Modeling Non-Timber Objectives in Harvest Scheduling with Linear Programming

Lecture 5 (4/19/2017)

- <u>Extended rotations</u>: a minimum of 1,500ac will be required from each Site I and II to be older than 40 and 30 yrs, respectively;
- <u>Wildlife openings</u>: set aside 500ac of wildlife openings – clearcut these in pd. 1 and maintain them for browse and forage;
- <u>Stream-side management zones</u>: no harvests allowed in 8% of the forest (4% in each site class)

Balancing the Age-class Distribution

Harvest scheduling prescriptions with up to two possible harvests within a 40-year planning horizon and a minimum rotation of 20 yrs

Prescription	Planning Period				
	1	2	3	4	
1	Harvest				X _{sa10}
2	Harvest		Harvest		X _{sa13}
3	Harvest			Harvest	X _{sa14}
4		Harvest			X_{sa20}
5		Harvest		Harvest	X _{sa24}
6			Harvest		X _{sa30}
7				Harvest	X _{sa40}
8	No Harvest			X _{sa00}	

 $X_{sap_1p_2}$ = the number of acres from site class *s*, initial age-class *a* assigned to be harvested first in period p_1 and again in period p_2 .

Extended Rotations

Doriod	Variable							
Penou	X_{sa10}	X_{sa13}	X_{sa14}	X_{sa20}	X_{sa24}	X_{sa30}	X_{sa40}	X_{sa00}
1	0	0	0	а	а	а	а	а
2	1	1	1	0	0	a+1	a+1	a+1
3	2	0	2	1	1	0	a+2	a+2
4	3	1	0	2	0	1	0	a+3

Initial age-class distribution

Age	Acres by site class		
Classes	Site I	Site II	
0-10	3,000	8,000	
11-20	6,000	4,000	
21-30	9,000	7,000	
Total	18,000	19,000	

 $X_{2330} + X_{2340} + X_{2300} \ge 1,500$ (ext. rot. constraint for site class II, pd.2) $X_{2240} + X_{2200} + X_{2340} + X_{2300} \ge 1,500$ (ext. rot. constraint for site class II, pd.3) $X_{1340} + X_{1300} \ge 1,500$ (ext. rot. constraint for site class I, pd.3) $X_{2100} + X_{2200} + X_{2300} \ge 1,500$ (ext. rot. constraint for site class II, pd.4) $X_{1200} + X_{1300} \ge 1,500$ (ext. rot. constraint for site class I, pd.4)

Modifying the Average Ending Age Constraint

$$\sum_{a=1}^{3} \left[Age_{a00}^{40} \cdot X_{a00} + \sum_{p_{1}=1}^{4} \left(Age_{ap_{1}0}^{40} \cdot X_{ap_{1}0} + \sum_{p_{2}=p_{1}+2}^{4} Age_{ap_{1}p_{2}}^{40} \cdot X_{ap_{1}p_{2}} \right) \right] \ge \overline{Age}^{40} \cdot TotalArea_{ap_{1}p_{2}}$$

$$TotalArea_{s} = \sum_{a=1}^{3} \left[X_{sa00} + \sum_{p_{1}=1}^{4} \left(X_{sap_{1}0} + \sum_{p_{2}=p_{1}+2}^{4} X_{sap_{1}p_{2}} \right) \right]$$
$$\overline{Age}^{40} \times TotalArea_{s} = \overline{Age}^{40} \times \sum_{a=1}^{3} \left[X_{sa00} + \sum_{p_{1}=1}^{4} \left(X_{sap_{1}0} + \sum_{p_{2}=p_{1}+2}^{4} X_{sap_{1}p_{2}} \right) \right] =$$
$$\sum_{a=1}^{3} \left[\overline{Age}^{40} X_{sa00} + \sum_{p_{1}=1}^{4} \left(\overline{Age}^{40} X_{sap_{1}0} + \sum_{p_{2}=p_{1}+2}^{4} \overline{Age}^{40} X_{sap_{1}p_{2}} \right) \right]$$

Modifying the Average Ending Age Constraint (continued)

$$\sum_{a=1}^{3} \left[AgeDif_{sa00}^{40} \cdot X_{sa00} + \sum_{p_{1}=1}^{4} \left(AgeDif_{sap_{1}0}^{40} \cdot X_{sap_{1}0} + \sum_{p_{2}=p_{1}+1}^{4} AgeDif_{sap_{1}p_{2}}^{40} \cdot X_{sap_{1}p_{2}} \right) \right] \ge 0$$

$$AgeDif_{1100}^{40} \cdot X_{1100} + \sum_{a=1}^{3} \sum_{p_{1}=1}^{4} \left(AgeDif_{1ap_{1}0}^{40} \cdot X_{1ap_{1}0} + \sum_{p_{2}=p_{1}+2}^{4} AgeDif_{1ap_{1}p_{2}}^{40} \cdot X_{1ap_{1}p_{2}} \right) \ge 0$$

$$\sum_{a=1}^{3} \sum_{p_{1}=1}^{4} \left(AgeDif_{2ap_{1}0}^{40} \cdot X_{2ap_{1}0} + \sum_{p_{2}=p_{1}+2}^{4} AgeDif_{2ap_{1}p_{2}}^{40} \cdot X_{2ap_{1}p_{2}} \right) \ge 0$$

Implementing Wildlife Openings

- Forest management activity scheduling model;
- Creating 500 acres of wildlife browse habitat;
- The openings are cleared in Pd. 1 and will be maintained over time by planting browse species at a cost of \$10/ac/yr

- 1. Defining the wildlife opening variables:
 - W_{sa} = the number of acres from site class *s*, initial age class *a* assigned to be cleared in pd. 1 and maintained as wildlife openings for the remainder of the planning horizon
- 2. Modifying the Area Constraints

$$X_{sa00} + \sum_{p=1}^{4} \left[X_{sap_10} + \sum_{p_2=p_1+2}^{4} X_{sap_1p_2} \right] + W_{sa} \le A_{sa} \qquad \text{for } s=1,2 \text{ and } a=1,2,3$$

Note: wildlife openings as the ninth prescription

3. Specifying the target area for wildlife openings

$$\sum_{s=1}^{2} \sum_{a=1}^{3} W_{sa} \ge 500$$

or,

$$\sum_{a=1}^{3} W_{sa} \ge 500 \qquad s=1,2$$

 Modifying the objective function (accounting for the costs and revenues that are associated with the new activities)

$$Max \ Z = \sum_{s=1}^{2} \sum_{a=1}^{3} \left[\sum_{p_{1}=1}^{4} \left(c_{sap_{1}0}^{p} \cdot X_{sap_{1}0} + \sum_{p_{2}=p_{1}+2}^{4} c_{sap_{1}p_{2}}^{p} \cdot X_{sap_{1}p_{2}} \right) + c_{sa}^{wp} \cdot W_{sa} \right]$$

where

 $c_{sap_1p_2}^p$ = the discounted net revenue (profit) from assigning one acre from site class *s*, initial age class *a* to be harvested in periods p_1 and p_2 , and c_{sa}^{wp} = the discounted net revenue from assigning an acre from site class

s, initial age class a to be managed as a wildlife opening.

5. The objective function coefficients

$$c_{sa}^{wp} = \frac{(P - s_v)v_{sa10}^1 - s_f}{(1 + r)^5} - \frac{c_w[(1 + r)^{35} - 1]}{r(1 + r)^{35}(1 + r)^5}$$

where

- P = the wood price,
- s_v = the variable (per cord) timber sale administration cost,

 s_{f} = the fixed (per acre) timber sale administration cost,

 v_{sa10}^1 = the volume of wood that will be harvested in period 1 for each acre assigned to the variable W_{sa} .

 c_w = the annual, per-acre cost of maintaining the wildlife openings, and r = the real interest rate.

Example Objective Function Coefficient Calculation

Economic data

Item	Symbol	Amount
Wood Price	Р	\$25/cd
Planting Cost	E	\$100.00/ac
Timber Sales Cost		
-per acre	S _f	\$15.00/ac
-per cord	S _v	\$0.20/cd
Interest Rate	r	4%

$$C_{23}^{WP} = \frac{(25 - 0.2) \cdot 27 - 15}{(1.04)^5} - \frac{10[(1.04)^{35} - 1]}{0.04(1.04)^{40}} = \frac{\$384.62}{\$384.62}$$

Yield

6. Modifying the harvest accounting constraints

$$\sum_{s=1}^{2} \sum_{a=1}^{3} \left[V_{sa10}^{1} X_{sa10} + V_{sa13}^{1} X_{sa13} + V_{sa14}^{1} X_{sa14} + V_{sa10}^{1} W_{sa} \right] - H_{1} = 0$$

7. Average ending age constraints

The wildlife opening variables should be excluded from these constraints

Implementing Stream-side Management Zones (SMZs)

- It is assumed that the area assigned to SMZs has already been calculated, and
- 8% of each analysis area will be reserved for SMZs.

$$A_{sa}^{*} = A_{sa} \times (1 - smz_{sa})$$
$$X_{sa00} + \sum_{p=1}^{4} \left[X_{sap_{1}0} + \sum_{p_{2}=p_{1}+2}^{4} X_{sap_{1}p_{2}} \right] \le A_{sa}^{*} \qquad \text{for s=1,2 and a=1,2,3}$$