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Urban growth compromises open space and ecosystem functions. To mitigate the negative effects, some agencies use
reserve selection models to identify conservation sites for purchase or retention. Existing models assume that conservation
has no impact on nearby land prices. We propose a new integer program that relaxes this assumption via adaptive cost
coefficients. Our model accounts for the two key land price feedbacks that arise in markets where conservation competes
with development: the amenity premium and price increases driven by shifts in market equilibriums. We illustrate the
mechanics of the proposed model in a real land retention context. The results suggest that in competitive land markets,
the optimal conservation strategy during the initial phase of the retention effort might be to use available dollars to buy
fewer parcels with smaller total area that are under high risk of development. We show that failure to capture the land-
price feedbacks can lead to significant losses in biological conservation. The present study is the first to create a reserve
selection model that captures the economic theory of competitive land markets in a dynamic framework, produces tangible,
parcel-level conservation recommendations, and works on problems with thousands of potential site selection decisions and
several planning periods.
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1. Introduction
Urban growth typically reduces the availability of open
space near population centers due to the conversion of
these lands to real estate or commercial developments. For
several decades, this phenomenon has manifested itself in
the form of lost biodiversity, recreational opportunities,
and other ecosystem services, which in turn triggered
widespread efforts of land retention by community plan-
ners and conservation organizations. Operations researchers
responded by developing decision tools to help planners
design market-based incentives or directly acquire land.
The operational challenge, central to both strategies (mar-
ket based or not), has been to prioritize sites for protection
given a set of conservation objectives and operational and
budgetary constraints.

The initial focus in reserve selection modeling was to
ensure a minimum level of representation for some tar-
get species at a minimum number of sites (e.g., Margules
et al. 1988, Pressey et al. 1997, Possingham et al. 1993, or
Underhill et al. 1994), or to maximize species representa-
tion within a fixed number of sites (e.g., Camm et al. 1996

or Church et al. 1996). The former minimization prob-
lem is equivalent to the set-covering problem (cf. Padberg
1979), a.k.a. the facility location problem (Toregas et al.
1971), whereas the latter maximization problem is known
as the maximal species-covering problem in the reserve
selection literature (Williams et al. 2005). Species represen-
tation models with minimum acquisition costs and maximal
representation models with budget constraints are discussed
in detail in Ando et al. (1998), Rodrigues et al. (2000),
and in ReVelle et al. (2002). Haight et al. (2000), and
Camm et al. (2002) captured the probabilistic nature of
species occurrence in their respective models. The real-
ization that certain spatial attributes of a reserve network,
such as connectivity or shape, can be just as important to
the survival of a species as the number of representative
populations gave rise to the area of spatial reserve design.
Spatially explicit reserve site selection models are charac-
terized by the added combinatorial complexity due to the
imbedded network or graph-theoretical constructs that are
to ensure, or to best approximate, the desired network fea-
tures. Examples of connectivity modeling in the reserve
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selection context include Önal and Briers (2006); compact-
ness is pursued in Tóth and McDill (2008), whereas con-
tiguity is addressed in Tóth et al. (2009). Williams et al.
(2005) provide a comprehensive survey of spatial optimiza-
tion methods applied to reserve design.

A common shortcoming of existing reserve site selection
models is the assumption that conservation actions have no
impact on the price of land, and therefore on the risk of
development, outside the reserves (Armsworth et al. 2006).
Empirical data from both the United States (Radeloff et al.
2010) and from Africa and Latin America (Wittemyer et al.
2008) suggest, however, that real estate development pres-
sure is greater in the proximity of reserves. The above
assumption is particularly problematic in small coastal or
peninsular land markets where strong demand for real
estate and conservation meets confined, localized supply.
Once a conservation organization enters a market of this
kind and starts purchasing land, the competitive equilibrium
might shift, leading to higher prices. In the example shown
on Figure 1, a hypothetical conservation group buys ãdc of
land in time t − 1, shifting the demand curve to the right.
Without the conservation purchase, the equilibrium price of
land would be pt−1 and an equilibrium quantity of qt−1 of
land would be developed. Land to the right of the equi-
librium point Et−1 would remain as open space. With the
conservation acquisition of ãdc and no additional devel-
opment, the new equilibrium point Et would define a new
price at pt . At this price, qt −ãdc of land would be devel-
oped, ãdc would be preserved, and anything to the right of

Figure 1. Conservation-induced change in land prices
in a competitive market.
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Notes. The horizontal axis is land area available for both conservation
and development. Dd is demand for development, and S is supply of
land. The demand and supply curves are assumed to be linear near the
equilibrium with elasticities of 4ãdc − qt + qt−15/ãpt = �d and 4qt −

qt−15/ãdc = �s , respectively. At the competitive equilibrium in year t− 1
(Et−1), area qt−1 would be developed. With conservation acquisitions of
ãdc , the competitive equilibrium shifts to Et in year t leading to a price
increase of ãpt = �c/4�

d +�s5. In the new equilibrium, a total area of qt
would be sold, with ãdc sold for conservation (Armsworth et al. 2006).

the new equilibrium would remain open space. Armsworth
et al. (2006) argue that if undeveloped open space has the
same conservation value as preserved open space, then the
conservation acquisition of land in the amount of ãdc leads
to a net gain of only ãdc − qt + qt−1 over what would
otherwise remain open space in the absence of conserva-
tion actions (Figure 1). In other words, the conservation
acquisition of ãdc comes at the expense of additional open
space that is lost to development (qt −qt−15 due to the fact
that the conservation-induced price increases (ãpt5 would
entice some owners at the margin to sell their land to devel-
opers (Armsworth et al. 2006). Depending on the conserva-
tion value of this additional open space that is lost relative
to that of the newly acquired land, a net loss of biodiver-
sity is possible. This begs the question of what the value
of ãdc should be in a given land market if open space pro-
tection is to be maximized subject to budgetary constraints
and conservation preferences. The primary contribution of
this paper is an operational model that can help community
planners answer this question in a spatially and temporally
explicit manner.

The second contribution is the modeling of a more local-
ized land price feedback, the so-called amenity premium
that is induced on lots that are adjacent to the reserves
(Thorsnes 2002). Amenity premiums exist because people
are willing to pay more for residential lots next to or near
designated natural areas (Turner 2005). Again, the con-
cern is that the amenity-driven price increases might trig-
ger unintended losses of open space near the reserves by
enticing some landowners to sell their land for real estate
(Costello and Polasky 2004, Irwin and Bockstael 2004,
McDonald et al. 2007).

The third contribution is the proposed model’s capabil-
ity to account for real estate development that unfolds over
time and space, partly as a result of external factors such
as the overall state of the housing market, but also as a
result of the conservation decisions themselves. The opera-
tional significance of accounting for these processes is the
assumption that once a land parcel is developed, it can-
not be purchased for conservation (Costello and Polasky
2004). Not only the price, but also the availability of land,
might change over time as a result of conservation actions.
Strategic land retention models must capture these changes
in order to provide meaningful recommendations. The pro-
posed integer program incorporates a modified version of
Irwin and Bockstael’s (2004) hazard model, which was
designed to simulate the optimal timing of development.
The underlying assumption is that the landowner of parcel i
will develop his or her parcel or sell it for development in
the first time period t when the net revenues from develop-
ment (Rit) minus the opportunity costs of the undeveloped
use (Ait) exceed the discounted net returns of developing in
the subsequent period plus a random variable �it (Ineq. 1).
Theta accounts for unobservable landowner attributes such
as the owner’s ties to the land, income, or age (Irwin and
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Bockstael’s 2002), whereas r denotes the owner’s personal
discount rate.

Rit −Ait ¾ 41 + r5−1Ri4t+15 + �it0 (1)

In addition to land price feedbacks and real estate devel-
opments, a third factor that calls for the incorporation of a
temporal dimension in reserve selection models is fluctu-
ating budgets. Conservation budgets typically change over
time, sometimes rather haphazardly (Meir et al. 2004),
due to varying fund performance and the availability of
grant dollars or private donations. Therefore, conservation
planners should define short-term land retention strategies
that best achieve conservation objectives while allowing for
maximum flexibility in the subsequent periods (Costello
and Polasky 2004, Snyder et al. 2004).

We illustrate the public policy relevance of the proposed
dynamic reserve selection model by applying it to a real
land market on Lopez Island, Washington (Figure 3). The
island’s proximity to major population centers such as Seat-
tle gives rise to strong demand for residential properties.
At the same time, the island is home to many sensitive
or endangered wildlife species and habitat types that are
unique to the region (Washington State Department of Fish
and Wildlife 2008, Washington State Department of Natural
Resources 2009). In 1992–2001 alone, however, an aver-
age of nearly 5% of all private forestlands, which is the
predominant form of land ownership on the island, was
lost to development each year (Bolsinger et al. 1997, Gray
et al. 2005). Most of this development has occurred in
the most sensitive coastal areas due to popular demand
for waterfront properties. The situation is similar across
the Puget Sound region: it is estimated that more than
12,000 hectares of forestland are lost each year on average
in the area (Bradley et al. 2007). The State of Washing-
ton and conservation organizations wish to know how to
prioritize their land retention strategies given finite bud-
gets. Should their money be spent on the acquisition of
small, expensive parcels that are under high risk of devel-
opment, or should larger, inexpensive areas that are further
away from population centers be pursued instead? Our case
study shows that starting the Lopez Island retention effort
with fewer, high-risk, high conservation value parcels with
less total area would protect more biodiversity. Because
the land price feedback effects are driven by the area of
conservation acquisitions and by the adjacency between
reserved versus unreserved parcels, it makes sense to focus
on acres that provide the highest conservation payoffs per
dollar expended and per unit of conservation loss unin-
tentionally induced via additional development. Our results
from the operational tests on Lopez Island also support
the findings of the economic theory of Armsworth et al.
(2006) that accounting for conservation-driven land price
feedbacks can have a profound impact on optimal retention
decisions.

Existing dynamic reserve selection models set a baseline
against which the contributions of the present paper can

be compared. The pioneering work successfully cast the
dynamic reserve selection problem as a stochastic dynamic
program in which site availability is uncertain (Costello and
Polasky 2004, Strange et al. 2006); however, the authors
conclude that finding optimal solutions might be compu-
tationally elusive if the number of sites is greater than
about 20. Faced with these computational limits, several
authors propose heuristic algorithms (Costello and Polasky
2004, Meir et al. 2004, Drechsler 2005, Sabaddin et al.
2007, and Harrison et al. 2008), which are applied to
larger problems with hundreds of sites. Finally, Snyder
et al. (2004) propose a 0-1 linear programming model
that maximizes expected conservation value at the end of
a two-period planning horizon given a set of real estate
development scenarios. The scenarios were set to materi-
alize only in the second planning period with predefined
probabilities that were independent of the conservation
decisions in the first period. Applying their model to
a 146-site case study, the authors conclude that conser-
vation gains are associated with protecting sites sooner
rather than later. Although these modeling achievements
are important given the spatiotemporal complexities inher-
ent in dynamic land retention, a knowledge gap remains
because none of the models attempt to account for endoge-
nous changes in land price. There is abundant evidence
that open space protection decisions affect land price (e.g.,
Irwin and Bochstael 2004), and those price effects can
influence strategic reserve design (Armsworth et al. 2006).
The present study is the first to create a reserve selection
model that captures the economic theory of competitive
land markets in a dynamic framework, produces tangible,
parcel-level conservation recommendations, and works on
problems with thousands of potential site selection deci-
sions and several planning periods.

2. Model Formulation
This section describes the proposed mixed 0-1 program-
ming model, including guidance on how the required
parameters can be estimated in practice. The model max-
imizes the expected total biodiversity value of land,
expressed in biodiversity hectares, in both preserved and
undeveloped parcels within a competitive land market. For
clarity, the model is introduced in modules, built gradually
from a simple core to the full reserve selection model. The
following notation was used:

Parameters:
ai = the area in hectares of parcel i. Source: geographic

databases of county tax assessors (e.g., United States)
or cadastral surveys (e.g., Europe);

di = the biodiversity value of parcel i, measured in
biodiversity hectares. In the conservation biology liter-
ature, biodiversity value is measured in various ways,
including the number of species, communities, or
habitat types present weighted by factors such as nat-
ural rarity and vulnerability (Margules and Pressey
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2000). In our application, the biodiversity value of
a parcel is measured by the parcel’s irreplaceability,
or the extent to which parcel development will com-
promise regional conservation targets for the protec-
tion of species and habitats (Margules and Pressey
2000, Meir et al. 2004). We assume that the bio-
diversity values are constant over time to keep the
model simple and to retain the focus on land-price
feedback effects. We note, however, that the proposed
model structure does not preclude the use of dynamic
biodiversity values. Finally, after Armsworth et al.
(2006), we assume that biodiversity value is differ-
ent for preserved versus unpreserved open parcels (see
parameter � next). Source: databases of conservation
organizations such as The Nature Conservancy, or
expert opinion from the field of ecology;

�= a biodiversity correction coefficient for unprotected
but undeveloped parcels. A correction is neces-
sary because unprotected parcels, where commercial
forestry or other management activities are allowed,
might not provide the same conservation value as pro-
tected parcels. As an example, some important species
persist in old-forest habitat, which might become less
available under intensive timber management. Follow-
ing Armsworth et al. (2006), � is set to take a value
within the [011] interval: it is equal to 0 for developed
and 1 for protected parcels. Source: expert opinion
from the field of ecology;

I = the set of parcels available for conservation or devel-
opment. Source: real estate websites, databases of
conservation organizations, or expert opinion;

T = the set of planning periods (�T � is the length of the
planning horizon). Source: decision maker (DM)—the
conservation organization or community planner who
requests the analysis. The length of the planning hori-
zon in the model primarily depends on the DM’s abil-
ity to forecast future budget streams. Because reserve
selection models can be reoptimized periodically to
make use of new information, including new budgets,
it is only the parcel selections in the first period that
are likely to be implemented by the DM. In addi-
tion, as the results of our subsequent analyses suggest,
modeling more periods doesn’t necessarily change the
trends of optimal selections in the first period.

Bt = budget in time period t. Source: decision maker; and
Ri = open space revenues associated with parcel i during

the planning horizon. Source: financial analysis of
cash flows associated with the activities that take place
on parcel i if open space is to be preserved. If these
activities are related to forestry, as is the case in the
present study, then open space revenues are equal to
the forest value. The forest value can be calculated
using the Faustmann Formula or other techniques. See
the textbook of Bettinger et al. (2008) for more details.
Similar formulae exist to calculate discounted cash
flows for agriculture (see Chapter 7 in Olson 2003).

Variables:
xit = 1 if parcel i is selected for conservation acquisition in

year t, 0 otherwise (X = 6xi1 t7�I �×�T �5;
zit = 1 if parcel i is converted to development in year t,

0 otherwise. Conversion occurs in year t if the real
estate value of parcel i (pit) exceeds the net revenues
that can be acquired without development (Ri) by at
least a predefined margin �t . We assume that, unlike
real estate values, the open space revenues associated
with parcel i (Ri) remain constant in real terms during
the planning horizon (Z = 6zi1 t7�I �×�T �); and

pit = the market value of parcel i in year t. At the beginning
of the planning horizon, pi1 is equal to the current
market value of parcel i. Source of pi1: real estate
websites, county assessor’s databases.

The model is formulated as follows:

f 4X1Z5= Max
∑

i

aidi

∑

t

xit

+�
∑

i

aidi

(

1 −
∑

t

xit −
∑

t

zit

)

1 (2)

subject to:

∑

t

4xit + zit5¶ 1 ∀ i ∈ I (3)

∑

i

pitxit ¶ Bt ∀ t ∈ T (4)

xit1 zit ∈ 80119 ∀ i ∈ I1 ∀ t ∈ T (5)

pit ∈ R+
∀ i ∈ I1 ∀ t ∈ T 0 (6)

Function (2) maximizes the amount of land in preserved
and undeveloped parcels at the end of the planning horizon
weighted by each parcel’s biodiversity value. Constraint
set (3) contains logical constraints that allow a parcel to
be either developed or preserved at most once during the
planning horizon. This construct assumes that once a land
parcel is developed, it will not be available for conserva-
tion. Similarly, if the parcel is purchased for conservation, it
is assumed to be protected indefinitely. Inequalities (4) are
budget constraints: the cost of conservation acquisitions in
a given period cannot exceed the associated annual conser-
vation budget. If carry-over of funds between the planning
periods is allowed, budget constraints (4) can be replaced
with (4′) and (4′′), where Ft is a slack variable that repre-
sents the amount of unused funds in period t, whereas B′

t is
the budget in time period t that includes the unused funds
from period t−1 compounded by interest rate k. Naturally,
B′

1 = B1.

∑

i

pitxit + Ft = B′

t ∀ t ∈ T 1 (4′)

B′

t = Ft−141 + k5+Bt ∀ t ∈ 8T \190 (4′′)
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The nonlinear cross-product term pitxit in constraint set
(4) or (4′) may be linearized by replacing pitxit with a
continuous variable and adding constraints (13)–(15) to the
model (Williams 1999). Alternative linearization methods
exist (cf., Adams and Sherali 1990). Finally, constraint
set (5) defines the parcel and the development indicator
variables as binary, while constraints (6) set the cost vari-
ables (pit5 to be positive real.

2.1. Modeling Land-Price Feedback Effects

The heart of the model is a pricing apparatus (Equa-
tions (7)–(10)) that controls the value of the land prices for
each parcel as they transition from one period to the next.
We introduce parameter r as the expected annual change in
real estate value within the analysis area, e as a one-time
amenity premium for a parcel adjacent to at least one pro-
tected parcel, �d and �s as price elasticities of demand and
supply, respectively, for housing development, and yit as a
binary variable that takes the value of 1 if and only if at
least one parcel that is adjacent to parcel i is selected for
conservation in year t − 1.

pit = pi4t−1561 + 4r + qyit57+
ai

�d +�s

∑

j∈8I\i9

ajxj4t−15

∀ i ∈ I1 ∀ t ∈ 8T \191 (7)

yit ∈ 80119 ∀ i ∈ I1 ∀ t ∈ 8T \190 (8)

The value of yit is set by constraint sets (9) and (10),
where Si denotes the set of parcels that are adjacent to
parcel i:

∑

k∈Si

xk4t−15 ¾ yit ∀ i ∈ I1 ∀ t ∈ 8T \191 (9)

∑

k∈Si

xk4t−15 ¶ �Si�yit ∀ i ∈ I1 ∀ t ∈ 8T \190 (10)

Equation (7) calculates the expected market value of each
parcel during the planning horizon. The market value in
year t will be the sum of (1) the market value of par-
cel i in the year prior to year t, pi4t−15 compounded by
the expected increase (or decrease) in real estate value r
as dictated by the general housing market, plus an amenity
premium q that is taken into account only if at least one
of the parcels that are adjacent to parcel i has been pur-
chased for conservation in year t − 1 (i.e., if yit = 1); and
(2) a price increase associated with an increased demand
for land resulting from the conservation purchases in year
t − 1. The expected short-term appreciation (or depreci-
ation) rate for real estate (r) can be estimated based on
recent transaction data in the local market (e.g., Neighbor-
hoodscout 2010), the current economic outlook, and the
availability of home ownership incentives. Higher rates of r
will likely add to the impact of land-price feedbacks driven
by conservation acquisitions.

The area of conservation purchases in year t − 1 equals
ãdc =

∑

j∈8I\i9 ajxj4t−15, which is the amount by which
the demand curve shifts to the right between year t − 1
and t (Figure 1). Assuming linear demand and supply func-
tions in the neighborhood of the competitive equilibrium
with elasticities of �d and �s , the change in land price
induced by shifting demand can be calculated using basic
trigonometry:

ãpt =
1

�d +�s

∑

j∈8I\i9

ajxj4t−150

Again, the nonlinear cross-product term pi4t−15yit in
Equation (7) can be linearized using the same integer pro-
gramming techniques as in inequality set (4).

Estimation procedures for demand and supply elastici-
ties (�d1�s) are available from the land economics litera-
ture. For housing demand, economists recommend the use
of unitary elasticity (�d = 1), regardless of price, meaning
that a 1% drop in price will induce a roughly 1% increase
in demand (see Glennon 1989 or Anderson et al. 1997).
For supply elasticities of housing in metropolitan areas,
one can use Green et al.’s (2005) extension of Mayer and
Somverville’s (2000) model. In this model, supply elastic-
ity is estimated by a function of population (n), average
transportation cost (k), average house price, cost of cap-
ital (l), city growth rate (g), a proportionality factor that
is increasing with population density (�) and income (�y)
and property taxes (�p). For 95 major U.S. metropolitan
areas, one can also turn to Saiz (2007) and simply look
up the relevant supply elasticities in Table 8. While linear
approximations of supply curves are not uncommon in the
literature (e.g., Van der Mensbrugghe 2005), the proposed
pricing construct (Equation (7)) can easily be extended to
incorporate dynamic elasticities via the Green et al. (2005)
or Saiz (2007) models if there is concern that nonlinearity
might cause erroneous price estimations. As an example, to
imbed the Green et al. (2005) elasticity function, one can
redefine parameter �s as an auxiliary variable with time
dimension (�s

t ), replace �s in Inequality (7) and simply add
the following linear equation to the model:

�s
t =

2

� ·
√
n

·
4l+ �p541 − �y5− g

k
·
∑

i∈I

pi4t−15/�I �1 (7a)

where
∑

i∈I pi4t−15/�I � is the average price of a developable
parcel in the analysis area in period t − 1. Using this
equation, supply elasticity can change over time as an
endogenous function of price. The parameter values (see
definitions in the preceding paragraph) can be obtained or
estimated by using U.S. census data or local, county, or
city databases for tax assessments.

Constraint sets (9)–(10) control the value of binary indi-
cator variable yit . Whereas constraint (9) allows, con-
straint (10) forces, yit to take the value of one if at least
one parcel that is adjacent to parcel i (i.e., one parcel in
set Si) is preserved in year t − 1. Constraint (10) is nec-
essary because nothing in the objective function would put
an upward pressure on the value of yit if

∑

k∈Si
xk4t−15 was

to be greater than or equal to one. In other words, yit
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could remain zero in the absence of constraint (10) and the
desired amenity trigger mechanism would fail. We note that
a tighter but less parsimonious alternative to constraint set
(10) exists:

xk4t−15 ¶ yit ∀k ∈ Si1 ∀ i ∈ I1 ∀ t ∈ 8T \190 (10′)

Figure 2 illustrates the mechanics of constraints (9)
and (10) for an existing waterfront property on Lopez
Island, Washington.

The calculation of amenity premiums as a function of
the adjacency between developable versus preserved lots is
based on Thorsnes (2002). For the Grand Rapids, Michi-
gan metropolitan area, the author reports empirical results
that imply significant (19%–35%) market value premi-
ums only for residential lots that bordered preserves. The
amenity effects in the study appeared to be “highly local-
ized,” meaning that in lots that did not share a common
boundary with a preserve, the sale-price premiums were
hardly, if at all, detectable. The author acknowledges that
the extraordinarily steep sale-price gradient might reflect
the lack of forest views from lots that are not directly adja-
cent to the preserves. Although the topographical similar-
ities between our case study site on Lopez Island and the
Grand Rapids area prompted us to incorporate Thorsnes’
(2002) adjacency-driven empirical results in our optimiza-
tion model, we note that proximity- or view-based premi-
ums can also be captured by redefining sets Si (∀ i ∈ I)
in constraints (9) and (10). To this end, we point out
that Tyrväinen and Miettinen (2000) report a much more

Figure 2. Adjacency-based amenity effects can be captured by linear inequalities.

Notes. As an example, the market value of Parcel 28-11495 is compounded by an amenity premium in time period t if either Parcel 28-8711 or 28-2864 is
retained as a forest preserve in period t − 1. The following pair of inequalities demonstrate the logic behind the amenity indicator variable Yit 2 x28-8711(1) +

x28-2864(1) ¾ Y28-11495(2), x28-8711(1) + x28-2864(1) ¶ 2Y28-11495(2).

gradual inverse correlation between the market prices of
dwelling sites and their proximity to designated forest
preserves in the Salo, Finland area. Those authors show
that a view onto the forested areas was a driving factor
behind the amenity premiums. Other potential refinements
of the amenity construct proposed in constraints (9) and
(10) could include accounting for the combined amenity
effects of multiple preserves that border the same residen-
tial lot. For example, constraints (9) and (10) could be
replaced with

yit =

∑

k∈Si
4bikxk4t−155

∑

k∈Si
bik

(9′)

where bik is the length of common boundary between
parcels i and k. Although it is possible that the lengths
of the shared boundaries between protected and residen-
tial lots are better predictors of amenity premiums than the
binary adjacency relationships, currently there is no empir-
ical data to support a more sophisticated amenity mecha-
nism in the optimization model.

Lastly, we mention that an alternative adjacency-based
amenity trigger can be formulated by reversing the logic
behind constraints (9) and (10). In inequality (10′′), when-
ever a parcel is purchased for conservation, the amenity
indicators for the adjacent parcels are turned on in the next
period:

�Si�xit ¶
∑

k∈Si

yk4t+15 ∀ i ∈ I1 ∀ t ∈ 8T \�T �90 (10′′)
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Because the objective function of the proposed model
(Equation (2)) provides a downward pressure on the
amenity variables, meaning that the yk4t+15 s (for all k ∈ Si)
will take the value of zero if xit = 0, each constraint in
set (10′′) will behave the same way as the corresponding
pairs of constraints in sets (9) and (10). While this means
that the number of constraints of types (9) and (10) can
be cut in half by using constraints (10′′), our preliminary
tests inferred no computational benefits associated with this
move in terms of solution times. We present constraint
set (10′′) as an alternative in situations where the number
of allowable rows in the input coefficient matrix is limited
by the integer programming solver at hand.

2.2. Modeling Land Development

To capture the logic in Equation (1) (Irwin and Bockstael
2004) regarding development hazards, we define �it as
a parameter (US$/ha) that accounts for unobservable
landowner attributes such as age or ethnicity that might
have an impact on the development of parcel i in period t.
Theta (�it) is used in the model as a cutoff value; a dollar
amount by which the market value of parcel i (pit) must
exceed its open space value (Ri) in period t before the
parcel is considered developed by the model. We add the
following pair of constraints:

pit ¾ 4Ri + �it5zit ∀ i ∈ I1 ∀ t ∈ T 1 (11)
(

1 −

t
∑

t′=1

zit′ −
t
∑

t′=1

xit′

)

4Ri + �it −pit5¾ 0

∀ i ∈ I1 ∀ t ∈ T 0 (12)

Constraint pairs (11)–(12) set the value of the develop-
ment indicator variable zit (∀ i ∈ I and ∀ t ∈ T ). Variable
zit takes the value of one (i.e., parcel i gets developed in
period t5 if and only if the following two conditions hold.
First, the real estate value of parcel i exceeds the net rev-
enues that can be acquired without development (Ri) by at
least a predefined margin of �it in period t. Second, the
parcel is not purchased for conservation or for development
prior to or in year t. Whereas constraint (11) allows, con-
straint (12) forces, zit to take the value of one if the above
two conditions hold.

2.3. Linearization

There are three sets of nonlinearities in the model that
result from the use of the adaptive price coefficient pit:
one occurs in constraint sets (4) and (12), pitxit′ ; one
in constraint set (7), pi4t−15yit; and another one in con-
straint set (12), pitzit′ . To avoid computational difficulties
that are associated with nonlinear 0-1 programs, all three
cross-product terms are replaced by continuous variables.
As an example, �itt′ replaces pitxit′ , where �itt′ takes the
value of 0 if xit′ = 0, and it is equal to pit if xit′ = 1. To

enforce these logical conditions, we let M denote the max-
imum value that the price coefficients can take, and bor-
row the following three linear constraint sets from Williams
(1999, p. 164):

�itt′ −Mxit′ ¶ 0 ∀ i ∈ I1 ∀ t1 t′ ∈ T 1 (13)

�itt′ ¶ pit ∀ i ∈ I1 ∀ t1 t′ ∈ T 1 (14)

pit − �itt′ +Mxit′ ¶M ∀ i ∈ I1 ∀ t1 t′ ∈ T 0 (15)

The linearization of terms pi4t−15yit and pitzit′ uses the same
technique.

3. Case Study
The optimization model introduced in §2 was applied to
a real land market on Lopez Island, Washington. The pol-
icy implications of the case study are specific to the study
site and apply only under a set of assumptions that are
listed below.

3.1. Assumptions

As described in the introduction, Lopez Island (Figure 3)
has a competitive land market where both conservation and
development are in high demand. We assumed that the
island was isolated and unique in both the economic and
the ecological sense: the land parcels that we considered
had no substitutes either for development or for conserva-
tion elsewhere in the San Juan Archipelago. Although this
assumption is a departure from reality and it magnifies the
competitive nature of the island’s land market, it is not a
significant one because the island group itself is relatively
small and unique. Moreover, the competitive bias is elim-
inated to a large degree by running the reserve selection
model under different supply-demand scenarios, some of
which mimic less-competitive markets by using more elas-
tic supply curves. Another simplifying assumption was to
model the island as a single land market. Although arguably
waterfront properties and interior lots constitute separate
markets, or even finer scale partitioning might be possible
in theory, we modeled them as a singular market due to
insufficient data to characterize the respective equilibriums.
If the price elasticities of supply for real estate are known
for all submarkets, then this information can be incorpo-
rated in the optimization model via Equation (7). The only
caveat is that the elasticity parameters or variables would
have to be indexed based on the set of parcels with which
they are associated. If variable elasticties are used, then sep-
arate elasticity functions must be defined for each submar-
ket. We also assumed that the demand curves were linear
and the supply curves were linear in the proximity of the
equilibriums. Again, if supply elasticity cannot be assumed
to be constant, then imbedding an explicit elasticity func-
tion such as Equation (7a) in the model is necessary.



Tóth, Haight, and Rogers: Dynamic Reserve Selection: Optimal Land Retention
1066 Operations Research 59(5), pp. 1059–1078, © 2011 INFORMS

Figure 3. Lopez Island, the demonstration site, is located in the Puget Sound region roughly halfway between Seattle,
United States, and Vancouver, Canada.
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Notes. The light gray polygons are private forest parcels that are assumed to be available for both development and conservation. The white circles
represent the conversion risks associated with each parcel. Bigger circles indicate higher risks. The US$ amount by which the market value of a parcel
exceeds its forest value was used as a proxy for conversion risk.

3.2. Parcel Data

The Washington State Digital Parcel Database (University
of Washington Geographic Information Service, or WAGIS
2009) was used as the primary data source for the model.
The database classifies 74.3% of the 7,721-hectare island as
private land that comprises either partially forested parcels
or designated forestlands. Of the 1,474 parcels that con-
stitute this 74.3% land area, 5 are in “conservation” own-
erships and 45 are enrolled in the Washington State Leg-
islature’s Designated Forestlands Program under Chapter
84.33 of the Revised Code of Washington (Washington
State Legislature 2009). Designated forestlands are taxed
based on bare land values for growing and harvesting tim-
ber rather than on financially more lucrative land uses such
as real estate. To qualify for taxation under the program, the

property must be used exclusively for forest management;
otherwise, the owner faces penalties and back taxes. For
the purposes of the case study, both designated forestlands
and the parcels that are in conservation ownerships were
removed from the model because they were assumed to be
safe from development. An additional 29 parcels, mostly in
designated agricultural or recreational categories, were also
removed for similar reasons. The remaining 1,395 parcels
(4,913.48 ha), each of which was at least 0.5 ha in size
with a minimum of 0.25 ha forest cover, were assumed to
be available for either conservation or real estate develop-
ment. Although in reality only a few parcels would be on
the market at any time and open space retention is often an
opportunistic endeavor, we believe that this assumption is
reasonable given the purpose of our analysis. To illustrate
the proposed reserve selection model as a device to find
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optimal land prioritization strategies in competitive markets
and to address the question of whether high-risk parcels
should be targeted first, we used a set of candidate sites
(1,395 parcels) in the analysis that was larger than what
the market would typically supply. The model can help us
identify guiding principles in general parcel attributes such
as conversion risk, biodiversity, or market value, for tar-
geting sites in the smaller sets that become available over
time in reality, only if a sufficiently large set is used for the
analysis.

3.3. Economic Data

We assumed that forest management and real estate devel-
opment were the two land use options that maximized
the landowners’ financial returns on Lopez Island. The
current (2007) market values of the parcels (the pi0 s) were
obtained from county assessors. The open-space values of
the parcels (Ri) were assumed to be equal to the working
forest values, which in turn were calculated in the database
as the sum of bare land values for producing timber plus
the value of standing timber in the parcel. The National
Land Cover Data Set (U.S. Geological Survey 2007) was
used to estimate the area of forest cover within each par-
cel. Because site-specific forest inventory data were not
available, it was assumed that all forest stands were in the
midpoint of their rotations. The site index and ownership
type of the parcels as well as the area of riparian buffers
versus upland areas, which are subject to different sets of
management restrictions, were all inputs in the calculation
of forest values (WAGIS 2009). In this study, the unit area
market value minus the unit area forest value was used as
a proxy for conversion risk. We assumed that greater gaps
between the two values implied greater development risks.

To fully populate the constraints that account for
real estate development in the model, namely con-
straints (11)–(12), parameter �it had to be defined. Using
the United States Forest Service’s most recent forest inven-
tory analysis data for San Juan County (Gray et al. 2005,
Bolsinger et al. 1997), we first calculated the average
annual rate of private forest loss between 1992 and 2001.
We then assumed that the resulting rate of 4.88% was a
good approximation for Lopez Island because it is part of
San Juan County, for which the rate was derived. We fur-
ther assumed that this average rate of forest loss would
continue to be the trend during the three-year retention
period that was to be considered by the model. Finally,
we ranked the parcels based on their associated conversion
risks from highest to lowest and identified a threshold risk
above which the combined area of the parcels just exceeded
4.88% of the total analysis area (4,913.48 ha). Assuming
that the parcels with the highest conversion risks would be
developed first, we set �it for each of the 1,395 parcels
to be equal to this threshold risk in the first period. After
accounting for the conversion losses in the first period, we
repeated the above process for the second, and then for the
rest of the periods. This a priori definition of �its implies

that the development of some parcels during the three-year
planning horizon is predefined via constraints (11) and (12).
The land-price feedbacks captured in Equation (7) deter-
mine, however, which of the parcels that have an initial
conversion risk below the threshold would get developed
in period 2 or 3. Although we recognize the probabilistic
nature of land conversions and understand that assigning
random values drawn from arbitrarily defined distributions
to the �its is certainly an option, we believe that the above
procedure better reflects what we know about land devel-
opment in San Juan County.

The expected annual rate of growth in real estate
value (r) was assumed to be 3% for the case study. Whereas
the annual appreciation rate was 4.42% over the last two
years on Lopez Island, it was only 0.49% during the last
12 months and it was −2064% during the latest quar-
ter (NeighborhoodScout 2010). The 3% near-future rate
is an optimistic expectation that takes into account the
U.S. Federal Government’s 2010 First-Time Homebuyer
Credit (U.S. Internal Revenue Service 2010). The one-time
amenity premium (q) was set to be either zero, 3%, or 27%,
depending on the particular modeling run. If the model
was to represent retention efforts that ignored the land-
price feedbacks, then the amenity premium was set to zero.
Otherwise, it was set to 3% or 27% representing a very
modest versus a more moderate amenity scenario. The 27%
corresponds to the midpoint within the empirical 19%–35%
range that was found to be representative in the Grand
Rapids area by Thorsnes (2002). Lastly, to fully account
for the spatial nature of the amenity feedbacks, the sets of
parcels that were adjacent to each parcel i ∈ I (denoted by
sets Si) were enumerated using a parcel adjacency matrix
generated by standard Arc 9.3 routines (Environmental Sys-
tems Research Institute, Inc. 2008).

3.4. Biological Data

The biodiversity coefficient of each parcel (di) measures
its irreplaceability, or the extent to which parcel develop-
ment will compromise regional conservation targets for the
protection of species and habitats. We determined parcel
irreplaceability based on an analysis of biodiversity pattern
in Washington State conducted by The Nature Conservancy
(TNC) using Washington State Department of Fish and
Wildlife’s (2008) Priority Habitats and Species Digital Data
and plant occurrence information from the Washington Nat-
ural Heritage Program (Washington Department of Natural
Resources 2009). TNC subdivided Washington State into
728 ha hexagons and determined the importance of each
hexagon for protecting species and habitats. We assigned
each parcel the irreplaceability value of the hexagon with
which it was overlapping. If a parcel overlapped with more
than one hexagon, then the average irreplaceability of the
hexagons, weighed by the areas of the respective overlaps
was used. Because the size of the hexagons (728 ha) was
much greater than the average size of the candidate parcels
(3.5 ha), the above assignment process may not accurately
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reflect irreplaceability at the parcel level. As an example, a
bald eagle’s nest in one corner of a hexagon will not only
contribute to the high irreplaceability value of the hexagon
itself, but it will also lead to higher values for all the over-
lapping parcels, including those that are far away from the
nest. Although constructing higher-resolution coefficients
for biodiversity using the Washington State Department of
Fish and Wildlife’s (2008) and the Department of Natural
Resources’ (2009) original data sets is an option, such an
effort is beyond the scope of the present study. Another
reason for using the lower-resolution irreplaceability data
was that results based on the higher-resolution data could
not be shared with the public due to the sensitive nature of
the information.

The last piece in the puzzle of assembling the input
data set was the definition of �, the biodiversity correction
coefficient (Armsworth et al. 2006) for unprotected open
parcels. Because forest management appears to be the most
profitable alternative to real estate development on Lopez
Island, we assumed that unprotected open parcels were in
the state of working forests. Following the Armsworth et al.
(2006) argument that unprotected sites, including working
forests, can harbor biodiversity as long as they are not con-
verted to development, we first set � to be equal to 0.8. Our
intention was to imply that working forests are dramatically
more valuable for biodiversity conservation than housing
lots, but not quite as valuable as forest preserves where
timber operations are not permitted. Recognizing that the
optimal parcel attributes might be sensitive to �, we ran a
sensitivity analysis over the settings of 0, 0.1, 0.2, 0.4, 0.6,
and 1.0 in addition to the 0.8.

3.5. The Design of the Experiment

To illustrate the use of the proposed optimization model and
to provide a glimpse of what the model can do to aid con-
servation planning and policy, we set up two series of mod-
eling runs for Lopez Island (Table 1). In one series, labeled
“Naïve Purchases” (Table 1), the feedback effects were
ignored in the parcel selection decisions. In the other series,
called “Smart Purchases,” the feedbacks were accounted
for using the modeling structure described in the Model
Formulation section. In the “Naïve Purchases” series, we
formulated one model for each of the three budget levels.
In the “Smart Purchases” series, we had six models for
each of the three annual budget levels that we considered:
US$1, US$10, and US$20 million. The US$1 million level
was defined based on our understanding of what a realis-
tic budget constraint in the region might look like, whereas
the other two scenarios were created to contrast what could
be done if more money were available. Under each budget
scenario, supply elasticity (�s) was varied between 1, 0.36,
and 0 to simulate increasingly competitive land markets.
Steeper, more inelastic supply curves imply that the avail-
ability of land for development or for conservation is more
limited. Consequently, more inelastic supply curves lead to
stronger land-price feedbacks for conservation acquisitions.

As an example, land prices would be assumed to go up
by US$750/ha at �s = 1 versus US$1,100/ha at �s = 0036
and US$1,500/ha at �s = 0 on Lopez Island in period t as
a result of a 1,500 ha conservation acquisition in period
t − 1 not accounting for price changes due to the general
growth in the housing market and amenity premiums. The
three values for supply (in)elasticity were chosen to assess
the sensitivity of optimal parcel attributes to different levels
of competition in the land market. Although the proximity
of the Seattle-Bellevue-Everett metro, for which a supply
elasticity of 0.78 has been documented in Saiz (2007), has
a huge impact on the land market of the study area, we felt
that applying this figure in our model was simplistic given
the unique nature of the Lopez Island market. Located just
outside of the Seattle metro in the middle of the scenic
Puget Sound, the housing market on Lopez Island is more
akin to resort markets than to urban markets. Because the
Saiz (2007) model was designed for urban areas and we
found no data on resort markets, we decided to do a simple
sensitivity analysis for supply elasticity. Lastly, after Glen-
non (1989), the demand curves for housing were assumed
to have constant unitary elasticities in each of the modeling
runs. The amenity premiums were binary at 3% or 27%.

We formulated each of the models for two, three, and
four one-year planning periods plus a dummy third (fourth
and fifth for the three- and four-period models) period
where the budgets were set to zero (54 runs in total plus 9
runs that ignored the feedbacks). In the absence of a zero-
budget period at the end of the planning horizon, the parcel
selections in the last period would not reflect the presence
of land-price feedbacks. The reason for this is that the opti-
mization models are not instructed to look at potential land
conversions beyond the end of the planning horizon. With-
out the dummy period, the objective function value, which
is to be maximized by the model, would be based on the
state of the parcels at the end of the last period. The price
feedbacks would not be constraining in the last period, and
as a result, the optimal parcel selection strategies in that
period would be similar to those that result from models
that ignored the feedbacks completely. We confirmed this
argument with extensive preliminary testing. On the other
hand, if the objective function is set to maximize biodiver-
sity at the end of the dummy period, then the parcel selec-
tions in the period that preceded the dummy period will be
optimized, although the price feedbacks and the potential
land developments in the dummy period that result from
these acquisitions are also taken into consideration.

The first set of questions that we asked was about the
optimal attributes of parcels that were selected for con-
servation in the first period in the models that captured
the feedbacks versus the models that ignored them. These
aspatial attributes included the average market price, bio-
diversity value, and conversion risk, along with the total
area of the selections and the number of parcels selected.
We wanted to know how optimal parcel selection strate-
gies might change in the presence of land-price feedbacks.
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Table 1. Optimal Period 1.

“Smart” purchases (price feedbacks are anticipated)

3% amenity 27% amenity

Naïve purchases �s = 0 �s = 0036 �s = 1 �s = 0 �s = 0036 �s = 1

3 planning periods
US$1 M

Total
Area of developments (ha) 200035 199040 200035 200035 199093 199093 199093
Area of conservation acquisitions (ha) 94067 56037 88016 93056 62094 67041 55024
Number of acquisitions 12 9 14 11 4 5 8

Average
Area of acquisitions (ha) 7089 6026 6030 8051 15073 13048 6090
Market value of acquisitions (US$) 83,323 111,111 71,397 90,389 249,720 199,404 124,985
Irreplaceability of acquisitions 134029 177077 148095 132045 156053 145083 179025

Conversion risk of acquisitions (US$) 3,936 7,087 4,642 4,204 7,561 5,260 8,156

Objective function value 271,537 271,512 271,500 270,927 270,924 270,911
Optimality gap (%) 0000 0000 0000 0000 0000 0000

US$10 M
Total

Area of developments (ha) 200035 200035 200035 200035 199093 199093 199093
Area of conservation acquisitions (ha) 372082 209057 119063 49045 124059 175085 118036
Number of acquisitions 39 34 31 21 27 37 32

Average
Area of acquisitions (ha) 9056 6016 3086 2035 4061 4075 3070
Market value of acquisitions (US$) 256,403 294,109 322,489 476,137 370,330 270,156 311,931
Irreplaceability of acquisitions 164000 181003 191072 189015 185099 176008 174006
Conversion risk of acquisitions (US$) 16,557 39,369 52,103 83,454 51,936 37,093 58,253

Objective function value 288,030 287,607 286,895 286,966 286,511 285,778
Optimality gap (%) 0007 0005 0021 0004 0023 0068

US$20 M
Total

Area of developments (ha) 199093 200035 200035 200035 199093 199093 199093
Area of conservation acquisitions (ha) 337056 219040 175025 129045 210061 301068 148006
Number of acquisitions 55 63 41 38 55 51 46

Average
Area of acquisitions (ha) 6014 3048 4027 3041 3083 5092 3022
Market value of acquisitions (US$) 363,635 317,302 487,773 526,014 363,618 392,005 434,742
Irreplaceability of acquisitions 173075 176030 187084 184003 173031 161041 175093
Conversion risk of acquisitions (US$) 42,668 60,356 73,154 95,724 66,631 50,690 84,511

Objective function value 301,267 300,816 300,221 299,655 298,729 298,487
Optimality gap (%) 0032 0032 0038 0044 0078 1002

4 planning periods
US$1 M

Total
Area of developments (ha) 200035 199093 199093 199093 199093 199093 199093
Area of conservation acquisitions (ha) 63096 58017 67035 189000 68012 42090 76042
Number of acquisitions 7 3 5 5 9 3 9

Average
Area of acquisitions (ha) 9014 19039 13047 37080 7057 14030 8049
Market value of acquisitions (US$) 142,829 332,960 199,804 199,768 110,816 331,160 111,108
Irreplaceability of acquisitions 157062 157012 121067 101074 162003 185014 129005
Conversion risk of acquisitions (US$) 5,318 7,086 5,292 3,961 6,250 9,953 5,924

Objective function value 262,931 262,823 262,791 262,684 261,899 262,491
Optimality gap (%) 0002 0009 0003 0006 0038 0013
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Table 1. (Continued.)

“Smart” purchases (price feedbacks are anticipated)

3% amenity 27% amenity

Naïve purchases �s = 0 �s = 0036 �s = 1 �s = 0 �s = 0036 �s = 1

US$10 M
Total

Area of developments (ha) 200035 199017 199093 199093 199093 199093 199093
Area of conservation acquisitions (ha) 252029 175031 66001 60070 139036 64013 90061
Number of acquisitions 41 27 28 31 29 33 25

Average
Area of acquisitions (ha) 6015 6049 2036 1096 4081 1094 3062
Market value of acquisitions (US$) 243,857 370,357 356,640 322,315 344,454 303,013 399,586
Irreplaceability of acquisitions 159022 166072 183017 179042 178009 173039 175018
Conversion risk of acquisitions (US$) 30,300 54,956 71,355 80,888 63,526 77,627 69,027

Objective function value 283,977 286,011 285,795 284,656 284,941 284,664
Optimality gap (%) 1028 0059 0083 0079 0068 0088

US$20 M
Total

Area of developments (ha) 200035 199093 198098 199093 198098 199093 199093
Area of conservation acquisitions (ha) 376052 113046 98006 100096 153016 175037 130033
Number of acquisitions 71 51 57 51 54 64 50

Average
Area of acquisitions (ha) 5030 2022 1072 1098 2084 2074 2061
Market value of acquisitions (US$) 281,170 392,120 350,860 392,125 370,348 312,328 399,888
Irreplaceability of acquisitions 159057 176052 175055 169088 170068 176047 167042
Conversion risk of acquisitions (US$) 44,873 92,942 92,863 91,398 78,591 67,423 80,635

Objective function value 305,316 304,984 304,528 303,135 301,785 301,982
Optimality gap (%) 0053 0063 0087 0089 1037 1032

5 planning periods
US$1 M

Total
Area of developments (ha) 200035 199093 199093 199093 199093 199093 199093
Area of conservation acquisitions (ha) 61076 59004 70066 38046 29041 41036 58080
Number of acquisitions 7 4 4 4 3 6 4

Average
Area of acquisitions (ha) 8082 14076 17066 9062 9080 6089 14070
Market value of acquisitions (US$) 142,766 249,620 249,980 249,033 323,840 166,372 248,968
Irreplaceability of acquisitions 150039 177090 128068 173010 174072 170074 124009
Conversion risk of acquisitions (US$) 5,676 9,319 5,339 11,090 24,847 13,809 7,434

Objective function value 251,622 252,072 252,032 250,655 251,033 251,144
Optimality gap (%) 0034 0019 0021 0066− 0042 0046

US$10 M
Total

Area of developments (ha) 200035 199093 199093 199093 199093 199093 199093
Area of conservation acquisitions (ha) 185024 46039 49059 51088 119053 72083 59023
Number of acquisitions 46 12 32 28 21 27 32

Average
Area of acquisitions (ha) 4003 3087 1055 1085 5069 2070 1085
Market value of acquisitions (US$) 217,388 776,530 312,448 356,920 475,957 370,369 312,426
Irreplaceability of acquisitions 167093 188043 178091 181058 186087 181045 169060
Conversion risk of acquisitions (US$) 38,965 94,665 87,101 82,939 68,417 80,019 80,374

Objective function value 282,566 284,312 283,999 283,239 282,867 281,372
Optimality gap (%) 1055 0089 1029 0094 1015 1069

US$20 M
Total

Area of developments (ha) 200035 198098 199093 198098 199093 198098 1990931
Area of conservation acquisitions (ha) 347011 107081 136084 141045 153003 122085 126035
Number of acquisitions 73 56 39 41 37 51 53
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Table 1. (Continued.)

“Smart” purchases (price feedbacks are anticipated)

3% amenity 27% amenity

Naïve purchases �s = 0 �s = 0036 �s = 1 �s = 0 �s = 0036 �s = 1

Average
Area of acquisitions (ha) 4075 1093 3051 3045 4014 2041 2038
Market value of acquisitions (US$) 273,962 357,081 512,700 487,661 539,932 391,498 377,316
Irreplaceability of acquisitions 154015 173046 174040 179001 174031 173057 167068
Conversion risk of acquisitions (US$) 47,016 89,395 90,950 89,261 83,180 91,204 86,694

Objective function value 308,649 308,274 307,776 306,072 305,568 305,001
Optimality gap (%) 0070 0078 1001 1053 1060 1079

Notes. Parcel selection attributes on Lopez Island, Washington under three annual budget, three supply elasticity, and two amenity premium
scenarios and with 3-, 4-, and 5-period planning horizons. The parcel attributes are contrasted to those found by models that ignored the
land-price feedbacks (see the columns under the heading “Naïve purchases”). In the vast majority of scenarios, the total area, as well as the
total number of parcel acquisitions that are optimal in Period 1, was less than what would be optimal if the feedbacks were not accounted for.
Also, in the vast majority of scenarios, the average market and biodiversity values and the average conversion risk of optimal parcel selections
in Period 1 were higher than what would be optimal in the absence of the feedbacks. The attributes where these results are invalid are shown
with gray backgrounds.

The purpose of the three-, four-, and five-period models was
threefold. First, we wanted to know if our proposed model
was computationally tractable for longer planning horizons.
Second, we wanted to know if the attributes of optimal par-
cel selections in the first period were any different given
different planning horizons. Finally, by comparing the opti-
mal objective values defined at different reference points in
time, i.e., at the end of the third, fourth, and fifth periods, we
wanted to get a rough estimate of the annual conservation
budget that would allow the reversal of ecological decline
on the Island brought on by development.

Additional sensitivity analyses were conducted on the
biodiversity correction coefficient (�) and on the amenity
premium (q) to generate evidence about the robustness,
or sensitivity of the potential findings about optimal par-
cel selections. We created a set of 90 three-period model
formulations with � set to 0, 0.1, 0.2, 0.4, 0.6, and 1.0,
respectively, at the three annual budget levels (US$1 M,
10 M, and 20 M), at the two amenity premium levels
(3% versus 27%), and at the three supply elasticity levels
(1, 0.36, and 0). A further nine models were formulated and
solved to see how the solutions changed if there were no
amenity premiums present in addition to the equilibrium-
driven feedbacks.

To assess the conservation costs of ignoring the land-
price feedbacks on Lopez Island, the parcel variables of the
programs that incorporated the feedbacks were fixed in the
first period (the xits for all t = 1) to the values that were
obtained by solving the programs with both the amenity
premiums and the equilibrium-driven feedbacks set to zero.
The “fixed” programs were then resolved, and the result-
ing period 2 land prices were fed back into the programs
with zero amenity premiums and zero equilibrium-driven
feedbacks to obtain period 2 parcel selections. These parcel
selections were then used to fix the xit variables for t = 2,
again, in the programs that captured the feedbacks. The

process was repeated for the three-period (two periods +

one dummy) programs under each scenario to obtain a con-
servative estimate of the costs. The estimates are conserva-
tive relative to what is expected for the four- and five-period
models because of the one or two extra periods in the latter
models, where the underestimation of land prices due to
ignoring the feedbacks can only add to the gap that sepa-
rates the objective value of the optimal solution from those
that ignore the feedbacks. The resulting objective function
values for the three-period models, as well as the achieved
relative optimality tolerance gaps and the percentage con-
servation losses, are reported in Table 2 under “Naïve Pur-
chases” in column 4, 5, and 8, respectively. If both the
programs that captured the feedbacks (“Smart Purchases”)
and those that had been “fixed” (“Naïve Purchases”) in
accordance with the above procedure solved to true opti-
mality, then only one figure was reported for percentage
conservation loss. If, on the other hand, the programs that
captured the feedbacks did not solve to true optimality
within one day of CPU time, the percentage losses were
calculated in two ways. First, they were calculated based
on the objective function value of the best integer solution
that was found (lower bound). Second, to establish upper
bounds, they were also calculated based on the objective
function value of the best linear programming relaxation
that was available at the active nodes in the branch-and-
bound tree (Land and Doig 1960) built by CPLEX (IBM-
ILOG 2009) to solve the models. The lower and upper
bounds on the percentage conservation losses are reported
in the last column of Table 2. The values of the true losses
were within these bounds.

3.5.1. The Computing Environment. All 162 model
instances (54 + 9 + 90 + 9) were formulated using custom
MS Visual Basic.NET (2005) code and were solved by
multithread, 64-bit IBM-ILOG CPLEX versus 12.1 opti-
mization engines (IBM-ILOG 2009) on either a Power
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Table 2. Objective values under different market scenarios and budget constraints.

Naïve purchases Smart purchases
(no anticipation of price feedbacks) (price feedbacks are anticipated)

Objective func. Objective func. Loss in objective
Price Amenity values (total values (total function values

elasticity premium biodiversity Optimality biodiversity Optimality due to ignoring the
Budget of supply (%) hectares) gaps (%) hectares) gaps (%) price feedbacks (%)

US$1 M 1 3 2711525 0000 2711537 0000 0.004568
0036 3 2711496 0000 2711512 0000 0.01
0 3 2711484 0000 2711500 0000 0.01
1 27 2701168 0000 2701927 0000 0.28
0036 27 2701002 0000 2701924 0000 0.34
0 27 2681958 0000 2701911 0000 0.72

US$10 M 1 3 2861007 0000 2881030 0007 0.70–0.78
0036 3 2861509 0000 2871607 0005 0.38–0.43
0 3 2861230 0000 2861895 0021 0.23–0.44
1 27 2781586 0000 2861966 0004 2.92–2.96
0036 27 2781051 0000 2861511 0023 2.95–3.19
0 27 2771908 0000 2851778 0068 2.75–3.41

US$20 M 1 3 2991773 0000 3011267 0032 0.50–0.81
0036 3 2991527 0000 3001816 0032 0.43–0.75
0 3 2981167 0000 3001221 0038 0.68–1.06
1 27 2891092 0000 2991655 0044 3.52–3.95
0036 27 2881284 0000 2981729 0078 3.50–4.24
0 27 2871452 0000 2981487 1002 3.70–4.67

Notes. The columns under “Naïve purchases” show the objective function values and the associated optimality gaps of the modeling solutions
that ignored the price feedbacks. The columns under “Smart purchases” show the solutions of the models that captured the feedbacks. Where
solutions were not proved optimal (i.e., the optimality gaps were greater than zero), only upper and lower bounds on the objective function
losses are given. The lower bounds are the losses relative to the best integer solutions found to the models that captured the feedbacks,
whereas the upper bounds correspond to losses relative to the best bounds found.

Edge 2,950 server with four Intel®Xeon®5,160 central
processing units (CPUs) at 3.00 Gz frequency and with
16 GB of random access memory, or on a Power Edge
510 with two Intel®Xeon®x5,670 CPUs at 2.93 Gz fre-
quency and with 32 GB memory. The operating system
was MS Windows Server 2003 R2, Standard x64 Edition
with Service Pack 2 (2003) on the former, and it was
MS Windows Server 2008 R2 Standard x64 Edition (2009)
on the latter machine. The integer programming instances
that incorporated the land-price feedbacks had 76,888 con-
straints and 34,876 variables (11,160 binary) for the three-
period, 122,411 constraints, and 53,011 variables (15,345
binary) for the four-period; and 175,304 constraints and
73,936 variables (19,530 binary) for the five-period mod-
els. Those that did not incorporate the feedbacks had much
less; 9,769 constraints and 8,370 variables for the 312,560
constraints and 11,160 variables for the four-period, and
15,351 constraints and 13,950 variables for the five-period
models. The termination criterion for the optimization runs
was a combination of time limit and optimality: the solver
was instructed to stop and report the solution after one
day (86,400s) of runtime or after proven optimality was
achieved, whichever happened first. The achieved optimal-
ity gaps are reported in the fifth and seventh columns of
Table 1. Entries with 0.00% gaps indicate provably optimal
solutions.

Given the purpose of our analyses—to provide strategic
suggestions as to how to go about conservation acquisi-
tions in the presence of land-price feedbacks—and the error
inherent in the input data sets, we considered solutions
within a loose 2% optimality gap to be good feasible solu-
tions. Whenever this target gap was not achieved within one
day of run time (some of the US$10 M and US$20 M prob-
lems fell into this category), we tried a number of strate-
gies to speed up the optimization process. The one strategy
we found very effective was the use of MIP starts from
the solutions to the US$1 M problems, and then from the
solutions to the US$10 M problems to solve the US$20 M
ones. Clearly, the optimal solutions to the US$1 M prob-
lems are always feasible for the US$10 M problems, whose
solutions are in turn feasible for the US$20 M problems.
Because most US$1 M problems solved to optimality in
minutes, it was natural to use these as starting points for
the problems with bigger budgets.

The solver settings were all default except the integrality
tolerance gap, which was set to zero, the working memory
limit, which was increased to 1,000 MB from the default of
128 MB, and the node storage switch, which was set to 2
to instruct CPLEX to save node files on disk uncompressed
whenever the size of the branch-and-bound tree exceeded
the working memory limit. Finally, there were a couple of
cases where the solver encountered singular (uninvertable)
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basis matrices during optimization and terminated without
a solution. In these cases, we followed the user’s manual
(IBM-ILOG 2009) and took the following steps to solve
the problem: (1) we increased the limit on the number
of times CPLEX was allowed to attempt to repair singu-
lar bases from 10 to 100 per singularity, (2) we switched
MIP emphasis to 2 to emphasize feasibility over optimality,
and (3) we set the scaling parameter to 1 to enforce more
aggressive scaling.

4. Results and Discussion

4.1. Computational Results

The goal of this section is to demonstrate the computa-
tional feasibility of the proposed model as it is applied
to a spatially large real problem (see the Sabbadin et al.
2007 classification for what constitutes “large” in the
dynamic reserve selection literature) with three-, four-,
and five-period long planning horizons using off-the-shelf
optimization software (IBM-ILOG 2009) and computa-
tional resources in the US$5,000–$10,000 price range.
All 54 model instances that captured the land-price feed-
backs solved to less than 2% optimality gaps within
one day of computing time. The six models with the
US$1 million budgets were solved to proven optimality in
14 to 64 minutes for three periods. The four- and five-
period models solved to gaps between 0.03 and 0.66%
within one day for the US$1 M budget. The models with
US$10 and $20 million budgets were much harder: the
optimality gaps that were achieved after 24 hours of run-
time ranged between 0.07 and 1.79% (Table 1). Although
some of the models were hard to solve, none of them
were intractable in terms of finding good feasible solutions.
Given the complexity and size of the problems, this result is
encouraging. It implies that the proposed dynamic reserve
selection model can be a computationally viable option for
tackling real problems of considerable size. We note that
the evaluation of computational feasibility for problems that
are larger than the Lopez Island case in terms of the num-
ber of sites, or are more complex in terms of the num-
ber of planning periods, is likely to be unnecessary. First,
land-price feedback effects only arise in markets where
conservation competes with development (Armsworth et al.
2006). These markets cannot be large, because scarce con-
servation dollars can only compete against abundant devel-
opment dollars if they are channeled to a smaller area that is
of particular conservation value. The frequency of these sit-
uations in practice and the need for models to address this
issue are well documented in the reserve selection literature
(e.g., Polasky 2006, Armsworth et al. 2006 or Costello and
Polasky 2004). If the analysis area is much larger, conser-
vation is unlikely to be significant enough in the market to
induce price feedbacks. In these cases, the proposed model
is unnecessary. Second, the need for models with more than
five periods is also unlikely because conservation NGOs
or local governments are rarely in the position to forecast
revenue flows beyond this time frame.

4.2. Solution Analysis

4.2.1. The Conservation Costs of Ignoring the Land-
Price Feedbacks. The percentage losses in objective
function values due to ignoring the land-price feedbacks
varied between 0.0046% for the US$1 M model at
�s = 1 and 3% amenity premium and 3.7%–4.67% for the
US$20 M model at �s = 0 and 27% amenity premium
(Table 2). There is a clear trend that with bigger bud-
gets, the magnitude of conservation losses due to ignoring
the feedback effects increases and becomes quite substan-
tial. This is not too surprising, because with bigger bud-
gets more land is in play and more money can be used
poorly. The data in Table 2 partly illustrate this point.
Higher amenity premiums led to greater relative conser-
vation losses in each budget category. These percentage
losses were progressively greater with increased budgets.
The more money is in play, the more land can be acquired
for conservation but the harder it becomes to avoid the
repercussions of high amenity premiums. This is because
there is less space left to find good alternatives to sites that
provide high conservation values without making the adja-
cent lots more vulnerable to development, unless, of course,
one can minimize these adverse effects using a spatial opti-
mization tool such as the one proposed in this paper. To
understand how substantial these losses are, consider the
difference in objective function values between the models
under the US$10 M versus the US$20 M budget scenarios
(Table 2). The average percentage loss in objective func-
tion values due to moving from a US$20 M to a US$10 M
annual budget is 4.2% in the model solutions that accounted
for the land-price feedbacks. Thus, the negative impact of
ignoring the feedbacks under the US$20 M budget where
strong amenity premiums (27%) and perfectly inelastic sup-
ply are present is roughly equivalent to the impact of losing
US$10 M or half of the US$20 M from the annual conser-
vation budget. Whereas these data were derived only from
the three-period models, we expect to see similar or more
costly trends with four or five periods because of the extra
period or two when the underestimation of price feedbacks
can only add to the losses in objective values.

4.2.2. Optimal Parcel Attributes in the “Smart” vs.
“Naïve Purchases” Models. A closer inspection of the
optimal, or near-optimal, parcel selections reveals that the
solutions behind the models that ignored the feedbacks
versus those behind the models that captured the feed-
backs were very different. As an example, Figure 4 shows
two sets of maps that illustrate some of the parcel selec-
tions (in white) that were found to be optimal (or near-
optimal) under the US$10 million budget scenario. The
maps in the top row represent the solution to the model
where the land-price feedbacks were ignored, whereas the
maps in the bottom show the outcome of the run that cap-
tured the feedbacks using zero supply elasticity and a 27%
amenity premium. It is clear that the parcel selections in
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Figure 4. Optimal parcel selections with a US$10 million annual budget.
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(white) in the top versus the bottom maps. It is better to buy fewer parcels with less total area, especially in Pd. 1, when the price feedbacks are present.

the first two periods were very different. When the feed-
backs were ignored, more parcels and larger areas were
selected, especially in Period 1 and in the interior of the
island. Numerical data in Table 1 suggest that this obser-
vation is not unique to the scenario listed above. In 49
of the 54 models that captured the land-price feedbacks
(91%), the total area of optimal conservation acquisitions

in Period 1 was lower, sometimes by as much as 87%,
(under the US$10 M budget, perfect supply inelasticity and
3% amenity premium scenario) than in the models where
the feedbacks were ignored. On average, the total area in
Period 1 parcel selections was 41.43% less in the 54 mod-
els that captured the feedbacks than in the corresponding
9 models that ignored them (Table 1). The average area of
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the parcels that were found to be optimal for conservation
in Period 1 also decreased in 40 out the 54 models (74%).
The number of parcels that were optimal for conservation
in Period 1 decreased also, in 51 of the 54 scenarios (94%).
On average, the number of parcels dropped by 28.49%. The
average market and biodiversity value and conversion risk
of the acquisitions in Period 1 on the other hand increased
in 49 (91%), 45 (83%), and 51 (94%) of the 54 models,
respectively. On average, the market values were 53.14%,
the irreplaceabilities were 7.23%, and the conversion risks
were 99.6% higher in the model solutions where the feed-
backs were accounted for. It is also noteworthy that the
above findings do not appear to be sensitive to the length
of the planning horizon. On average, the trends are similar
even if the three-, four-, and five-period models are consid-
ered separately (Table 1).

To check if the above trends were sensitive to different
values of the biodiversity correction coefficient (�), we for-
mulated and solved an additional 90 three-period models
for �= 0, 0.1, 0.2, 0.4, 0.6, and for 1.0. Overall, the trends
were similar, although less pronounced than in the �= 008
models: the total area of optimal Period 1 parcel selections
was 12.19% less and the number of parcels was 17.19%
less, whereas the market values were 23.03% higher, the
irreplaceabilities were 4.83% higher, and the conversion
risks were 16.79% higher on average in the models that
captured the feedbacks. Nonetheless, there were many sce-
narios, especially at � < 006 where the trends were the
opposite for some or all of the parcel attributes that we ana-
lyzed. Because the appropriate values of � can be narrowed
down via expert opinion in practice, we encourage con-
servation organizations or community planners to use our
proposed model and run it for specific values of � before
conservation decisions are made.

Finally, by setting the amenity premium to 0 and solv-
ing nine additional three-period problems with the three
alternative budgets and the three supply elasticities, we
checked if it made sense to explore the impact of alterna-
tive amenity constructs, such as edge-based premiums (e.g.,
Equation (9′)), on optimal parcel selections in Period 1. In
sum, the overall trends did not appear to change much rel-
ative to those found for the 3% and 27% premiums: on
average it was still optimal to select fewer parcels (21.6%
fewer) with less total area (29.8% decrease) but with higher
market values (81.1% higher), higher average conversion
risks (111.8%), and with higher biodiversity values (5.4%).
In a few cases, such as under US$20 M budget and with
0.36 supply elasticity, our recommendation to buy fewer
parcels with less total area did not hold for Period 1 if
the amenity feedbacks were completely eliminated. We
conclude that in most scenarios the type of amenity con-
struct will not affect optimal parcel attributes. Exploring
the impact of alternative models (e.g., Equation (9′)) is
an option if the elimination of amenity feedbacks leads
to results that conflict with what is seen when a particu-
lar amenity construct is included in the model. We suspect

that the amenity feedbacks have a bigger local impact on
the spatial allocation of parcel acquisitions than on aspatial
parcel attributes. The exploration of the relative impact of
amenity versus equilibrium-driven feedbacks is beyond the
scope of this paper.

In the light of the above results and sensitivity analy-
ses, it is clear that the recommendation that sites should be
preserved sooner rather than later, and in greater quantity
(Snyder et al. 2004), does not necessarily hold in competi-
tive land markets like Lopez Island. Because the magnitude
of the land-price feedbacks that are driven by the shift-
ing supply and demand equilibriums depends, partly, on
the combined area of conservation acquisitions, it makes
sense in many cases not to preserve as much land as would
be optimal in the absence of the feedbacks. It is also not
surprising that the market and biodiversity values and the
conversion risk of the parcels that were found to be optimal
for conservation were higher in the models that captured
the feedbacks. On a limited area, it makes sense to select
high-risk sites that have high conservation values because
these conservation values directly contribute to the objec-
tive function without necessarily causing unintended losses
to development via the price feedbacks.

Finally, it is important to point out that in all of the 54
model scenarios that we analyzed for the effects of land-
price feedbacks, it was optimal to spend the available bud-
gets for conservation acquisitions: the budget constraints
were always near-binding. The small positive values of the
slack variables that were associated with these constraints
(between 0.0001 to 0.572% of the available budgets) were
consistent with the discrete nature of mixed 0-1 program-
ming. This result is very important because it demonstrates
that land acquisitions are strategically effective in biologi-
cal conservation even in competitive markets where land-
price feedbacks are present. There was a concern that the
extra development pressure induced by acquisition-driven
price increases could lead to net losses in biodiversity.
Whether or not the budget constraints remain near-binding
if carry-over of funds is allowed is the subject of future
research.

4.2.3. The Effect of Conservation Budgets on Biodi-
versity in the Face of Continuing Development. The
objective function values that were derived by the three-,
four-, and five-period models under different supply elas-
ticity, and amenity scenarios (Figure 5) refer to the bio-
logical conservation status of the Island at the end of the
3rd, 4th, and 5th planning periods, respectively. Compar-
ing these values allows us to make a rough estimate of the
minimum annual conservation budget that would be neces-
sary to reverse the declining biodiversity trends on Lopez
Island in the face of continuing development pressure. It
is clear from Figure 5 that of the three budgets that we
considered, it is only with US$20 M where the total bio-
diversity hectares is in an increasing trend from Periods 3
to 5. This implies that the minimum amount of annual con-
servation funds that might be necessary to overcome the
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Figure 5. Objective function values (in biodiversity hectares) of best integer solutions and best upper bounds found by
the 3-, 4-, and 5-period models at the end of their respective planning horizons under US$1 M, $10 M, and
$20 M annual budgets with six supply elasticity and amenity premium combinations.
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negative effects of development on Lopez Island is likely
to be between US$10 M and $20 M.

5. Conclusion
In this article, we introduced a dynamic reserve selection
model that accounted for the two major types of land-price
feedback effects that arise in competitive land markets as
results of conservation acquisitions. Our proposed mod-
eling approach also captured the unintended development
processes that can partly be driven by these mechanisms.
The primary methodological contribution is an operational
model that can help community planners and conserva-
tion organizations identify spatially and temporally explicit
site selection strategies in the face of land-price feedback
effects. As an illustration of the mechanics of the approach
and an example of the policy implications that could be

derived, we applied the model to a real market on Lopez
Island, United States. We found that the proposed integer
programming approach was computationally tractable for a
large and complex problem instance.

The specific policy implication of the case study was that
community planners and conservation organizations must
pay attention to price feedbacks in competitive land mar-
kets; otherwise, they risk substantial losses in conservation
benefits within a certain area. Contrary to findings from
the dynamic reserve selection literature (e.g., Snyder et al.
2004) that suggest that more land should be preserved in
the earlier stages of the retention effort, we showed that
this strategy might not be optimal in competitive land mar-
kets. Because the price feedbacks are driven by the area
and the adjacency of the land acquisitions, retaining high-
risk, high conservation value parcels whose combined area
is smaller than what would be optimal in the absence of
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the feedbacks will likely produce more biodiversity. Land
prices that are endogenous to conservation decisions seem
to matter in land retention on Lopez Island. We showed that
failure to account for them can lead to biodiversity losses
equivalent to the impact of halving a conservation budget
of US$20 million.

Lastly, we mention that the spatial attributes of a reserve
network, such as connectivity or shape, can be just as
critical in the success of many conservation projects as
accounting for land-price feedback effects. Although this
was not the case on Lopez Island, we like to emphasize
that our proposed model structure is compatible with the
graph-theoretical constructs and other techniques that have
been proposed in the literature to enforce or promote these
spatial attributes. As an example, Önal and Briers’ (2006)
tail function can easily be imbedded in our model by repre-
senting the parcel set as a directed graph where the parcels
are the nodes and their adjacency are modeled as vertices.
After introducing a set of variables that represent the flows
in the network, formulating the tail function as constraints
is straightforward.
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