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Abstract:   Reserve site selection models can be enhanced by including habitat conditions that 15 

populations need for food, shelter, and reproduction.  We present a new population protection 16 

function that determines whether minimum areas of land with desired habitat features are present 17 

within the desired spatial conditions in the protected sites.  Embedding the protection function as 18 

a constraint in reserve site selection models provides a way to select sets of sites that satisfy 19 

these habitat requirements.  We illustrate the mechanics and the flexibility of the protection 20 

function by embedding it in two linear-integer programming models for reserve site selection 21 

and applying the models to a case study of Myotis bat conservation on Lopez Island, United 22 

States. The models capture high-resolution, species-specific habitat requirements that are critical 23 

for Myotis persistence.  The models help quantify the increasing marginal costs of protecting 24 

Myotis habitat and show that optimal site selection strategies are sensitive to the relative 25 

importance of habitat requirements.  26 

 27 
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1. Introduction: 29 

Conservation planners make land use and management decisions to ensure the long term 30 

viability of species and ecosystems (Margules and Pressey 2000).  One facet of conservation 31 

planning is the decision about which parcels of land to purchase or restore given budget limits 32 

(Moilanen 2005).  Many types of quantitative tools have been developed to address this reserve 33 

site selection problem (see Sarkar et al. 2006 or Moilanen et al. 2009 for reviews).   Integer 34 

programming formulations typically use number of species represented, number of times species 35 

are represented, reserve area, and measures of connectedness and fragmentation as criteria for 36 

site selection (e.g., ReVelle et al. 2002, Williams et al. 2004).  Most experts agree that these 37 

criteria are limited because they do not account for all the factors that affect the long-term 38 

viability of populations, including the amount, quality, and spatial arrangement of habitat 39 

features that species need to persist (e.g., Church et al. 2000, Sarkar et al. 2006).  40 

To address this limitation, we present a population protection function that can be used to 41 

represent habitat requirements in linear-integer formulations of reserve site selection models. The 42 

protection function is based on the assumption that every species has specific habitat 43 

requirements for food, shelter, and reproduction.  Further, these requirements can be expressed 44 

using measures of land cover and vegetation structure at the patch and landscape scales.  The 45 

protection function determines whether minimum areas of land with desired habitat features are 46 

present within desired spatial conditions in the protected sites.  We demonstrate how the 47 

protection function can be embedded as a constraint in two types of reserve site selection models.   48 

In both cases, a set of sites that meets all of the habitat requirements for a given species must be 49 

contained in the reserve system for that species to be considered adequately protected.    50 
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The population protection function is akin to a habitat suitability index (HSI) model, a 51 

tool developed in the 1980s to evaluate wildlife habitat (U.S. Fish and Wildlife Service 1980, 52 

1981). HSI models express habitat quality on a suitability index scaled from zero to one based on 53 

functional relationships between species presence and habitat variables.  HSI models are widely 54 

used in forest planning simulation to evaluate trends in indicators of biodiversity (Marzluff et al. 55 

2002, Larson et al. 2004, Edenius and Mikusiński 2006, Spies et al. 2007).  They are also 56 

embedded in timber harvest scheduling models to determine the optimal timing and location of 57 

harvest areas while providing desired levels of landscape structure and composition associated 58 

with suitable wildlife habitat (Öhman et al. 2011). 59 

A few reserve site selection models include persistence-limiting factors based on habitat 60 

quality and location.  For example, Church et al. (2000) classify sites by habitat quality and 61 

assign weights to protecting species based on the levels of habitat quality that are available in the 62 

protected sites. The objective of the model is to maximize the weighted sum of species present. 63 

Malcolm and ReVelle (2002) and Williams et al. (2003) develop flyway models for migrating 64 

birds that identify sets of sites that are within a maximum distance of each other to facilitate 65 

migration. Miller et al. (2009) select parcels to restore and protect wetland habitat in agricultural 66 

landscapes surrounding core butterfly reserves.  Our population protection function provides a 67 

general framework for including habitat features and spatial conditions at the individual site and 68 

landscape scale in reserve site selection models.  This framework is useful at a time when the 69 

accumulation of knowledge about the needs and life history of sensitive species has reached 70 

unprecedented resolutions due to technological advances in remote sensing, wildlife tracking and 71 

statistical analyses (e.g., Barclay and Kurta 2007, Tomkiewicz et al. 2010, Cagnacci et al. 2010).  72 
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A few reserve site selection models directly optimize the likelihood of species presence 73 

or persistence as functions of habitat features of the candidate sites.  For example, Moilanen 74 

(2005) estimates the probability of species presence in each site as a nonlinear function of habitat 75 

quality in and around the site.  The reserve selection model minimizes the cost of protecting sites 76 

subject to a lower bound on the expected number of sites containing each species.  Polasky et al. 77 

(2008) predict species persistence in a landscape as a nonlinear function of habitat preferences, 78 

area requirements, and dispersal abilities in a given land use pattern.  They choose land uses to 79 

maximize the expected number of species sustained on the landscape subject to economic 80 

constraints.  While these models contain detailed relationships for the likelihood of species 81 

presence or persistence, they are nonlinear-integer formulations that require heuristic algorithms 82 

and custom software for solution.  Further, the solutions have no guarantee of optimality.  In 83 

contrast, our population protection function can be embedded in linear-integer programming 84 

formulations, for which exact solutions can be found using off-the-shelf commercial software 85 

such as ILOG CPLEX (IBM 2011).   86 

Lastly, we mention that in the facility location literature, problems with compound 87 

coverage requirements similar to that of the general species protection function depicted in this 88 

paper have been documented. Schilling et al. (1979) considered a fire protection system for the 89 

City of Baltimore, United States, where demand nodes were covered only if both primary and 90 

certain specialty fire fighting equipment were available. While the logical structure of Schilling 91 

et al.’s (1979) model was similar, the model proposed here is more general in that the coverage 92 

requirements are not restricted to be binary in nature. 93 

We first present our generalized population protection function and then demonstrate 94 

how it can be embedded in two types of reserve site selection models. We illustrate how the 95 
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model and the generalized protection function work in practice with a case study of protecting 96 

habitat for Myotis bats on Lopez Island, United States.  The models capture high-resolution, 97 

species-specific habitat requirements that are critical for species persistence.  We show how 98 

sensitive the set of optimal reserves might be to the relative importance of various habitat 99 

requirements. We conclude by discussing the flexibility and limitations of the proposed 100 

approach, and illustrate its compatibility with other spatial models. 101 

 102 

2. Methods: 103 

2.1. A generalized concept of protection 104 

In the following, we provide a general definition of our concept of protection to motivate 105 

the proposed mathematical programming models. The principles of representativeness and 106 

persistence advocated by Margules and Pressey (2000) imply that a species may be considered 107 

effectively protected only if at least one sustainable population is protected, indicating that a 108 

population is the unit of conservation concern. Accordingly, we define a population as a group of 109 

conspecific individuals occupying a particular place for a particular time. To distinguish one 110 

population from another, we assume that each population retains exclusive use of some resource, 111 

defining its particular place as distinct from other populations. 112 

Using terminology defined in Williams et al. (2005), a site refers to a single decision unit 113 

that can be selected or not, a reserve is a spatially cohesive (e.g., connected) set of sites selected 114 

together, and a reserve system is a set of reserves that makes up the solution to a reserve design 115 

problem. Let jK  be the set of distinct survival requirements for population j  of a given species, 116 

and let k  index set jK . Set jK  may vary between species, but will be the same for each 117 

population j  of a given species. For simplicity, we refer to jK as habitat requirements, although 118 
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it does not need to be restricted in practice since survival requirements other than habitat may 119 

include such factors as the availability of prey or the presence of reproductive males and females. 120 

Index k appears as a superscript throughout the mathematical notation in this paper to distinguish 121 

it from other indices. Lastly, I  denotes the set of sites where conservation action may be taken 122 

as part of creating a reserve system, and J denotes the set of populations that need and can 123 

receive protection. Let i  index set I and j  index set J . The proposed species specific population 124 

protection function, ( )jy x  is a continuous function that determines the amount of protection 125 

afforded to population j  in the reserve system: 126 

1( ) min
j k

j

k
j ij ikk K

i Sj

y x a x
m∈

∈

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ .     (1) 127 

Decision variable ix  is binary: 1ix =  if site i  is selected for protection, 0 otherwise. Parameters 128 

k
jm  and k

ija , respectively, are the minimum amount of habitat k  required by population j , and 129 

the amount of habitat k  available to population j  in location i . We note that this specification 130 

assumes that multiple populations (or species) can share commonly accessible resources without 131 

any foregone benefits. A discussion about the relaxation of this assumption is presented in the 132 

Conclusions. Set k
jS  denotes the resource locations that population j can use to satisfy its habitat 133 

requirement k . The summation term is thus the total amount of habitat k  available to 134 

population j . Dividing by the minimum amount that is required scales the sum so that values 135 

below one indicate under-protection, and values above one indicate that requirement k is met. 136 

The function ( )jy x , therefore, takes a value greater than one only if all habitat requirements 137 

( jK ) are satisfied for population j . The value of the function is strictly less than one if any one 138 

of the habitat requirements in jK is unsatisfied, indicating inadequate protection.  In the next 139 
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section, we show how this population protection function can be embedded in a linear-integer 140 

reserve site selection model. 141 

 142 

2.2. Model formulation 143 

Mathematical programming is a useful tool to design conservation reserves because of its 144 

flexibility to incorporate various conservation goals and because efficient, off-the shelf software 145 

is available to formulate and identify optimal solutions. Efficiency in optimization is particularly 146 

important when the number of possible conservation actions is high, and the constraints on these 147 

actions are complex. Mathematical programs comprise objective functions that represent 148 

quantitative goals, such as maximizing conservation benefits or minimizing costs, and 149 

inequalities that represent resource limitations or conservation requirements. An example of the 150 

latter in our context is the requirement for a population to be considered protected. Multi-151 

objective mathematical programs, including the two models presented below, can identify sets of 152 

solutions (i.e., reserves) that represent tradeoffs among the objectives. We embed the population 153 

protection function (Eq. 1) in two dual-objective programs to illustrate the tradeoff analyses that 154 

can be performed using our new concept of protection.  155 

The first model, the Generalized Maximal Covering Problem (GMCP) is as follows: 156 

j
J

Max y∑        (2) 157 

i i
i

Min c x∑        (3) 158 

Subject to: 159 

1           ,  
k
j

k
j ij i jk

i Sj

y a x k K j J
m ∈

≤ ∀ ∈ ∈∑     (4) 160 

, {0,1}                  ,i jx y i I j J∈ ∀ ∈ ∈     (5) 161 
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where ic  denotes the cost of taking conservation action in site i , jy  is a binary indicator of 162 

whether population j  is adequately protected in a particular solution and all other parameters are 163 

defined as for Function (1). Common conservation actions include the outright purchase of a site 164 

for conservation, the ecological restoration of a degraded site, and the acquisition of a 165 

conservation easement (Salafsky et al. 2008). Our proposed framework can include any or all of 166 

these options as long as the associated costs and benefits are known. For a discussion of the costs 167 

of alternative conservation actions, see Naidoo et al. (2006). Other facility or species coverage 168 

models with budget constraints include Church and Davis (1992) and Ando et al. (1998). 169 

Objective function (2) maximizes the number of protected populations, while objective 170 

(3) minimizes the amount spent on protection. Constraint set (4) captures the meaning of the 171 

population protection function (1).  In Equation (1), the function ( )jy x takes a value greater than 172 

one only if all habitat requirements ( jK ) are satisfied for population j .  Because one constraint 173 

of form (4) is written for each survival requirement k, the 0-1 indicator variable yj can equal one 174 

only if all the habitat requirements ( jK ) are satisfied for population j , and 0jy =  wherever one 175 

or more of the habitat requirements are not satisfied.  Lastly, constraints (5) are the binary 176 

restrictions on the decision variables ix  and the indicator variables jy .  Since one of the 177 

objective functions maximizes the sum of jy ’s, these variables will take the largest values (0 or 178 

1) allowed by constraints (4).  179 

Fig. (1) illustrates the application of the GMCP to a population ( j ) of a hypothetical 180 

species in a model landscape. Suppose this particular species requires three habitat elements in 181 

varying amounts, k
jm (for k = 1, 2 and 3) to survive. Two of the habitat requirements, water (k = 182 

2), which is represented by light grey polygons in Fig. 1, and forage (k = 3), which is represented 183 
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by the dark grey polygons, may be shared between populations. Requirement k = 1 on the other 184 

hand is unique to each population. This unique element may represent a home site such as a den, 185 

a nest or a roost. Assume that this habitat element (black dot on Fig. 1) occurs only on Site 3 and 186 

that the other two habitat requirements must also be available within the home range of the 187 

species (dashed circle) for the population to survive. In this particular application, sets 1
kS  (for k 188 

= 1, 2 and 3) represent the sites within the population's home range where habitat element k 189 

occurs. Assuming that the amount of habitat that are available for each component in each of the 190 

five sites that overlap with the home range each exceed the corresponding minimum 191 

requirements 1
km ( k∀ ), there are two combination of sites, Sites 3 and 4, and Sites 3 and 7, that 192 

are minimally sufficient to satisfy the three protection constraints (4) for Population 1. 193 

Depending on whether Site 4 or 7 is less expensive, the single optimal solution to the dual-194 

objective program (2)-(5) is either {3,4} or {3,7}. 195 

In application of the GMCP, the scope of the model may be as broad as protecting global 196 

biodiversity, or as fine grain as providing a single species with adequate habitat to promote its 197 

persistence in a portion of its range. In the special case where (1) each population in set J  198 

represent a distinct species, (2) there is only one habitat requirement for each population 199 

( )i.e.,  1  jK j= ∀ , and (3) the minimum habitat requirements and the site-specific habitat 200 

availabilities are both unitary ( )i.e., 1    and 1 ,k k
j ijm j a i j= ∀ = ∀ , set jS  reduces to a presence-201 

absence vector for each species j  in the network, and constraint (4) reduces to  202 

       
j

j i
i S

y x j J
∈

≤ ∀ ∈∑ .     (6) 203 

Constraint set (6) is the most commonly used definition of protection in the reserve selection 204 

literature. Underhill (1994) first used this definition with the objective of minimizing the costs of 205 
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protection subject to the condition that each species is protected in the system at least once. 206 

Church et al. (1996) used the same definition of protection to address the complementary 207 

problem of maximizing the number of species in the system subject to a budget on site 208 

acquisitions. Williams et al. (2005) refer to these problems, respectively, as the Species Set 209 

Covering Problem (SSCP) and the Maximal Covering Species Problem (MCSP). We refer to 210 

Model (2)-(5) as the Generalized Maximal Covering Problem, in reference both to the embedded 211 

generalized protection function, and to the fact that the model may be used to design reserves for 212 

a single species as well as to conserve species diversity. 213 

The second model, the Generalized Maximal Protection Problem (GMPP), adds another 214 

level of sophistication to the proposed concept of protection by creating more differentiation in 215 

how the model rewards alternative conservation choices. The GMPP allows populations whose 216 

protection is already ensured to add value to the reserve system based on the amount by which 217 

their habitat requirements are met above the minimum. It also allows planners to distinguish 218 

between sufficient sets of sites by more than monetary criteria. 219 

 220 
            

k
j

k k
j ij i

k i S

Max w a x j J
∈

∀ ∈∑∑     (7) 221 

i i
i

Min c x∑        (8) 222 

Subject to: 223 

1           ,  
k
j

k
j ij i jk

i S

y a x k K j J
m ∈

≤ ∀ ∈ ∈∑     (9) 224 

                     
i

i j
j P

x y i I
∈

≤ ∀ ∈∑      (10) 225 

, {0,1}                  ,i jx y i I j J∈ ∀ ∈ ∈     (11) 226 
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where iP  is the set of populations to which site i can contribute protection, and k
jw  is a weighting 227 

constant representing the relative importance of each habitat requirement k for population j. 228 

The first objective function of the GMPP (7) maximizes the weighted sum of protection 229 

provided by the network for population j for each associated habitat requirement. One function 230 

of type (7) is written for each population in need of protection. Objective (8) and constraints (9) 231 

and (11) are identical to objective (3) and constraints (4) and (5) in the GMCP. Constraint set 232 

(10) is new; it allows xi to be 1, and thus contribute to the objective function value, if at least one 233 

population that has access to site i is protected. It is important to note that Constraint (10) allows 234 

site i to remain unprotected (i.e., xi = 0) even if the above condition holds if other sites can 235 

contribute the same amount of habitat for the protected populations at a lower price. Constraints 236 

(10) ensure that the model, in its attempt to maximize area-weighted protection, does not select 237 

parcels for acquisition if these parcel are inaccessible for the given population or species. 238 

The weights ( k
jw ) in objective (7) can capture several modeling concerns that might arise 239 

in practice. For example, suppose that for a given population j , habitat requirement 1 is an order 240 

of magnitude more important than habitat requirement 2. The weights 1 10jw = , 2 1jw =  tell the 241 

model that if one additional piece of land can be purchased (or restored), between equally priced 242 

choices of 1 ha of requirement 1 and 9 ha of requirement 2, the 1 ha of requirement 1 should be 243 

preferred (10 1 ha× > 1 9 ha× ). Another example where the weights could serve to parameterize 244 

the relative importance of different habitat types is the case of prey species with different energy 245 

transfer rates and/or abundances that vary by habitat. Lastly, the k
jw ’s may be used to indicate 246 

the relative importance of covering various species, where importance may be driven by such 247 

factors as perceived vulnerabilities. 248 
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Fig. 1 illustrates the application of GMPP to the same hypothetical population in the 249 

model landscape. The same two sets of sites (3 and 4, 3 and 7) are still minimally sufficient to 250 

satisfy the protection constraints for Population 1. As in the GMCP, the relative costs of those 251 

sites are an important driver of optimality.  However, the first objective function of GMPP (7) 252 

can distinguish between varying levels and types of protection. The pair of sites that provides the 253 

most protection depends on the weights associated with habitat elements 2 and 3. If the pair of 254 

sites 3 and 4 is less expensive and provides more protection, it will be strictly preferred 255 

(dominant) to the pair 3 and 7. If sites 3 and 7 provide more protection, however, the two 256 

solutions could each be efficient. Sites 3, 4, and 7 together may constitute a third efficient 257 

solution that is both more protective and more expensive than either of the first two solutions. 258 

It is also possible that conservation planners will wish to analyze the tradeoffs between 259 

weighted protection and the number of populations/species covered. In this case, a combined, 260 

three-objective model that appends the GMCP’s Objective (2) to the GMPP can be used to 261 

identify parcel selections that are Pareto-optimal with respect to costs, weighted protection and 262 

the number of species covered. 263 

In the next section, we illustrate the use of GMCP and GMPP in a case study, and 264 

highlight their advantages over current methods. We also demonstrate the benefits of the 265 

combined, three-objective model. The case study is suggestive of the benefits of reserve design 266 

models that can use the full power of habitat and species information that are available today. 267 

  268 

2.3. Case Study: Myotis bats on Lopez Island 269 

The 7721 ha Lopez Island is located in the San Juan Archipelago in northwestern 270 

Washington State (Fig. 2). It has a small, but growing population of human inhabitants (U.S. 271 
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Census 2010). The Island is heavily forested with 74.3% of the land area classified as private 272 

forest holdings (University of Washington Geographic Information Service 2007).  Conversion 273 

of forest lands to real estate development is a serious concern because of the island’s proximity 274 

to the Seattle metropolitan area and the availability of waterfront properties and other premium 275 

lots for sale (Tóth et al. 2011).  In 1992-2001 alone, the latest 10-year period for which data is 276 

currently available, private forest conversion occurred at an average annual rate of 4.88% in San 277 

Juan County (Bolsinger et al. 1997, Gray et al. 2005).   278 

Lopez Island is also home to seven species of conservation concern, five of which are 279 

bats: the Big Brown Bat (Eptesicus fuscus ) and four smaller Myotis species (Washington 280 

Department of Fish and Wildlife, 2010).  Resident bat populations are particularly vulnerable to 281 

habitat loss (Johnson and Gates 2008, Oprea et al. 2009).  One strategy to mitigate the problem is 282 

to retain lots that provide bat habitat by outright purchases or by acquiring conservation 283 

easements on the lots before they fall victim to development (Tóth et al. 2011). In our study, 284 

Lopez Island will serve to demonstrate the use of the proposed protection function, via the 285 

GMCP and GMPP models, to design reserves for bats. Without loss of generality, we focus on 286 

the four Myotis species. The protection of the Big Brown Bat and the two other listed species, the 287 

Bald Eagle (Haliaeetus leucocephalus) and the Peregrine Falcon (Falco peregrinus) would 288 

involve the same steps that follow in life history identification, data collection and model 289 

specification. 290 

2.3.1. Assumptions – Myotis life history and habitat requirements 291 

The four Myotis species on Lopez Island are the California Myotis (Myotis californicus), 292 

Western Long-Eared Myotis (Myotis evotis), Long-Legged Myotis (Myotis volans), and Yuma 293 

Myotis (Myotis yumanensis). Between the four species, life history traits are similar. All are 294 
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nocturnal, leaving their roosts at night to eat and drink.  As all bats must, the four species drink 295 

water at least nightly, from open water sources such as ponds, streams or stock tanks.  The 296 

Myotis bats feed mainly on insects, at times gleaning insects from water or other surfaces.  297 

Foraging is done over water sources, around trees and cliffs, in forest or woodland openings, or 298 

among shrubs—in places close to cover but without full canopy closure (Zeiner et al. 1988).   299 

During the day, Myotis bats roost in places with favorable temperature fluctuations and 300 

minimal wind including buildings, mines, caves, or crevices, spaces under bark, and snags 301 

(Zeiner et al. 1988). Males and non-reproductive females typically roost separately from 302 

reproductive females and young, either singly or in small groups, although the Long-Legged 303 

Myotis may be found in large colonies. Multiple species may be found roosting or feeding 304 

together.  Maternity roosts, which are generally found in warmer locations than other roosts, vary 305 

in size by species from 12-30 mothers and young (Long-Eared Myotis) to several thousand 306 

(Yuma Myotis).  Bats may make migrations to suitable hibernacula for the winter. Such 307 

migrations are necessary where day roosts are frequently disturbed, or lack the temperature and 308 

wind regulation necessary for hibernation. The preceding life history accounts are based on 309 

capture data from California and were confirmed for the northern end of the species range in 310 

British Columbia by Nagorsen and Brigham (1993). Four basic habitat requirements can be 311 

identified based on this information: open water, forage habitat, roosts, and hibernacula. 312 

Myotis bats primarily forage along forest edges with partially closed canopies (Grindal 313 

and Brigham 1999). We treat forage areas and water separately since water can also function as 314 

forage habitat but forage habitat cannot function as a water source (Thomas and West 1991). For 315 

this reason, we will assume in our models that water is more important for the bats than forage 316 

habitat. Since the relative importance of the two requirements is not known with accuracy, we 317 
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run sensitivity analyses. We assume that Myotis bats primarily roost in old houses and barns on 318 

Lopez Island and take water from nearby sources. We do not explicitly address the fourth habitat 319 

requirement, hibernacula, in the case study because Myotis bats can migrate long distances to 320 

find appropriate locations. 321 

Finally, a reserve design consideration that can affect species persistence is access to the 322 

various habitat elements. As bats can fly between portions of their home range, it is not 323 

necessary for their reserves to be structurally connected by shared boundaries. Bats can rely on 324 

functionally connected networks (Tischendorf  and Fahrig 2000a,b) that require only spatial 325 

proximity among the component reserves. In our case study, spatial proximity will be ensured by 326 

requiring that the habitat components can be reached from each roost (c.f. Williams et al. 2005). 327 

Beyond this, we do not explicitly address connectivity, functional or structural, of the reserve 328 

system by way of additional constraints. Implicitly, we assume that bats may migrate distances 329 

greater than the length of the island to find hibernacula, thus rendering the entire island 330 

functionally connected.  While there are arguments for disconnected reserves for bats due to the 331 

potential spread of white nose disease from the eastern United States (Frick et al. 2010), these 332 

concerns would therefore only become relevant for reserve design problems on a larger scale. 333 

Using these assumptions, we apply the GMCP to maximize the number of protected 334 

roosts, and the GMPP to maximize the importance-weighted area of habitat provided in the 335 

reserve system. We chose to apply both models in the case study to demonstrate two common 336 

conservation scenarios. In some cases, it may be more important to have many roosts with 337 

minimally sufficient protection, whereas in other cases protecting fewer roosts with more habitat 338 

resources could be more valuable. To analyze the tradeoffs among all three concerns of cost 339 

minimization, the maximization of weighted protection, and the maximization of the number of 340 
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protected roosts, we also solve a combined model that has three objectives: Eq. (2), (7), and (8) 341 

subject to the constraints of the GMPP: Ineq. (9)-(11). Our analyses demonstrate the utility of the 342 

proposed protection function to conservation planners, in terms of identifying robust 343 

conservation strategies. 344 

2.3.2. Parcel Data 345 

The Washington State Digital Parcel Database (WAGIS 2007) was used as a primary 346 

data source for the models. The database identifies each parcel on the Island (see Fig. 2) that is 347 

potentially available for conservation acquisitions. We focused on acquisitions only; 348 

conservation easements and ecological restorations were not considered as applicable 349 

alternatives in this case study. We also assumed that close to 100 specific parcels were safe from 350 

development. These parcels are currently either in conservation, agriculture or recreation 351 

ownerships, or are designated forestlands. A “forestland” designation is a beneficial tax status in 352 

Washington State for lands exclusively used for forest management. We used the National Land 353 

Cover Dataset (U.S. Geological Survey 2007) to estimate forest areas within each parcel, and 354 

selected a total of 1395 parcels (4913.48 ha) that were above 0.5 ha in size and contained at least 355 

0.25 ha of forest cover. We assumed that these parcels were all available for conservation at 356 

2007 market prices that were obtained from San Juan County assessors.  357 

2.3.3. Satellite Imagery 358 

ArcGIS World Imagery, a high-resolution (<1m for the United States) map service 359 

provided by Esri (2008), was used to delineate the three habitat elements required by Myotis 360 

bats. While for Lopez Island this was done manually using the graphical interface of ArcGIS 361 

(Esri 2009), automated pattern-recognition algorithms can be used for larger applications to 362 

speed up processing. We identified 44 possible roost sites in old barns spread across the Island. 363 
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Open freshwater sources and forest edges were delineated within 500m of each potential roost 364 

(Fig. 3). The choice of a 500 m range was based on expert opinion. 365 

2.3.4. Model Specifications 366 

For both GMCP and GMPP, we set I to be equal to the set of 1395 parcels identified as 367 

per the details in Section 2.3.2. Set J is populated by the 44 potential roost sites or populations. 368 

There are three habitat requirements { }1,2,3K = denoting water, forage, and roosts, respectively. 369 

While parameter 1
ija  represents the area of water, 2

ija  represents the area of forage available to 370 

roost j  in site i . The values of 1
ija  range from 0 to 2.55 ha per roost with a total of 30.38 ha for 371 

all roosts, and 2
ija  ranges from 0 to 28.49 ha per roost, with a total of 717.66 ha. Parameter 3

ija  is 372 

binary: it represents roost availability to population j  in site i . It is 1 if site i contains roost j, 0 373 

otherwise. 374 

In the GMPP, we start with weights of 10 for 1
jw  and 1 for 2

jw  indicating that water is an 375 

order of magnitude greater in importance than forage (Thomas and West 1991). We test the 376 

sensitivity of the solutions with respect to the relative importance of these two habitat 377 

components by varying 1
jw  between 1 (no difference in importance) and 100 (two orders of 378 

magnitude difference). Finally, 3
jw  is set to 0 for each j J∈ because no population or roost can be 379 

declared protected, as per constraints (9), unless the site that contains the roost is protected. Since 380 

3 3 1j ijm a= =  for each j J∈ and k
ji S∈ , constraint set (9) already guarantees that the importance of 381 

protecting roost sites is infinite relative to that of protecting water or forage habitat without 382 

including a specific weight for the roost in the objective function. The minimum habitat 383 

requirements for water and forage ( 1 2and  j jm m ) were both set to one m2 because Myotis bats are 384 
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able to drink from very small water surfaces (Christy and West 1993). To illustrate how the 385 

GMCP and GMPP can be combined to investigate the tradeoffs behind importance weighted 386 

protection, the number of protected roosts and acquisition costs, we solve model (2), (7)-(11) 387 

with 1 10.jw =  388 

We apply the GMCP, the GMPP, and the combined models to the Lopez Island parcel set 389 

to determine the optimal allocation of conservation funds to Myotis protection. As the precise 390 

amount of funds is unlikely to be known at the beginning of the conservation effort, we analyze 391 

the tradeoffs between protection and expenditure for a range of budgets (US$1M-40M) that 392 

represent both the “reasonably realistic”, the ”possible”, and everything in between. As an 393 

example of conservation effort, the San Juan Preservation Trust has protected over 5600 ha in the 394 

San Juan Archipelago since 1979. With a land price of $100,000/ha, this level of protection costs 395 

over $15M per year.   396 

We use specialized multi-objective mathematical programming techniques, the ε-397 

Constraining Method (Haimes et al. 1971) for the GMCP and the GMPP, and the Alpha-Delta 398 

Method (Tóth and McDill 2009) for the combined model, to find sets of parcel selections that are 399 

on the efficiency frontier with respect to acquisition costs and protection. A set of parcels is on 400 

the efficiency frontier if any change in the set does not improve either the acquisition cost or the 401 

protection function without compromising the other.  The sets of solutions on the efficiency 402 

frontier allow conservation planners to weigh the minimum costs of protection in a holistic and 403 

rigorous manner.  404 

The ε-Constraining Method, which was designed to solve discrete multi-objective 405 

programs like the GMCP, starts by optimizing one of the objectives of the program without 406 

regard to the other. We first maximize the number of roosts (Step 1). Then, using the maximum 407 
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number of roosts as a constraint, we minimized the costs to guarantee efficiency (Step 2). This 408 

leads to the first solution on the efficiency frontier. In Step 3, we maximize the number of roosts 409 

for a cost less than or equal to the cost of the first solution minus a small ε. To ensure that this 410 

solution achieves the maximum number of roosts at minimum cost, the ε-Constraining Method 411 

“turns around” the problem yet again (Step 4) and minimizes costs subject to the number of 412 

roosts that were possible in Step 3. The resulting solution will be the second on the efficiency 413 

frontier. To find the entire set, we repeat the four steps until the value of the roost maximizing 414 

function becomes zero. The resolution of the efficiency frontier can be controlled by parameter 415 

ε: smaller values allow more solutions to be detected at the price of extra computing time. We set 416 

ε to US$0.25M to provide sufficient detail for the dual objectives of the GMCP. Alternatives to 417 

ε-Constraining that could be used include the Alpha-Delta and the Tschebycheff Methods (Tóth 418 

et al. 2006). 419 

For the GMPP, we used a modified version of the ε-Constraining Method to account for 420 

the fact that, unlike the GMCP’s Function (2), the image of GMPP’s Function (7) is continuous 421 

for all practical purposes. Due to the high number of combinations of sites that can be acquired 422 

to contribute hectares of water and/or forage protection, the value of objective function (7) can 423 

closely map a continuum only restricted by budget constraints. Since the ε-Constraining Method 424 

was specifically designed to solve discrete optimization problems such as the GMCP, we used a 425 

slightly different approach for the GMPP and find a subset of solutions on the efficiency frontier 426 

in two steps. In the first step, we maximized Function (7) for a discrete set of budgets between 427 

US$1M and US$40M in US$1M increments. Then, using the maximum protections as 428 

constraints, we minimized the acquisition costs for each of the 40 solutions.  429 
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We note that there are other ways to solve dual-objective reserve site selection problems 430 

in which species or habitat coverage is traded off against total area or cost of selected sites.  431 

These methods include the constraint method in which species or habitat coverage is optimized 432 

for increasing levels of a budget constraint or the multi-objective weighting method in which a 433 

weighted sum of the objective functions is optimized for different values of the weight (e.g., 434 

Snyder et al. 2004).  We chose the ε-Constraining Method to ensure that solutions with a given 435 

maximum level of protection also minimize cost.  For problems like ours with discrete objective 436 

functions, there may be several solutions that provide the same level of protection with different 437 

levels of cost and this concern led us to use ε-Constraining Method, where the solutions that 438 

maximize protection are also checked and corrected for cost efficiency. 439 

For the three-objective, combined model, we use Tóth and McDill’s (2009) Alpha-Delta 440 

Algorithm that is specifically designed to enumerate Pareto-efficient (non-dominated) solutions 441 

for three or more objective integer programs. This algorithm assigns an inordinate amount of 442 

weight to one of the objectives and negligible weights to the others. Using this “slightly tilted” 443 

composite objective function (α accounts for the degree of the tilt), the Alpha-Delta Method 444 

systematically explores the objective space via either-or logical structures. The slightly tilted 445 

objective function ensures that only efficient solutions are selected. The three parameters of the 446 

algorithm, α and one δ for each of the two objectives that are assigned negligible weights in the 447 

composite objective function, are set to 1˚, 10 weighed hectares for the protection function and 448 

0.1 for the number of roosts, respectively. These settings are made to ensure an adequate but not 449 

excessively detailed coverage of the tradeoffs among the three objectives (see Fig. 8).  For 450 

further details on this algorithm, please see Tóth and McDill (2009).  451 
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MS Visual Basic was used to populate the proposed GMPP, GMCP, and combined 452 

models with the parcel data and IBM ILOG CPLEX Optimization Studio version 12.1 and 12.2 453 

were used to solve them. Execution time was not an issue because a solution to each 454 

optimization problem was found in seconds. 455 

 456 

3. Results: 457 

3.1. GMCP and GMPP model solutions 458 

The GMCP model identifies the parcels that will protect the greatest number of roosts for 459 

a range of budgets. Fig. 4 shows the efficiency frontier for the GMCP in terms of the number of 460 

protected Myotis roosts and acquisitions costs. The ε-Constraining Method found 44 solutions 461 

corresponding to the 1-44 roosts that can possibly be protected. The rightmost point on the curve 462 

represents the 44-roost solution that is available for US$21.5M.  Because we identified only 44 463 

roost sites, investments greater than this amount will not be helpful assuming that minimally 464 

sufficient protection guarantees the long-term persistence of the populations. The increasing 465 

slope of the efficiency frontier suggests that the marginal cost of protecting an additional Myotis 466 

roost on Lopez Island increases as the number of protected roosts increases. This finding is in 467 

agreement with similar patterns that have been documented in other environmental protection 468 

functions (e.g., Kushch et al. 2012).   469 

Fig. 5 (left) shows the map of the optimal reserve system under GMCP at US$10M. 470 

Thirty roosts can be protected with this budget by purchasing 36 sites (see solid black on Fig. 5). 471 

To contrast the two models, we also map a GMPP solution that is optimal for roughly the same 472 

US$10M budget. This solution provides 11.4 ha of water and 204.7 ha of forage habitat for only 473 

13 roosts, as opposed to the GMCP’s 30, through the purchase of 40 parcels. The tradeoff 474 
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between the GMCP and the GMPP solution is clear: the former supplies more roosts at 475 

minimally sufficient protection, whereas the latter supplies more protection for a lesser number 476 

of roosts. 477 

The efficient frontier for GMPP at 1 10jw =  is shown as a solid black curve on Fig. 6. This 478 

curve exhibits a similar, although not as pronounced, pattern of increasing marginal cost of 479 

Myotis roost protection as the GMCP. It is noteworthy that while the GMCP curve reaches its 480 

maximum level of protecting 44 roosts at about US$21.5, the GMPP requires US$140M to 481 

protect all 44 roosts. The graph on Fig. 6 only shows the solutions up to US$40M.  482 

 483 
3.2. Sensitivity analysis on relative habitat importance 484 

Fig. 6 shows the efficient frontier of GMPP solutions for values of 1
jw  between 1 and 485 

100. Because the value of 1
jw  changes the scale of the objective values, the horizontal axis of the 486 

chart measures the total area of protected water and forage habitat instead of importance-487 

weighed area. The solid line corresponds to the original parameterization ( 1 10jw = ), with lighter 488 

gray indicating the other frontiers. 489 

For values of 1 10jw < , greater total area is conserved in the optimal solutions. For values 490 

of 1 10jw > , a smaller total area is conserved, since additional area of water increases the value of 491 

the reserve system due to its higher relative weight. When 1
jw  is increased substantially, 492 

approaching two orders of magnitude greater than wj
2, there are some low budget levels for 493 

which the slope of the frontier is decreasing, meaning that after a relatively large initial 494 

investment, the next few protection increases can be made at lower marginal cost. The 495 

implication is that the optimal reserve systems and the efficient frontiers are sensitive to the 496 
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parameterization of 1
jw   – the relative importance of different habitat requirements. Fig. 7 497 

demonstrates that even relatively modest changes in 1
jw  can induce reserve networks that are 498 

dramatically different in terms of water and forage habitat. This suggests that having a good 499 

handle on the role of various habitat requirements for a given species can be very important to 500 

making optimal conservation decisions for at-risk populations. 501 

The preservation of “locally and regionally significant rare plant or animal habitats” is a 502 

priority of the San Juan Preservation Trust (http://www.sjpt.org/page.php?content_id=21). In the 503 

light of our findings, we recommend that the organization, along with others who have a stake in 504 

protecting open space on Lopez Island, invest in determining the relative benefits of the different 505 

habitat components that are associated with priority species, including Myotis bats. 506 

 507 
3.3. Sensitivity analysis on relative habitat importance 508 

Fig. 8 shows the set of non-dominated solutions that were found by the Alpha-Delta 509 

Algorithm (Tóth and McDill 2009) for the three-objective model that combined the objectives of 510 

both the GMPP and the GMCP. It is clear that if both the importance weighted protection and the 511 

number of protected roosts are to be maximized, the acquisition costs increase exponentially. 512 

The tradeoff surface in Fig. 8 allows the conservation planner to analyze the tradeoffs between 513 

weighted protection and costs at a given number of desired roosts. For example, if one wishes to 514 

preserve 20 roosts, 113.52 weighted hectares of protection can be achieved (3.56 ha of water and 515 

77.95 ha of forage) for US$4.82M, while 248.7 (8.8ha of water and 160.6 ha of forage) is 516 

possible for US$8.09M, and 395.88 (14.16 ha of water and 254.24 ha of forage) is possible for 517 

US$13.82M. Fig. 8 shows several additional compromise alternatives that are possible for 20 518 

roosts.  519 

 520 
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4. Conclusions: 521 

We introduce a scalable population protection function that can make use of increasingly 522 

available high-resolution, species-specific habitat data in reserve selection models. We embed 523 

the protection function in two mathematical-programming models which we call the General 524 

Maximal Covering Problem and the General Maximal Protection Problem. We illustrate the 525 

mechanics and the benefits of the new models in a case study of bat conservation.  The models 526 

help quantify the increasing marginal costs of protecting Myotis habitat and show that optimal 527 

site selection strategies are sensitive to the relative importance of habitat requirements. We also 528 

show how the two models can be combined to explore the tradeoffs among acquisition costs and 529 

both weighted protection and the number of protected roosts. 530 

We note that the protection function has the flexibility to relax existing habitat 531 

requirements or to allow the inclusion of other habitat requirements in reserve site selection 532 

models. As an example of the former, bat biologists are discussing whether and to what extent 533 

bats exhibit roost fidelity. Some suggest that fidelity is related to permanence of the roost 534 

structure, so that bats roost in buildings (e.g. barns) more consistently than they would in tree 535 

cavities or under bark (Barclay and Kurta 2007).  By relaxing the assumption that a bat 536 

population is associated with only one roost and instead identifying discrete segments of the 537 

landscape as supporting distinct populations, the model could easily reflect a different, perhaps 538 

more accurate understanding of roost fidelity. The protection function would simply require that 539 

a certain number of roost sites are protected within a specified distance, each of which could 540 

potentially serve as the actual roost for a given population. As an example of the latter, the 541 

logical structure of the protection function allows applications where the objects of conservation 542 

have different needs: it can assess such varied requirements as prey density, stream lengths, or 543 
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even stream lengths categorized by temperature gradients or stream order. It is also fully 544 

compatible with existing mathematical programming constructs such as those introduced by 545 

Önal and Briers (2006) for habitat connectivity, by Tóth et al. (2009) for habitat contiguity, or by 546 

Tóth and McDill (2008) for habitat compactness. 547 

One caveat is that the proposed models do not differentiate between the value of 548 

protecting one particular population versus another. Reproduction and survival rates can be 549 

different in different sites and allocating resources to protecting sink populations might not be the 550 

best conservation investment. A potential solution involves assigning different weights to the 551 

variables that indicate whether or not a particular population is adequately protected. 552 

Another limitation of the model is related to potential competition among populations or 553 

species for certain habitat resources. If competition exists, then the proposed models need to be 554 

modified to account for the carrying capacity of each site. If we assume that habitat component k 555 

in site i is evenly split among the populations (or species) that have access to the resource, then 556 

Constraints (4) and (9) could be modified as follows: 557 

 558 

\{ }

                     ,  
1k

j

i

k
ij ik

j j j
i S l

l P j

a x
y m k K j J

y∈
∈

≤ ∀ ∈ ∈
+∑ ∑

  (12) 559 

In Constraint (12), habitat component k that is available for population j from site i ( k
ija ) 560 

depends (endogenously) on the number of populations that are protected and have access to the 561 

resource on site i:
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+ ∑ . As an example, if there is one population with access to site i other 562 

than population j, and both site i and the other population are protected, then only half of k
ija  will 563 

be available for population j to satisfy k
jm  due to 
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1

i

l
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y
∈

+ ∑ being equal to 2. A critical issue 564 
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with Constraint set (12) is that there does not appear to be an obvious way to linearize the 565 

fractional term on the right-hand-side. This would leave the analyst with a non-linear integer 566 

programming problem whose optimization requires specialized software. A much simpler 567 

modification of Constraints (4) and (9) could assume that commonly accessible resources are 568 

available for only one population: 569 

\{ }

1            ,  
k

ij

k k
j j ij l i j

l P ji S

y m a y x k K j J
∈∈

⎛ ⎞
≤ − ∀ ∈ ∈⎜ ⎟

⎝ ⎠
∑ ∑   (13) 570 

Constraints (13) say that the contribution of site i to habitat component k for population j 571 

is zero if there is one more population (other than j) with access to site i that has been declared 572 

protected. Otherwise, the contribution equals k
ija . While the right-hand-side of Inequality (13) is 573 

non-linear, the linearization of cross-products between binary variables is trivial (Williams 1999, 574 

p164). Whether Construct (13) would be appropriate in a particular situation will depend on the 575 

species in need of protection. The computational study of the “competition” problem identified 576 

above could serve as the subject of future research. 577 
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Captions: 747 

Figure 1.  Schematic illustration of sites and habitat areas for a hypothetical species for 748 

application of the General Maximal Covering Problem (GMCP) and the General 749 

Maximal Protection Problem (GMPP). . Depending on whether Site 4 or Site 7 is the 750 

less expensive, the single optimal solution to the dual-objective GMCP either {3,4} or 751 

{3,7}.  For the GMPP, either Sites 3 and 4, 4 and 7, or the trio of 3, 4, and 7 is 752 

optimal depending on their costs and the relative importance of water vs. forage 753 

habitat. 754 

Figure 2. Lopez Island is situated in the Pacific Northwest United States roughly halfway 755 

between Seattle, Washington and Vancouver, Canada. A set of 1395 available land 756 

parcels have been identified as potential candidates for the Myotis reserve system. 757 

Figure 3.  Myotis habitat identification on Lopez Island using satellite imagery. Open water and 758 

forage habitat are shown within 500m of each potential roost site (old barns). 759 

Figure 4.   The efficient frontier for the general maximal covering problem applied to Myotis 760 

habitat protection on Lopez Island. The US$9.6M solution is mapped out in Fig 5. 761 

The dashed line separates the solutions that are cheaper in terms of average 762 

protection cost per roost from those that are more expensive. The slope of the curve 763 

illustrates the increasing marginal cost of protecting roost sites on Lopez Island.   764 

Figure 5.   The map on the left shows parcels in black that form the optimal selection for the 765 

general maximal covering problem at a budget of US$9.6. This solution allows the 766 

protection of 30 Myotis roosts. To protect one more roost, the US$10M budget is 767 

insufficient. The map on the right shows the corresponding solution to the general 768 

maximal protection problems for a budget of US$9.96M. This solution provides much 769 

more protection for only 13 Myotis roosts. 770 

Figure 6.  Sensitivity analysis showing the change in the efficient frontier with changes in the relative 771 

importance of water vs. forage habitat for Myotis conservation on Lopez Island.  Because 772 
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the relative weights change the scale of the amount of protection, the unit on the horizontal 773 

axis is total area of water and forage protected.  774 

Figure 7.   Hectares of water vs. forage habitat included in optimal solutions of the generalized 775 

maximal protection problem at a budget of US$10 million in response to varying 1
jw  from 1 776 

to 100. 777 

Figure 8.   Three-way tradeoffs among parcel selections that are Pareto-optimal with respect to (1) 778 

cost, (2) number of roosts and (3) weighted protection under 1 10jw = . Three of the 779 

solutions that provided 20 roosts were labeled for weighted protection and cost.  780 
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