. The success of the first goal is demonstrated in
Fig. 3, which shows that rlandscape output well covers the ranges
of characteristics observed in real forests and beyond. The bench-
marking shown in Fig. 8 suggests that rlandscape is viable for
generating data sets of any feasible set of characteristics. The
algorithms developed here have been uploaded as a package,
rlandscape, to the Comprehensive R Archive Network (CRAN) and
are available at http://cran.r-project.org/web/packages/rlandscape/
index.html.

While we hope that rlandscape will be useful for a variety of
forest planning or reserve selection applications, several modifi-
cations can be made to the proposed algorithm to enhance its
utility. Incorporating support for weak adjacency constraints, as

an example, could increase the set of optimization models that
the output landscapes could test. Other modifications could alter
the polygon deletion and merging processes to better mimic real
forests or to improve fine control of the landscape characteristics.
While we view the current, purely random implementation of
these processes as an advantage, spatially correlating deletion
probabilities could simulate discontinuities present in actual for-
ests, like rivers and roads. Alternatively, the deletions andmerges
could target polygons that are outliers in degree or area to reduce
or increase variability, which in turn would improve efficiency
and precision in producing landscapes of targeted characteristics
at the expense of randomness.

One caveat is that, due to the stochasticity, rland can have trou-
ble mimicking regular landscapes. For example, some real forests

Fig. 6. This figure shows how hole proportion can lower the degree mean of forest landscapes. Loess-smoothed degree means (�d) from
20 000 simulations are plotted in the top graph with sample landscapes below. The order of the lines in the top graph, from top to bottom, is
uniform, cluster, SSI, and lattice. This ordering is consistent throughout the domain, with landscapes generated using the lattice method
having noticeably lower degree means than landscapes generated from other point processes. This example uses landscapes generated using
each point process exclusively to highlight the differences between them. In practice, landscapes will generally use a mixture of point
processes. The shaded filled polygons indicate management units that have been deleted during the editing process.
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are divided into equally sized stands such that the area CV = 0.
Bypassing rland's automatic parameter selection, an intelligent
human user can use rlandscape to mimic such a landscape by
exclusive use of the lattice point process, which will drastically
reduce the flexibility of the characteristic space — and care must
be taken to specify appropriate control parameters. As a way
around this, areas could be assigned post hoc using only the adja-
cencies from the generated landscape. The downside of this ap-
proach would be the lack of visual representation of the
landscape. The current regression methods for choosing control
parameters are sufficient, but using GAMs might yield more ro-
bust fits resulting in greater efficiency for producing landscapes
of prespecified characteristics. For highly irregular landscapes,
such as might occur in riparian areas or at a site with other geo-

Fig. 7. An example of a pairs plot showing the relationship between pairs of variables. This particular plot demonstrates that the area CV
statistic (examining the left column of plots) is strongly related to the cluster parameters. The correlation coefficients are displayed in the
upper right half of the figure.

Table 2. Coefficients for estimating plat.

Index Parameter
Coefficient
(� value)

0 Intercept 0.00189
1 CV 0.02423
2 �d 0.34489
3 �d 0.79758
4 a −0.12852
5 CV×�d −0.01221
6 CV×�d −0.02720
7 �d×�d −0.21347
8 a×CV 0.00476
9 a×�d 0.03068
10 a×�d 0.08906
11 a×�d×�d 0.00693
12 a×CV×�d −0.00092
13 a×CV×�d −0.00330
14 a×�d×�d −0.01927
15 a×CV×�d×�d 0.00066

Note: The predictors are not normalized, so the
ranges of predictors must be considered when deter-
mining effect size. For example, CV usually ranges from
30 to 150, whereas �d ranges between 3 and 6, so the
0.024 coefficient for CV has a greater effect than the
0.345 for �d.

Table 3. Resulting statistics of 2000 landscapes of
about 100 polygons each created by giving rland-
scape the same input parameters.

Characteristic Mean SD

�d 4.86 0.11
�d 1.64 0.12
CV 69.1 8.0

Note:Not shown is the output n: of the 2000 trials, 1958
have n = 100 and the range is from 97 to 101.
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graphic features influencing the delineation of land into manage-
ment units, we encourage users to again bypass rland and
experiment selecting their own control parameters for rland-
scape. Using the cluster process and adjusting the cluster spread
toward 0 can result in landscapes with arbitrarily large CV, while
values of pH and pM that are closer to 1 produce patchy landscapes
with some very oddly shaped management units. While rland-
scape can produce unconnected landscapes if pH is high enough,
users can construct their own by combining two or more smaller
connected landscapes. Thesemethods can produce a broad variety
of landscapes, which we hope will be fully explored.
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