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Wildlife corridors connect areas of biological significance to mitigate the negative

ecological impacts of habitat fragmentation. In this article we formalize the optimal

corridor design as a connected subgraph problem, which maximizes the amount of

suitable habitat in a fully connected parcel network linking core habitat areas,

subject to a constraint on the funds available for land acquisition. To solve this

challenging computational problem, we propose a hybrid approach that combines

graph algorithms with Mixed Integer Programming-based optimization. We apply this

technique to the design of corridors for grizzly bears in the U.S. Northern Rockies,

illustrating the underlying computational complexities by varying the granularity of the

parcels available for acquisition. The approach that is introduced is general and can be

applied to other species or other similar problems, such as those occurring in social

networks.

& 2011 Elsevier Inc. All rights reserved.
1. Introduction and overview

In many parts of the world land development has resulted in a reduction and fragmentation of natural habitat, leading
to increased rates of species decline and extinction. To combat the negative consequences of anthropogenic habitat
fragmentation, the procurement of biologically valuable conservation land has been promoted as a way to ensure species
viability. A large number of models for optimally selecting land parcels for conservation, formally referred to as the reserve
site selection problem (RSSP), have been proposed in the conservation biology literature. These models select parcels
to ensure that all targeted species in a given region are protected, as in the Set Covering Problem (SCP) (e.g. [20,34]),
or they select a constrained number of parcels that maximize species richness, as in the Maximal Covering Problem
(MCP) (e.g. [4,6]).

A number of subsequent studies have added to the conservation biology literature by incorporating economic variables
into the RSSP. These studies seek to procure conservation parcels, given a budget constraint, that maximize the number of
species protected (e.g. [1,7,27]) or maximize the environmental benefits of the sites selected (e.g. [13,22,24]). The results of
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these economic-based studies show that incorporating spatially heterogeneous financial costs into reserve site selection
models leads to a substantially different set of priority parcels than standard SCP or MCP models that ignore parcel costs.
Importantly, the parcels selected based on budget constrained optimization obtain considerably greater environmental
benefits for the same conservation budget than traditional site selection models [23].

In recent years, researchers have recognized that a parcel’s spatial location relative to other protected parcels is also an
essential attribute to consider in reserve site selection. Reflecting this, a variety of models that seek to increase the degree
of spatial coherence in the set of parcels selected for conservation have been developed ([40] provide a thorough review).
One primary way in which spatial attributes have been incorporated into site selection models is through the optimal
selection of a connected reserve network, which we refer to as a wildlife corridor.1 The focus on developing models for the
design of optimal wildlife corridors has come as biologists have highlighted the environmental imperative of connecting
core areas of biological significance [25].

Properly implemented wildlife corridors provide numerous ecological benefits by returning the landscape to its natural
connected state. By allowing species the ability to migrate between core areas of biological significance, corridors increase
gene flow and reduce rates of inbreeding, thereby improving species fitness and survival [29]. Corridors also allow for
greater mobility [2], thus allowing species to escape predation and respond to stochastic events such as fire. In addition,
corridors allow species to respond more easily to long-term climatic changes [21].

Responding to the ecological benefits of connected ecosystems, a wide range of corridor projects have been proposed or
are currently being implemented worldwide. Yet despite the increasing number of corridors being implemented and
several studies documenting the positive ecological benefits of existing corridors (e.g. [11,16,31]), designing models for the

optimal selection of corridor parcels has received comparatively little attention.
Research on the optimal design of wildlife corridors commenced with the work of Sessions [30], who models the

selection of a hypothetical corridor as a network Steiner tree (NST) problem. Subsequent models of optimal corridor design
have focused on minimizing the number of parcels selected in a corridor such that a specific number of species are
preserved [5,14,26]. Of particular note is research by Önal and Briers [26], who utilize graph theory and linear integer
programming to find a species-covering connected subgraph within a larger geographic area. Specifically, their model
seeks to identify the minimum number of connected parcels that fully cover 118 separate bird species, without including
predefined reserves or parcel-level costs. The model incorporates a tail function approach, which amounts to a set
of creative linear constraints that prevent cycling. The solution procedure that the authors implement involves solving
the problem at a more aggregate scale and then selecting the optimal set of small disaggregate sites within the aggre-
gate solution. This selection algorithm is found to out-perform a heuristic procedure that is an extension of the greedy
algorithm.

Other research has dealt more explicitly with heterogeneous parcel cost in corridor design. For example, Williams [38]
formulates a NST model with the bi-objectives of minimizing corridor cost and the amount of unsuitable area included in
the corridor. Using binary linear programming, the model implements a multi-objective weighting method to generate a
set of non-inferior solutions to a hypothetical corridor example. These solutions then allow for a comparison of the
tradeoffs between aggregate corridor cost and habitat suitability. In subsequent work, Williams modifies his original
model to consider cases where there are no predefined reserves and the planner is simply trying to form a connected
reserve network [39,41].

More recent work by Tóth et al. [32] introduces a bi-objective model that seeks to minimize the cost of parcel
acquisition and maximize the total area of protected habitat for bird populations in suburban Chicago. They do not deal
with corridor design directly, however, as their formulation includes a constraint on the minimum area of contiguous
habitat for a parcel to be included rather than a connectivity constraint. The contiguity constraints are realized through a
cluster enumeration algorithm that limits the number of parcel clusters under consideration before solving the binary
parcel selection problem.

In this article we develop a model that seeks the optimal construction of a wildlife corridor between multiple areas of
biological significance. We propose a budget constrained optimization model and a corresponding hybrid solution
methodology that efficiently incorporates both economic and ecological information in the design of optimal corridors.
These techniques are then applied to the design of a wildlife corridor for grizzly bears connecting the Yellowstone,
Salmon–Selway2 and Northern Continental Divide Ecosystems in Idaho, Wyoming and Montana.

The primary contribution of our work is the formalization of the corridor design problem as a graph theory problem
that is referred to as a connected subgraph problem. Expanding on earlier research, this approach allows us to focus on the
computational issues of the problem, independently of the particular domain. It also highlights the fact that other
problems, with the same structure as the corridor design problem, as they occur, for example, in social network
applications, can be modeled as a connected subgraph problem. We formally characterize the worst-case computational
complexity of the connected subgraph problem as a so-called NP-Hard problem. In order to further understand its typical

case complexity, beyond the standard NP-Hard worst-case notion used in computer science, we developed a randomized
1 Wildlife corridors are also referred to more or less interchangeably as conservation, habitat, and movement corridors.
2 The Salmon–Selway Ecosystem is also referred to as the Bitterroot Ecosystem.
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generator of ‘‘synthetic’’ instances of the connected subgraph problem, using semi-structured graphs.3 By studying the
behavior of different algorithms, combined with different model formulations, on synthetic instances, we gained insights
into the structure of the problem. Our analysis led to the discovery of an interesting ‘‘easy-hard-easy’’ pattern in the typical
computational complexity of proving optimality for instances of this problem. Such insights led to the development of a
hybrid algorithm that exploits the structure of the problem.

Our hybrid algorithm for the connected subgraph problem allows us to dramatically scale up solutions. The algorithm
incorporates a provably efficient procedure (i.e., it runs in polynomial time) for computing the optimal minimum cost
corridor. The procedure involves using the minimum cost solution to initialize a general procedure that allows the
algorithm to converge to the overall optimal solution much faster. The algorithm also incorporates so-called propagation
and pruning techniques that considerably speed up the solution procedure by ruling out early candidate solutions that are
guaranteed to be sub-optimal. The resulting hybrid algorithm, described in detail in this article, performs remarkably well,
with strong optimality guarantees, both when considering the synthetic instances and instances of the real-world wildlife
corridor for grizzly bears connecting the Yellowstone, Salmon–Selway and Northern Continental Divide Ecosystems. For
the real-world wildlife corridor problem we analyze instances with over 12,000 parcels. Although we are not able to solve
the largest instances to optimality at budgets higher than the minimum cost corridor, the solutions that we do find
are provably very close to the optimum. For example, when considering a budget of $8 M (the minimum cost of a corridor
is $7.2 M) our procedure provides a solution that is guaranteed to be within 1% of the optimal solution. For instances
where computational constraints prevent us from identifying the optimal solution we also test a heuristic, described in
more detail below, that uses the minimum cost corridor as a baseline for the optimization routine on the remaining
parcels.

Our approach diverges from previous corridor design studies in that we do not require the corridor to have a
‘‘tree’’ structure, which is what one obtains in models that seek the minimum cost Steiner tree as the ‘‘best’’ wildlife corridor.
For example, the models of Sessions [30] and Williams [5,14,26] limit their attention to corridors in which the path can have a
width of at most one parcel. Although utilizing a tree structure decreases the computational complexity of the problem, we feel
that the model that we present is more general because it means that the benefits of the corridor can be improved either by
selecting an alternative route or by making the corridor wider so that it cost-effectively includes adjacent parcels.

Another contribution of this study is that we incorporate estimated parcel costs from a naturally occurring landscape.
In addition, by changing the granularity of the parcels available for selection we gain a greater understanding of the
relationship between computational complexity and the number of parcels in the landscape (see Fig. 4). We also gain
insight into the tradeoffs between parcel size and model specificity.

We formally describe the corridor problem and characterize its computational complexity in Section 2. Section 3
formulates the problem as a mixed integer programming problem and describes our solution procedure in detail. Section 4
provides experimental results and describes the application of corridor design for the grizzly bear in the U.S. Northern
Rockies. Section 5 concludes.

2. Problem description: wildlife corridors as connected subgraphs

We begin by mathematically defining the wildlife corridor design problem as a problem of finding a connected
subgraph of a given graph with costs and utilities associated with its edges. We then give a brief analysis of this
problem from the traditional worst-case complexity perspective, proving that the corresponding decision problem
is NP-complete and the cost optimization variant of the problem is NP-hard to approximate within a certain constant
factor.

2.1. The connected subgraph problem

Let Zþ denote the set f0;1,2, . . .g of non-negative integers. The decision version of the connected subgraph problem is
defined on an undirected graph as follows:

Definition 1 (Connected subgraph problem). Given an undirected graph G¼ ðV ,EÞ with terminal vertices TDV , vertex costs
c : V-Zþ , vertex utilities u : V-Zþ , a cost bound C 2 Zþ , and a desired utility U 2 Zþ , does there exist a vertex-induced
subgraph H of G such that
1.
valu

The

opp
H is connected,

2.
 TDVðHÞ, i.e., H contains all terminal vertices,P

3.
 v2VðHÞcðvÞrC, i.e., H has cost at most C, andP

4.
 v2VðHÞuðvÞZU, i.e., H has utility at least U?
3 An instance of a problem results from assigning concrete values to its parameters. For example, in the corridor design problem, we assign concrete

es to the parcel layout, parcel utilities, parcel costs, and the budget. One can generate multiple instances by randomly assigning parameter values.

value of analyzing multiple problem instances is that it provides a much better understanding of the problem’s computational complexity, as

osed to focusing on a single instance that may, or may not, be representative.
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(1) Utility Maximization: given a cost bound C, maximize the utility of H; (2) Cost Minimization: given a desired utility U,

In this decision problem,4 we can relax one of the last two conditions to obtain two natural optimization problems:

minimize the cost of H.
The connected subgraph problem captures the key mathematical aspects of the corridor design problem if we think of

the available land parcels as vertices of a graph, reserves as terminal vertices, parcel cost (or utility) as the cost (or utility,
resp.) associated with the corresponding vertex, and two land parcels sharing a boundary being equivalent to having an
edge between the two corresponding vertices in the graph. A connected subgraph of this graph containing the designated
terminal vertices corresponds to a wildlife corridor connecting the given reserves.

In the context of social networks, a similar problem has been investigated by Faloutsos et al. [12]. Here, one is
interested, for example, in identifying the few people most likely to have been infected with a disease, or individuals with
unexpected ties to any members of a list of other individuals. This relationship is captured through links in an associated
social network graph with people forming the nodes. Faloutsos et al. [12] consider networks containing two special nodes
(the ‘‘terminals’’) and explore practically useful utility functions that capture the connections between these two terminal
nodes. Our interest, on the other hand, is in studying this problem with the sum-of-weights utility function but with
several terminals. In either case, the problem has a bounded-cost aspect that competes with the utility one is trying to
maximize.
2.2. Worst-case complexity analysis

From a computer science perspective, the first question one typically asks is how hard the problem under consideration
is, in terms of the traditional computational complexity hierarchy. Broadly speaking, computer scientists consider a
problem to be ‘‘easy’’ or efficiently solvable if there is a polynomial time algorithm (polynomial in the size of the input)
that solves the problem. A large set of real-world problems belong to the so-called NP-complete class for which only
exponential time algorithms are known and for which it is believed by many that no polynomial time algorithm exists.5

We next discuss the computational complexity of the connected subgraph problem, before moving on to our solution
methodology and experimental evaluation. In order to maintain the focus of the paper on effective solution methods, this
section is kept brief and all proofs are deferred to Appendix B.

The connected subgraph problem is a generalized variant of the standard Steiner tree problem6 (cf. [28]) on undirected
graphs, with the difference being that the costs are on vertices rather than on edges and that we have utilities in addition
to costs. The utilities add a new dimension of hardness to the problem. In fact, while the Steiner tree problem is
polynomial time solvable when 9T9 is any fixed constant (cf. [28]), we will show that the connected subgraph problem
remains NP-complete even when 9T9¼ 0. We prove this by a reduction from the Steiner tree problem. This reduction also
applies to planar graphs, for which the Steiner tree problem is still NP-complete (cf. [28]).

Theorem 1 (NP-completeness). The decision version of the connected subgraph problem, even on planar graphs and without

any terminals, is NP-complete.

The reader is referred to Appendix B for the relatively short proof of this theorem. The theorem immediately implies the
following:

Corollary 1 (NP-hardness of optimization). The cost and utility optimization versions of the connected subgraph problem, even

on planar graphs and without any terminals, are both NP-hard.

It turns out that in the NP-hardness reduction used in the proof of Theorem 1, the graph bG in the given Steiner tree
instance has a Steiner tree with cost C0 if and only if the graph G constructed for the connected subgraph problem has
a connected subgraph with cost C0. Consequently, if the cost optimization version of the connected subgraph instance
(i.e., cost minimization) can be approximated within some factor aZ1 (i.e., if one can find a solution of cost at most a
times the optimal), then the original Steiner tree problem can also be approximated within factor a. It is, however, known
that there exists a factor a0 such that the Steiner tree problem cannot be approximated within factor a0, unless P¼NP. This
immediately gives us a hardness of approximation result for the utility optimization version of the connected subgraph
problem. Unfortunately, the best known value of a0 is roughly only 1þ10�7 (cf. [28]).
4 A decision problem is a problem with a yes–no answer. Typically, given an algorithm for the yes–no version of a problem, it is easy to produce an

equally efficient algorithm that actually produces a solution if the answer is yes.
5 NP stands for Non-deterministic Polynomial time. This captures the idea that, given a candidate solution, one can verify its validity as a solution in

polynomial time. Note that this does not mean that one can generate the solution in polynomial time—being able to do that would make the problem

polynomial time solvable, i.e., ‘‘easy’’. NP-complete problems are the hardest problems within the class NP and all known algorithms for them take

exponential time (in the input size) in the worst case. Roughly speaking, the notion of being complete for a class means that all other problems in the

class can be translated to this problem in polynomial time; therefore, if one could find a polynomial time algorithm to solve any one of the complete

problems in a class such as NP, then all the problems in the class would be solved in polynomial time as well.
6 A Steiner tree connecting a set of T vertices of a graph G¼ ðV ,EÞ is a set U of vertices such that TDUDV and the subgraph of G induced by U forms a

tree, whereby any two vertices in U are connected by exactly one path.
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Fortunately, we can use a different reduction – from the NP-complete Vertex Cover problem – which will enable us to
derive as a corollary a much stronger approximation hardness result for the connected subgraph problem.

Lemma 1. There is a polynomial time reduction from Vertex Cover to the connected subgraph problem, even without any

terminals, such that the size of the vertex cover in a solution to the former equals the cost of the subgraph in a solution to the

latter.

We again refer the reader to Appendix B for a proof of this statement. Combining Lemma 1 with the fact that the vertex
cover problem is known to be NP-hard to approximate within a factor of 1.36 [10] immediately gives us the following:

Theorem 2 (APX-hardness of cost optimization). The cost optimization version of the connected subgraph problem, even

without any terminals, is NP-hard to approximate within a factor of 1.36.

We refer the reader to Appendix A for a simple example that highlights some of the combinatorial issues of the
connected subgraph problem that make it computationally hard.

3. Solving the connected subgraph problem

Next we present the mixed integer linear programming model (MIP model) for the connected subgraph problem that
was used in our experiments. We will then discuss a hybrid solution method for efficiently solving this MIP model.

3.1. Mixed integer linear programming formulation

Let G¼ ðV ,EÞ be the graph under consideration, with V ¼ f1, . . . ,ng and budget C. We introduce a binary variable xj for
each vertex j 2 V , representing whether or not j is in the connected subgraph. The cost associated with including vertex j in
the subgraph is given by cj while the utility is given by uj. In addition, for each edge we introduce a non-negative variable
yij to indicate the amount of flow (as described in detail below) from vertex i to vertex j. The corresponding MIP
formulation is

maximize
X
j2V

ujxj ð1Þ

subject to
X
j2V

cjxjrC ð2Þ

xj 2 f0;1g 8j 2 V ð3Þ

xt ¼ 1 8t 2 T ð4Þ

z0þy0, t̂ ¼ n ð5Þ

yijrnxj 8ði,jÞ 2 E0 ð6Þ

X
i:ði,jÞ2E0

yij ¼ xjþ
X

‘:ðj,‘Þ2E0

yj‘ 8j 2 V ð7Þ

X
j2V

xj ¼ y0, t̂ : ð8Þ

The budget constraint is given by inequality (2). To ensure the connectivity of the subgraph, we apply a particular
network flow model, where the network is obtained by replacing all undirected edges fi,jg 2 E by two directed edges (i,j) and
(j,i). Call the set of directed edges E0. First, we introduce a source vertex 0, with maximum total outgoing flow n. We
arbitrarily choose one terminal vertex t̂ 2 T as the ‘‘root’’ node, and define a directed edge ð0, t̂Þ to insert the flow into the
network, assuming that there exists at least one terminal vertex.7 Then, by demanding that the flow reaches all terminal
vertices, the edges carrying flow (together with the corresponding vertices) represent a connected subgraph. To this end,
each of the vertices with a positive incoming flow will act as a ‘‘sink’’, by ‘‘consuming’’ one unit of flow. In particular, all
terminal vertices will act as sinks, and any other vertex that is part of the eventual connected subgraph will also be a sink
(in other words, xj ¼ 1 will correspond simultaneously to vertex j being in the connected subgraph solution and to it acting
as a sink for the network flow). Finally, we will add constraints to enforce flow conservation: for every vertex the amount
of incoming flow equals the amount of outgoing flow plus the amount of consumed flow.
7 If there are no terminal vertices specified, we add edges from the source to all vertices in the graph and demand that at most one of these edges is

used to carry flow.
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As mentioned above, for each (directed) edge ði,jÞ 2 E0 the variable yij indicates the amount of flow from i to j. For the
source, we introduce a variable z0 2 ½0,n� that serves (1) to introduce flow to the network and (2) to absorb any residual
flow. The residual flow plus the flow injected into the network corresponds to the total system flow, as given by Eq. (5),
where t̂ 2 T is arbitrarily chosen. The constraint in Eq. (6) ensures that only vertices included in the solution retain positive
incoming flow. In particular, each of the vertices with a positive incoming flow retains one unit of flow, i.e.,
ðyij40Þ ) ðxj ¼ 1Þ,8ði,jÞ 2 E0. We convert this relation into the flow conservation constraint provided in Eq. (7). All terminal
vertices are forced to retain one unit of flow and thus be in the connected subgraph constructed by this process, using
Eq. (4). Finally, the overall flow absorbed by the network is set to equal the flow injected into the system, using Eq. (8).

Fig. 1 depicts an example of this network flow representation, where we omit the costs for clarity. Fig. 1(a) presents a
graph on 9 vertices with terminal vertices 1 and 9. In Fig. 1(b), a feasible flow for this graph is depicted, originating from
the source 0, with value 9. It visits all vertices, while each visited vertex consumes one unit of flow. The thus connected
subgraph contains all vertices in this case, including all terminal vertices.

Remark 1. This network flow-based MIP formulation as well as the connected subgraph problem itself allow for the
possibility of cycles and loops. We see this as a favorable option given that the overall utility of the parcels selected can be
increased by widening the corridor or by incorporating paths to areas of high quality habitat. It may, however, be that the
conservation planner wishes to eliminate the possibility of having ‘‘peninsulas’’ in the network, which could represent
geographic dead ends to wildlife in the corridor. While this option is not explored empirically in this article, in practice
peninsulas could be reduced through the institution of an additional constraint requiring that every vertex receiving flow
must output flow to at least one other vertex that is different from the input vertex. Formally, the constraint is

yijrn
Xn

‘ai

yj‘ 8j 2 V\T : ð9Þ

Note the use of the multiplier n in the right-hand side of the above constraint, which is needed because the outgoing flow
from j would, by design, be one unit less than the incoming flow (when the incoming flow is non-zero) as node j would
absorb one unit of flow. While this constraint will eliminate all single parcel wide peninsulas, it is still possible for there to
exist a multiple parcel wide peninsula.

3.2. Meeting the scalability challenge: a hybrid solution method

The MIP formulation presented above can be solved to optimality by state-of-the-art MIP solvers, such as IBM/Ilog’s
CPLEX, for relatively small size problems. Scalability quickly becomes a challenge, however, as one begins to handle
real-life data. In order to address the scalability challenge, we use a two-phase solution method.

In Phase I, we compute a minimum cost Steiner tree for the terminal nodes of the graph (i.e., a Steiner tree such that the
sum of the costs of the included vertices is the minimum possible), ignoring all utilities. While there are fixed parameter
tractable (FPT) algorithms for computing a minimum cost Steiner tree, we implement a simpler ‘‘enumeration’’ method
(see, e.g., [28]) based on computing all-pairs-shortest-paths (APSP) with respect to vertex costs, using the Floyd–Warshall
Algorithm. The APSP matrix can be computed in time Oðn3Þ for a graph with n vertices. The matrix is also used to ’’prune’’
away a large fraction of the vertices of the graph, as described below. The idea behind the enumeration-based Steiner tree
algorithm, which runs in polynomial time for a constant number of terminal nodes, is to first compute a minimum Steiner
tree ~T for the ‘‘complete shortest distance graph’’ ~G of the original graph G, where ~G is a complete graph with as many
vertices as G and where the weight assigned to an edge fu,vg in ~G equals the cost of a shortest path between the
corresponding vertices u and v in G (provided by the APSP matrix). The algorithm uses the fact that in any complete
shortest distance graph (such as ~G), there exists a minimum Steiner tree whose non-terminal nodes have degree at least
three, thereby limiting the total number of nodes in the Steiner tree to be two fewer than the number of terminal nodes.
A minimum Steiner tree ~T of ~G yields a minimum Steiner tree T for the original graph G by simply replacing edges fu,vg in
~T by paths in T corresponding to a shortest path between u and v in G.
Fig. 1. Flow representation of the connected subgraph problem on a graph with 9 vertices. The terminal vertices, 1 and 9, are shaded. The special

terminal node, t̂ , is vertex 1. (a) Original graph. (b) Feasible flow.
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The computation of the Steiner tree in Phase I typically took a few minutes to a few hours on our problem instances,
which was in fact an almost negligible amount of time compared to Phase II, which we describe next. The Steiner tree
computation either classifies the problem instance as infeasible for the given budget or provides a feasible (but often sub-
optimal) ‘‘mincost’’ solution. In the latter case, Phase II of the computation translates the problem into a MIP instance using
the encoding discussed in Section 3.1, and solves it using IBM/Ilog’s CPLEX solver [17]. Solving the MIP formulation using
CPLEX is the most computationally intensive part of the whole process. The mincost solution obtained from Phase I is
passed on to CPLEX as the starting solution.8

Further, the APSP matrix computed in Phase I is also passed on to Phase II. It is used to statically (i.e., at the beginning)
prune away all nodes that are easily deduced to be too far to be part of a solution (e.g., if the minimum Steiner tree
containing that node and all of the terminal vertices already exceeds the budget). This significantly reduces the search
space size, often in the range of 40–60%. We also experimented with dynamic pruning, performed during the branch-and-
bound search of CPLEX, but found that this did not reduce solution times. The experimental results are reported with static
pruning only.

Overall, Phase II is designed to compute an optimal solution to the utility-maximization version of the connected subgraph
problem. In case it runs out of time, which happened on our large instances, it provides a feasible solution along with a
conservative bound on how far this solution is from the optimum (i.e., the optimality gap).

As a comparison point we also test a heuristic method, which results in what we call the extended-mincost solution. The
heuristic proceeds by ‘‘freezing’’ the vertices that form the minimum cost solution to be in the constructed solution. We
then solve the MIP encoding of Phase II, described above, using the intended budget with these frozen parcels ‘‘forced’’ to
be in the solution. Interestingly, this approach is similar to the two-stage approach used by Önal and Briers [26]. In the first
stage the authors aggregate parcels into four-parcel squares and solve for the optimal corridor using the aggregated
parcels. They then use only the parcels in the aggregated optimal solution in the second stage to find the optimal
disaggregated path. Our two-stage approach is roughly the inverse of their procedure in that we first find the minimum
cost solution and then optimally extend this solution. The procedure used by Önal and Briers [26] would not be suitable to
our formulation given that our model includes a budget constraint. Therefore the more expensive aggregate set of parcels
could never be improved upon in the second stage when the parcels are disaggregated.

We also tested a second heuristic that utilizes the minimum cost corridor as a baseline and simply uses any residual
budget to acquire additional vertices in a ’’greedy’’ fashion. In other words, we consider those vertices in the graph that are
adjacent to the current solution and have cost lower than the residual budget and identify one whose gain, defined as the
utility-to-cost ratio, is the highest. If there is such a vertex, we add it to the current solution, appropriately reduce the
residual budget, and repeat until no more vertices can be added.

In the results section we focus on the comparison of the extended-mincost solution to the optimal solution and do not
provide results from application of the greedy heuristic. In general terms, the solution quality (i.e., the overall utility) of the
greedy solution lies below that of the extended-mincost solution and the optimal solution for any given budget. The
computation of this solution also follows the same trend: the greedy computation is faster than the extended-mincost
solution, which itself is faster than the full MIP encoding for computing the optimal solution.

4. Experimental results and an application to a grizzly bear corridor in the U.S. Northern Rockies

While our main goal is to identify the optimal corridor for grizzly bears in the U.S. Northern Rockies, we are also
interested in understanding properties of general instances of the connected subgraph problem. To that end, we conducted
a series of experiments to study the typical case complexity of the problem. In particular, we investigate the empirical

computational hardness of the problem with respect to computing the optimal solution or the extended-mincost solution
mentioned in Section 3.2, as we vary the budget.

All of our experiments were conducted on a number of 3.8 GHz Intel Xeon machines with 2 GB memory, running
Linux 2.6.9-22.ELsmp. We used the CPLEX 10.1 solver [17] to solve the mixed integer programming formulation of the
problem instances considered. For the larger instances, which would not fit in the 2 GB RAM of the computers used, we
relied on the built-in disk use capabilities of CPLEX (rather than the computer’s virtual memory mechanism) to store and
manage very large search trees.9

4.1. Scaling behavior: semi-structured instances and easy-hard-easy pattern

For the experiments in this and later sections, our main parameter is the feasibility component of the problem, i.e., the
budget. Here, for a varying budget level, we investigate the computational hardness of the problem with respect to
computing the optimal solution or the extended-mincost solution. In this section, we make use of semi-structured graphs,
with uniform random utility and cost functions. The graphs are composed of an m�m rectangular lattice or grid, in which
8 In reality, we actually pass on to CPLEX the greedy solution to be described shortly. This provides a major boost to the efficiency of CPLEX in solving

the MIP encoding.
9 Specifically, we used the following parameter settings: cplex.setParam(IloCplex::WorkMem, 1024) and cplex.setParam(IloCplex::

NodeFileInd, 3).
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we place up to 3 terminal vertices. The details of this semi-structured graph model, as well as more empirical data on
them, may be found in Appendix C.

In the figures below, each data point is based on statistics from 100 to 500 randomly generated instances. The hardness
curves are represented by median running times over all instances per data point, normalized for the small but non-
negligible variation in the characteristics of various randomly generated instances with the same parameters. On the x-axis
of the plots is the budget slack percentage, rather than simply the budget, computed as follows. For every instance, we
consider the mincost, i.e., the minimum budget needed to obtain a valid connected subgraph. The budget slack % with
respect to mincost is defined as: 100� ðbudget�mincostÞ=mincost. In other words, we consider computational hardness
and other measured quantities as a function of the extra budget available for the problem beyond the minimum required
to guarantee a feasible solution. The results are shown in Fig. 2(a) and (b).

In Fig. 2(a), we show the hardness profile of lattices of order 10 with 3 terminals.10 These optimization problems exhibit
an easy-hard-easy pattern, the peak of which is to the right of the mincost point (shown as 0 on the relative x-scale).
As one might expect, computing the extended-mincost solution (the lower curve) is significantly easier than computing
the true optimal solution (the upper curve; note that the y-axis is in log-scale).

This naturally raises the question: how much ‘‘better’’ are the true optimal solutions compared to the easier-to-find
extended-mincost solutions? Fig. 2(b) shows the relative gap % between the solution qualities (i.e., attained utilities) in the
two cases, defined as 100� ðoptimal�extendedÞ=optimal. We see that at mincost, both optimal and extended-mincost
solutions have similar quality, which is not surprising. The gap between the qualities reaches its maximum shortly
thereafter, and then starts to decrease rapidly, so that the extended-mincost solution at 100% budget slack is roughly 3.2%
worse than the optimal solution, and at 500% budget slack, only around 0.4% worse. This suggests that for much larger,
real-world problems representable as the connected subgraph problem, where computing the optimal solution is out of
the question due to limited computational resources, it may suffice for practical purposes to only compute the extended-
mincost solution.

4.2. Application to corridor design for U.S. Northern Rockies

4.2.1. Data collection

Study area: The study area for our analysis is comprised of 64 counties in Idaho and western Montana, located in the
Northern Continental Divide region. At the most aggregate level, the parcels that we consider for inclusion in the corridor are
the 64 counties themselves. While securing an entire county to be included in the reserve may seem infeasible, the county-level
analysis provides an illustrative example for a case where the optimization problem is relatively simple from a computational
perspective. The county level model allows us to identify general corridor areas that contain low cost, suitable habitat, similar
to Ando et al. [1]. The county model also provides a means of comparing the results of an aggregate model with relatively few
sites, to more granular models with greater numbers of parcels. A map of the study area is included as Fig. 3.

To investigate the impact of increasing the granularity of the available parcels, we segment the study area into
contiguous sets of square grid cells. The largest grid cells that we analyze are 60 km on each side and segment the study
area into 118 parcels. The parcel size is then incrementally reduced to square grids with sides of 50 km, 40 km, 25 km,
10 km and 5 km. With the most granular grid size of 5 km, the study area is segmented into 12,788 cells. Given the
relatively large range of an adult grizzly (the home range of an adult female grizzly bear is approximately 125 square km),
grid sizes smaller than 5 km are unlikely to be suitable for grizzly bear movement [19]. Increasing the granularity of the
grid cells allows for much more precision in defining parcel habitat suitability and acquisition costs and it also increases
the number of parcels in the landscape. Given the greater number of parcels available for inclusion in the corridor,
10 We obtained similar results with 10 and 20 terminals as well.



Fig. 3. Top: the study area for the corridor problem. Bottom: cost and utility landscape for 10 km parcels.
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increasing the granularity also increases the complexity of the optimization problem. Thus, by comparing results across
the continuum of cell sizes, we are able to investigate the tradeoffs inherent in the granularity of the model that allows for
increased specificity at the cost of greater computational complexity.

In addition to square grid cells, we also consider a grid composed of 25 square km hexagonal parcels. The hexagonal grid
allows parcel connections to occur diagonally and therefore generates more direct pathways between reserves that result in
significantly lower costs than comparably sized square grid cells. Hexagonal grids are utilized by the Environmental
Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) and have been used in reserve site selection
research by Polasky et al. [27] as well as Csuti et al. [8].

Utility computation for parcels: To measure the utility of each parcel, we utilize grizzly bear habitat suitability data
developed and provided by the Craighead Environmental Research Institute (CERI). These data spatially define habitat that is
considered to be suitable for grizzlies. The suitable habitat is measured on a 30 m grid and given a score from 2 to 4, with 4
being the highest quality habitat. We then aggregate the habitat suitability data to the grid and county levels by summing the
habitat scores within each parcel boundary. This method of aggregation implicitly assumes, for example, that a cell with a
habitat suitability value of 4 is twice as beneficial as a cell with a habitat suitability value of 2.

Cost computation of parcels: We next discuss the process by which cost values are assigned to each land parcel under
consideration. The estimate of parcel cost is calculated in three steps. First, spatial data on land stewardship, available for
the states of Montana and Idaho from the Gap Analysis Project (GAP) [37], are used to classify privately and publicly owned
land in the study area. Next, the amount of private land acreage within each parcel is calculated. The private land acreage is
then multiplied by the county-specific average value of farm real estate per acre, available from the United States
Department of Agriculture [35]. For grid cells with land acreage in multiple counties, the county-specific real estate value
per acre is multiplied by the amount of private acreage in each county and then summed. Following Ando et al. [1], we use
the value of farm real estate as a proxy for the cost of all private land, as it reflects the opportunity costs faced by private
land owners. Although the value of forest land may in some cases be a more accurate measure of the costs associated with
acquiring private land parcels, we do not have the data necessary to accurately estimate location-specific forest values.

In delineating the cost of each parcel, we assume that land already in the public domain is essentially freely available
for inclusion in the corridor. One could, however, imagine incorporating the opportunity cost of lost timber or mining
contracts as proxies for the cost of acquiring public land as done by Polasky et al. [27] and Sessions [30]. We have chosen
not to incorporate costs on public land in the present analysis as there is insufficient data with which to accurately predict
the heterogeneity in lost resource profitability associated with each parcel.

By calculating the cost of each parcel based on the real estate value of its privately owned acreage, we are essentially
assuming that the parcels included in the corridor will be acquired with fee-simple purchases. For large projects, such as
the corridor connecting the three large ecosystems in the Northern Rockies that we are considering, the funds necessary to
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purchase a viable corridor outright will be large. Yet our cost estimates should be put into perspective by comparison to
the significant amount of both public and private funding currently being spent on land conservation.

For example, the federal government has an annual budget of $900 million through the Land and Water Conservation
Fund (LWCF), which can support land conservation at the local, state, and federal level. In addition, the Trust for Public
Land estimates that in the past decade more than $36 billion in public land conservation funding has been approved in
over 1000 separate ballot initiatives across the U.S. [33]. This funding is in addition to federal conservation programs such
as the Conservation Reserve Program (CRP), which have average annual expenditures exceeding $1.6 billion [36]. It should
also be noted that parcels may not necessarily need to be purchased outright in order to be included in the corridor, as
easements and other voluntary agreements may be sufficient to maintain habitat. This voluntary type of arrangement is
being used, for example, in the ‘‘Alps to Atherton’’ project in Australia, where the Australian government is seeking
agreements with private land owners to abstain from certain land use practices in exchange for annual payments.

While securing voluntary agreements for habitat protection may be a more viable strategy for cost-effectively targeting
parcels to include in the corridor, we do not have accurate estimates of the incentives necessary to secure such voluntary
arrangements. We therefore use real-estate value as an upper-bound on a parcel’s cost, noting that the potential for voluntary
habitat protection could significantly reduce the funds necessary to acquire the corridor. Future research on the incentives
necessary for voluntary habitat protection could provide useful information for conservation planners.

One additional consideration in terms of the overall cost of the corridor is the transaction and management costs
associated with securing property rights and maintaining the parcels. Researchers have identified transaction and
management costs as being an important consideration in reserve design (e.g. [23,24]), yet these costs are rarely included
in optimal conservation models. One notable exception is Groeneveld [15] who looks at the theoretical implications of
varying transactions costs on the number of sites included in a reserve. In the present analysis, we investigate the influence
of transaction costs on corridor design for the 5 km grid parcels. Transaction costs are likely to play a more significant role
when the cell granularity is small, as the transaction cost represents a greater proportion of the overall cost of the parcel
and the number of potential paths is large. We include a fixed $5000 transaction cost for each parcel that is included,
which would cover legal fees, signage and other fees associated with defining a particular land area as part of the corridor.
The actual transaction and maintenance cost of a particular parcel is likely to be variable,11 but we have chosen $5000
simply as an approximation that is in line with reported transaction costs for conservation lands [18].

Parcel adjacencies: Beyond defining the costs and utilities of parcel acquisition, it is also necessary to define the parcel
adjacencies. The adjacencies are defined based on shared borders/edges. For the grid parcels this implies that interior
parcels are adjacent to exactly four other parcels. This is referred to as a rook pattern of adjacency, which is differentiated
from a queen adjacency pattern where adjacency is defined based on shared edges and corners. For the hexagonal grid
parcels, each cell has 6 neighboring parcels regardless of the type of adjacency pattern.
4.2.2. Results for U.S. Northern Rockies

We begin with a study of the effect of parcel granularity on the cost and shape of the resulting wildlife corridor by
presenting the results for minimum cost corridors, ignoring the utility maximization aspect for now. The minimum cost
corridor for each granularity level was computed to optimality using Phase I of our solution methodology based on Steiner
Tree computation (cf. Section 3.2).

Fig. 4 visually depicts the maps of the minimum cost wildlife corridors at various granularities. Overall, with the
increase in the granularity of the parcels available for acquisition, the minimum cost of a corridor that connects the three
ecosystems decreases considerably. For example, the cost of the cheapest corridor is $1.9 billion for the county level and
drops to as low as $11.8 million for the 5 km grid, and further down to $7.3 million for the 25 square km hexagonal grid.
It is, of course, not surprising that purchasing all of the private land in five counties is extremely expensive. Having the
option of buying smaller parcels results in significant cost savings as the corridor is able to better incorporate low cost
areas, which are composed primarily, and in some cases exclusively, of zero-cost national forest land.

Changing the parcel granularity not only influences the cost of the parcels selected, but it also influences the general
path or shape that the corridor follows. For the county level, 60 km, and 50 km parcel granularities, the minimum cost
corridor essentially forms the shape of an upside-down T, where the parcels selected are concentrated in the area in the
middle of the three ecosystems. When the parcel size is reduced to 40 km and below, the minimum cost corridor traces a
path connecting the three reserves that resembles the shape of a C, with the Salmon–Selway Ecosystem connecting
directly to the Northern Continental Divide Ecosystem via a parcel path in the northwestern portion of the study area. By
increasing the parcel granularity, the model avoids higher priced areas in southwestern Montana and instead chooses a
slightly longer corridor that incorporates more national forest land.

In terms of computational hardness, as the granularity of the parcels is refined, the problem size and the corresponding
search space grows rapidly. For grid parcels of 25 km or larger, the computation time necessary to prove the optimality of
the minimum-cost corridor is less than 1 s. For smaller grid sizes, the solution time is no longer trivial, increasing to close
to thirty minutes in the case of the 5 km grid and to a couple of hours for the 25 square km hexagonal grid. Thus, we begin
11 As one referee suggests, transactions costs could also be calculated as a function of the number of distinct private landowners that occupy a given

parcel, reflecting the challenges associated with contracting with all necessary parties.



Fig. 4. Minimum cost solutions for the corridor problem at various granularities: (a) County level, (b) 60 km grid, (c) 50 km grid, (d) 40 km grid, (e) 25 km grid,

(f) 10 km grid, (g) 5 km grid, (h) 5 km grid with transaction costs, and (i) 25 square km hexagonal grid with transaction costs.

J.M. Conrad et al. / Journal of Environmental Economics and Management 63 (2012) 1–18 11
to see the tradeoffs inherent in corridor design in terms of the model granularity, or alternatively the size of the study area,
and the computational complexity of the problem.

The impact of transaction costs: The addition of transaction costs to the model also alters the structure of the selected
corridor. We again use as an example the minimum cost corridors considered in the discussion above and depicted in
Fig. 4. The most noticeable difference of the inclusion of a $5,000 transaction cost per parcel at the 5 km level is that the
number of parcels selected is reduced from 265 to 196. Given that each additional parcel adds incrementally to the overall
cost of the corridor, even if there is no private land on the parcel, the minimum cost corridor selects parcels that provide
more of a direct link between the reserve sites, rather than following a slightly longer path that includes more zero cost,
national forest parcels.

This difference is illustrated in panels (g) and (h) of Fig. 4, which show the chosen 5 km corridor both with and without
transaction costs. The most noticeable difference between the two corridors is the portion of the corridor connecting the
Salmon–Selway to the Northern Continental Divide Ecosystem. With the inclusion of transaction costs, the parcels selected
link directly to the northern portion of the Salmon–Selway, rather than the longer path selected without transaction costs
that connects to the western edge of the ecosystem. With transaction costs the model also does not select the zero cost
parcels that form a peninsula starting from the western edge of the Salmon–Selway. Thus, incorporating transactions costs
has a significant influence on both the number and shape of the resulting corridor that is selected and represents an
important consideration for land use planners.

Budgets larger than the minimum cost. It is reasonable to expect land use planners to have budgets that are somewhat
larger than the precise minimum cost needed for the cheapest wildlife corridor. In such cases a natural question to ask is:
Can neighboring land parcels be acquired which will significantly increase the net utility of the corridor? Using results from the
25 square km hexagonal grid, we show that a relatively small increase in the budget beyond the minimum cost can often
lead to solutions of much higher utility.

Solving the connected subgraph model for budgets larger than the cost minimum in a naı̈ve manner using the CPLEX
solver quickly becomes infeasible, especially with various budget levels beyond the basic minimum. Hence, we used the



Table 1
Wildlife corridors with budgets beyond the minimum cost, in the context of 25 square km hexagonal grid with minimum cost ¼ $7.29 million.

Budget value

(unit: $1 M)

25 square km hex grid corridor

Cost

(unit: $1 M)

Parcels Utility

Number Fractional increase (1000� ) Fractional increase

min 7.29 169 – 1362 –

8.00 7.99 311 1.84� 2756 2.02�

9.00 9.00 511 3.02� 4599 3.38�

10.00 10.00 711 4.21� 6498 4.77�

11.00 11.00 911 5.39� 8270 6.07�

12.00 12.00 1111 6.57� 9973 7.32�

15.00 15.00 1708 10.11� 14,371 10.55�

20.00 20.00 2205 13.05� 17,477 12.83�

25.00 25.00 2421 14.33� 19,068 14.00�

50.00 50.00 2837 16.79� 22,229 16.32�
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two-phase solution procedure discussed in Section 3.2 in order to scale up our method. As mentioned earlier, the minimum
cost solution obtained from a polynomial time Steiner tree implementation for three reserves was first extended greedily
up to the available budget, and this solution was passed on to CPLEX as the starting solution.

Table 1 shows the impact of larger budgets on the utility of the resulting wildlife corridor. Specifically, it reports the
utility levels of our best found solutions for various budgets.12 In particular, while the minimum cost corridor (costing $7.29
million) results in 169 parcels with an overall utility of 1.36 million units, increasing the budget slightly—to $8
million—results in acquiring 311 parcels with an overall utility of 2.76 million, a more than two-fold increase. By doubling
the budget, i.e., going for a budget of $15 million rather than $7.29 million, we have an over 10-fold increase in both the
number of parcels purchased and the overall utility.

These results suggest an interesting tradeoff between additional budget resources and expanding the wildlife corridor
beyond the basic minimum required for achieving connectivity. Instead of focusing all resources on constructing a cost
minimizing corridor, conservation planners may be better served by generating a feasible corridor of good quality (i.e.,
adequate width, suitable habitat, etc.) and then using the remaining budget to acquire nearby land with high net benefits.

Fig. 5 provides a graphical depiction of the results and highlights how the resulting utility rapidly increases as the
budget level is initially increased. It also illustrates that the best found solutions for this challenging problem have utility
levels provably very close to the respective optimal solutions.13 Specifically, the general trend depicted in the figure
illustrates that the benefit-to-cost ratio of the best found corridor slowly flattens out as the budget is increased beyond $20
million. In other words, while there is a near-linear increase in the attainable utility when increasing the budget from
nearly $7.3 million to $15 million, there is a significant decline in the rate at which the utility increases when further
increasing the budget level.14 For example, it could perhaps be argued that it is justifiable to invest $15 million in order to
obtain a 10-fold increase in utility and land over the minimum cost solution. At the same time, we also see that even with a
budget as large as $50 million, the best solutions found had a utility of ‘‘only’’ 16-fold that of the minimum cost corridor.
Thus, depending on the available budget, land use planners can gain substantial insights from similar cost–benefit
tradeoffs of going beyond the cost of the cheapest corridor.

Fig. 6 provides map realizations of model runs with four different budget levels for the 25 square km hex grid. Consider,
for example, the solution for a budget of $15 million and compare it with the minimum cost solution. The $15 million
solution suggests a general trend that by investing roughly twice the money needed for a minimally thin corridor,
conservation agencies can greatly expand the amount of natural area acquired. In this particular case, the map suggests
that a substantial amount of land near Salmon–Selway (the reserve depicted towards the bottom-left) can be acquired to
significantly enhance the overall value of the investment. In addition, the path leading north from this reserve also
happens to be very ‘‘thick’’, increasing the value of the corridor itself.

Streamlining as an aid for very large instances: As noted earlier, we employed both a full MIP formulation as well as a
restricted or ‘‘streamlined’’ version of it—where we restrict the search to only those corridors that include all of the parcels
12 As mentioned earlier, we consider two related solution strategies—aiming for the full optimal solution or for the best possible solution that

includes all parcels belonging to the minimum cost solution as part of the corridor. The table reports the best solution we found (not necessarily optimal

but often provably close to optimal) with either approach for each budget level. A relative comparison of the two approaches is included later in this

section.
13 It should be noted that Pareto-optimality cannot be ensured in this case even with a 0% optimality gap. The intuition for this observation is that

given the discrete nature of the problem, there may be a different corridor of lower cost that achieves the same utility as the utility maximizing corridor

for a given budget.
14 As a referee points out, decreasing returns to investment such as what we observe here with corridor design are similar to the textbook example of

pollution abatement costs, where firms can initially reduce emissions at fairly low marginal cost but above certain thresholds further abatement becomes

increasingly costly.
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Fig. 7. Percentage gap in the utility of optimal and extended-mincost solutions for the 50 km corridor grid (left) and the 40 km grid (right).
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that are in the minimum cost solution found in Phase I. The motivation behind using such ‘‘extended-mincost solutions’’ is
computational feasibility—by restricting the search space, we hope to be able to attack larger problem instances than can
be solved using the full MIP encoding. Fig. 8 shows that such techniques do often pay off once instances become very large.

For smaller size instances that we can still solve completely to optimality, Fig. 7 shows the relative gap between the
utilities obtained with the optimal solution and the extended solution—for the 50 km and 40 km square grid abstractions
of the corridor problem, corresponding to Fig. 2(b) discussed earlier for the connected subgraph problem on semi-
structured lattice instances. The plots in Fig. 7 show that at its peak, the relative gap is on the order of 2–5%, and is usually
within 2% of the optimum. Even a 2% utility gap, however, could imply that one could achieve a particular level of utility
for a considerably lower budget when the slope of the relationship between budget and utility is relatively flat. For this
problem the slope is relatively steep for budget levels close to the cost minimum and therefore one does not generally lose
too much by solving only for the extended solution in this range.

The 25 square km hexagonal abstraction is, as one may expect, very challenging to solve, for both optimal and extended
solutions. For instance, while the County level and the 50 km grid abstractions were solved to optimality within seconds
with our two-phase solution process, and the 40 km grid took only a few minutes to half an hour depending on the budget,
the extended solution itself for the hexagonal grid required several days of computation, and for many budgets, could not be
solved optimally in over 10 days. Fortunately, the eventual optimality gap for the best extended solutions found was quite
low for budgets up to $15 million, between 0 and 0.07%, meaning that the extended solutions were found to near optimality
(the ‘‘best found’’ curve for extended solutions in Fig. 8 is visually right on top of the corresponding ‘‘upper bound’’ curve up
to a budget of $15 million). The best found solutions for the true optimality runs, on the other hand, had a similarly low
optimality gap for budgets under $10 million but up to a 26.9% gap for higher budgets,15 as illustrated in Fig. 8.
15 For a budget of $8 million, our full optimality runs reported an optimality gap of 57% for the best found solution within 30 days of computation.

The upper bound for this budget shown in Fig. 8 is based on recent work by Dilkina and Gomes [9] that shows that this solution is actually within 1% of

the optimal solution.
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Interestingly, for higher budgets (especially $20 million and higher), the best extended-minimum cost solutions found
for this challenging grid size were in fact of better quality than the best optimal solutions found, as seen from Fig. 8. This
aligns well with the concept of streamlining—if done carefully, restricting the search space to a small but promising part of
the full space can result in much better solutions for computationally challenging problems. In this case, restricting the
problem to only the extended-minimum cost corridors allowed CPLEX to focus the search and compute better quality
solutions than usual within the limited amount of computation time.

Note also in the figure that the best found upper bound was also lower for the extended-minimum cost solutions as
compared to the full optimality runs. While this shows that the extended solutions were found to near optimality, it of
course does not mean that for the full problem there is necessarily no solution of better quality than this upper bound.
5. Conclusion

Real-world conservation problems are computationally highly demanding. Designing effective conservation corridors is
particularly complex due to the intricate combinatorial structure of the problem induced by the spatial connectivity
requirement in addition to a strict budget constraint. Solving this problem challenges the scalability limits of current
computational optimization methods. Unlike many other conservation problems for which a marginal change in the
available budget affects the resulting solution only marginally, the corridor design problem and other spatially dependent
selection problems are unique in the sense that a marginal change in the available budget can result in the selection of very

different, potentially mutually exclusive, sets of parcels.
In this work, we have developed algorithms to solve large-scale corridor design problems, considering the minimum cost

corridor but also going beyond the minimum cost solution to the best use of resources when a conservation planner has at his
or her disposal a somewhat larger budget. Our empirical investigation into the general properties of the problem revealed the
difficulty of solving it to optimality and an interesting easy-hard-easy pattern as a key problem parameter—the amount of
extra budget beyond the minimum cost—is slowly increased. We presented a case study for a real-world instance of a corridor
that would provide a link between the Yellowstone, Salmon–Selway, and the Northern Continental Divide ecosystems in Idaho,
Wyoming, and Montana. Our study explores the implementation of such a corridor at various budget levels, showing, for
example, that with a budget level of roughly twice the minimum cost, we can achieve over a 10-fold increase in both the
number of parcels purchased and the overall utility.

Despite the evaluation of our method on a particular data set for the grizzly bear mentioned above, the methods and
models developed here are general. They could be applied to other cost and utility distributions beyond the ones used in
our experiments, or to designing effective corridors for other endangered species. More generally, the techniques
introduced here are applicable to any problem domain that can be re-formulated as the connected subgraph problem, such
as in the context of social networks.
Appendix A. Illustrative example
Example 1. We consider a simple example to illustrate some of the combinatorial issues of the connected subgraph
problem that make it computationally hard. Consider the hypothetical 3� 3 parcel map presented in Fig. A1. We use this
map to illustrate, among other aspects, how both the optimal choice of parcels and the complexity of finding these parcels
can vary dramatically when we formulate the problem as a cost constrained utility optimization problem rather than an
unconstrained cost minimization problem. In this simple example, when ignoring utilities, the cost of the corridor is
minimized with the selection of parcels B, E, and H, as shown in panel I. With this selection, the cost is 7 units and the
utility of the parcels selected is 5. Now suppose that the conservation planner has available a budget of 10 units. Rather
than simply selecting the least cost path consisting of parcels B, E, and H, the planner would now be interested in finding
the corridor that yields the highest possible utility, with a cost of no more than 10 units. In panel II, we show that for a
budget of 10 units, the planner maximizes utility by selecting parcels E, F, H, and I, for a total utility of 9 units. If the
conservation planner’s budget is increased to 11 units, as in panel III, the optimal selection of parcels is A, B, D, with a
corresponding aggregate utility of 10 units.

It is not surprising that considering only parcel costs as in panel I results in a very different set of selected parcels from
that in panels II and III, where both parcel cost and utility are considered. What is unique about the constrained corridor
optimization problem is that a marginal change in the available budget can result in the selection of very different, potentially

mutually exclusive, sets of parcels, as illustrated in panels II and III. Given the constraint that all of the selected parcels must
be connected, the model outcomes can change drastically as budget levels are varied, which is different from typical
reserve site selection models where additional budget levels generally only influence the selection of a small subset of the
available parcels.

Fig. A1 also illustrates the computational challenges of the budget constrained utility maximization problem. If the goal
is to find a least cost path, as has been done in most previous studies, only six possible paths in the 3� 3 parcel grid need
to be considered. The optimal selection will never include paths that are more than one parcel wide, as this can only add to
the cost of the corridor. For the case of constrained utility maximization, however, the set of feasible corridors jumps from



Fig. A1. Hypothetical corridor optimization. Parcel labels are provided in the lower left corner of each parcel, costs are in the lower right corner, and

utilities are in the upper left corner. The reserves, G and C, are marked as dark gray. The optimal corridor in each case is shaded. I. Minimum cost corridor,

cost¼7, utility¼5; II. Budget¼10, cost¼10, utility¼9 and III. Budget¼11, cost¼11, utility¼10.

Fig. B1. Reduction from vertex cover.
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6 to 30. Thus, even in this small hypothetical case, the challenge of maximizing utility given a budget constraint is
considerably greater than simply finding the single-parcel-wide least cost path.
Appendix B. Proof details
Proof of Theorem 1. The problem is clearly in NP, because a certificate subgraph H can be easily verified to have the
desired properties, namely, connectedness, low enough cost, and high enough utility. For NP-hardness, consider the

Steiner tree problem on a graph bG ¼ ðbV ,bEÞ with terminal set bT D bV , edge cost function bc : bE-Zþ , and cost bound bC .
An instance of the connected subgraph problem can be constructed from this as follows. Construct a graph G¼ ðV ,EÞwith

V ¼ bV [ bE and edges defined as follows. For every edge e¼ fv,wg 2 bE, create edges fv,eg,fw,eg 2 E. The terminal set remains
the same: T ¼ bT . Overall, 9V9¼ 9bV 9þ9bE9, 9E9¼ 29bE9, and 9T9¼ 9bT 9. For costs, set cðvÞ ¼ 0 for v 2 bV and cðeÞ ¼ bcðeÞ. For utilities,
set uðvÞ ¼ 1 for v 2 T and uðvÞ ¼ 0 for v=2T . Finally, the cost bound for the connected subgraph is C ¼ bC and the utility bound
is U ¼ 9E9.

It is easy to verify that the Steiner tree problem on bG and bT has a solution with cost at most C iff the connected subgraph
problem on G and T has a solution with cost at most C and utility at least U. This completes the reduction.

Note that if bG is planar, then so is G. Further, the reduction is oblivious to the number of terminals in G. Hence,
NP-completeness holds even on planar graphs and without any terminals. &

Proof of Lemma 1. We give a reduction along the lines of the one given by Bern and Plassmann [3] for the Steiner tree
problem. The reduction is oblivious to the number of terminals and holds in particular even when there are no terminals.

Recall that a vertex cover of a graph bG ¼ ðbV ,bEÞ is a set of vertices V 0D bV such that for every edge fv,wg 2 bE, at least one of v

and w is in V 0. The vertex cover problem is to determine whether, given bG and CZ0, there exists a vertex cover V 0 of bG with
9V 09rC. We convert this into an instance of the connected subgraph problem. An example of such a graph is depicted in Fig. B1.

Create a graph G¼ ðV ,EÞ with V ¼ bV [ bE and edges defined as follows. For every v,w 2 bV ,vaw, create edge fv,wg 2 E; for
every e¼ fv,wg 2 bE, create edges fv,eg,fw,eg 2 E. Overall, G has 9bV 9þ9bE9 vertices and

bV
2 þ2bE edges. For costs, set c(v) to be 1

if v 2 bV , and 0 otherwise. For utilities, set u(e) to be 1 if e 2 bE, and 0 otherwise. Finally, fix the set of terminals to be an
arbitrary subset of bE.

We prove that solutions to the connected subgraph problem on G with costs and utilities as above, cost bound C, and
desired utility U ¼ 9bE9 are in one-to-one correspondence with vertex covers of bG of size at most C.
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Fig. C1. Hardness profile for lattices of order 6, 8, and 10, without terminal vertices.
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First, let vertex-induced subgraph H of G be a solution to the connected subgraph instance. Let V 0 ¼ VðHÞ \ bV . We claim
that V 0 is a vertex cover of bG of size at most C. Clearly, 9V 09rC because of the cost constraint on H. To see that V 0 is indeed a
vertex cover of bG, note that (A) because of the utility constraint, V 0 must contain all of the vertices from bE, and (B) because
of the connectedness constraint, every such vertex must have at least one edge in E(H), i.e., for each e¼ fv,wg 2 bE, V 0 must
include at least one of v and w.

Conversely, let V 0 be a vertex cover of bG with at most C vertices. This directly yields a solution H of the connected
subgraph problem: let H be the subgraph of G induced by vertices V 0 [ bE. By construction, H has the same cost as V 0

(in particular, at most C) and has utility exactly U. Since V 0 is a vertex cover, for every edge e¼ fv,wg 2 bE, at least one of v

and w must be in V 0, which implies that H must have at least one edge involving e and a vertex in V 0. From this, and the fact
that all vertices of V 0 already form a clique in H, it follows that H itself is connected.

This settles our claim that solutions to the two problem instances are in one-to-one correspondence, and finishes the
proof. &
Appendix C. Computational hardness profiles for synthetic data

We make use of semi-structured graphs, with uniform random utility and cost functions. The graphs are composed of
an m�m rectangular lattice or grid, where the order m is either 6, 8, or 10. This lattice graph is motivated by the structure
of the original conservation corridors problem. In this lattice, we place k terminal vertices; in the results reported here, k is
0 or 3. When kZ2, we place two terminal vertices in the ‘‘upper left’’ and ‘‘lower right’’ corners of the lattice, so as to
maximize the distance between them and ‘‘cover’’ most of the graph. This is done to avoid the occurrence of too many
pathological cases, where most of the graph does not play any role in constructing an optimal connected subgraph. The
remaining k�2 terminal vertices are placed uniformly at random in the graph. To define the utility and cost functions, we
assign uniformly and independently at random a utility and a cost from the set f1;2, . . . ,10g to each vertex in the graph.
The cost and utility functions are uncorrelated.

Each data point is based on statistics from over 100–500 randomly generated instances. Fig. C1 shows computational
hardness results for the case of zero reserves. Note that these instances are always feasible, even with zero budget. Using
the budget slack percentage relative to mincost as in Fig. 2(a) and (b) earlier, therefore, does not make sense in this case.
We simply use for the x-axis the fraction budget=total-budget, where total-budget is the total cost of all vertices.

These connected subgraph instances, defined on graphs without terminal vertices, are always satisfiable and can thus
be seen as instances of pure optimization problems. Fig. C1 shows the hardness profile (i.e., the running time) on lattices of
order 6, 8, and 10. Notice that the median runtime (y-axis) is plotted in log-scale in this figure. The plots clearly indicate an
easy-hard-easy pattern for these instances, even though they are all feasible with respect to the budget. Such patterns have
been observed previously in some pure optimization problems, but only under specialized random distributions. For
example, Zhang and Korf [42] identify a similar pattern for the Traveling Salesperson Problem, using a log-normal
distribution of the distance function. In our case, the pattern naturally emerges from the model.
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