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Abstract: This article evaluates the performance of five traditional methods and one new method of generating
the efficient frontier for a bi-criteria, spatially explicit harvest scheduling problem. The problem is to find all
possible efficient solutions, thus defining the trade-offs between two objectives: (1) maximizing the net present
value of the forest and (2) maximizing the minimum area over the planning horizon in large, mature forest
patches. The methods for generating the efficient frontier were tested using a hypothetical forest consisting of
50 stands. The methods were compared based on the number of efficient solutions each method can identify and
on how quickly the solutions were identified. The potential to generalize these algorithms to 3- or n-criteria cases
is also assessed. Three of the traditional approaches, the �- constraining; the triangles method, the decomposition
algorithm based on the Tchebycheff metric; and the new, proposed method are capable of generating all or most
of the efficient solutions. However, the triangles and the new method far outperformed the other approaches in
terms of solution time. The new method, called alpha-delta, appears to be the simplest to generalize to the
tri-criteria case. FOR. SCI. 52(1):93–107.
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SOCIETY EXPECTS MORE from its forest resources than
merely timber production. Increasingly, values such
as wildlife habitat, recreation, water quality, esthet-

ics, and spiritual values are also recognized. In accordance
with these expectations, the Multiple-Use Sustained-Yield
Act (1960) requires the national forests of the United States
to be managed for the multiple uses of water, timber,
wildlife, fish, recreation, and range (Fedkiw 1997). The
emerging field of multiple-objective forest planning reflects
this diverse nature of forest resources management (Pukkala
2002). Sustaining large patches of mature forests (forest
stands that are older than a certain age) throughout the
planning horizon can contribute to fulfilling many of the
multiple uses demanded by society (Rebain and McDill
2003a). In addition, adjacency constraints, which limit the
size of harvest openings, have been promoted as contribut-
ing to these objectives (e.g., Thompson et al. 1973, Jones et
al. 1991, Murray and Church 1996a, b, Snyder and ReVelle
1996a, b, 1997a, b, Carter et al. 1997, Murray 1999). How-
ever, adjacency constraints tend to work against the goal of
developing and preserving large, mature patches of forest
(Harris 1984, Franklin and Forman 1987, Rebain and Mc-
Dill 2003a). As adjacency constraints are intended to pre-
vent large clearcuts, they tend to disperse harvesting activ-
ities across the forest in relatively small patches. Large,
contiguous tracts of mature forests are not likely to be
maintained this way.

One way of tackling this problem is to include con-
straints that require the models to maintain a minimum total

area in mature patches meeting both a minimum age and a
minimum size requirement, while maximizing the net
present value (NPV) of the forest (Rebain and McDill
2003a, c). However, it might be difficult to identify an
appropriate total area of large, mature patches that will
adequately meet conservation goals but not be overly re-
strictive. Nevertheless, single-objective models have often
been applied to forest planning problems with multiple
objectives where the minimum or maximum level of other
outputs or values are defined by constraints (Leuschner et
al. 1975, Mealy and Horn 1981, Cox and Sullivan 1995,
Bettinger et al. 1997). A priori methods, such as goal
programming (Field 1973, Kao and Brodie 1979, Field et al.
1980, Arp and Lavigne 1982, Hotvedt 1983, Mendoza 1987,
Rustagi and Bare 1987, or Davis and Lui 1991) also suffer
from the limitation that the decision-maker (DM) is required
to identify his or her preferences before the solution process.
Expecting the DM to specify the desired level of achieve-
ment or to specify his or her preferences for the various
objectives without knowing what is possible is not only
unrealistic, but might also lead to poor management deci-
sions. An interactive method, where the DM helps drop
certain regions of the feasible solution set by comparing and
ranking a limited number of alternative solutions, is a fea-
sible approach that might remedy this shortcoming. With an
interactive approach, at each iteration the DM progressively
articulates his or her preferences and the focus of the search
becomes more confined. This way, the search converges
toward a solution that maximizes the DM’s utility—the best
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compromise solution. The major drawback of the interac-
tive approach is that it requires an active and possibly
lengthy involvement of the DM. Still, in cases with three or
more criteria, the interactive approach might be the only
viable option, because the complete set of alternatives and
the trade-offs among them are usually too difficult for the
DM to visualize, let alone to analyze and rank. Miettinen
(1999) provided comprehensive discussions of these inter-
active methods.

With a bi-objective model such as the one discussed in
this article, the DM can be spared this potentially lengthy
interaction and need not define his or her preferences until
the potential solution alternatives are identified. This ap-
proach allows the DM to explore all possible trade-offs
between the two objectives—in this case, the net present
value of the forest and the minimum area over time in large,
mature patches. This approach provides the DM with a more
holistic understanding of the trade-offs and more alterna-
tives to choose from. This type of approach is called an a
posteriori approach in the operations research (OR) litera-
ture (Miettinen 1999).

Thus, when objectives conflict, as in the spatially explicit
harvest scheduling problem discussed in this article, it
might be useful to identify the set of Pareto-optimal, or
efficient, solutions; i.e., the potential management alterna-
tives. An efficient solution (such as Point E in Figure 1), as
opposed to a dominated solution (such as Point C in the
figure), occurs when it is not possible to increase the attain-
ment of one objective without reducing the attainment of
another. Knowing the set of efficient solutions can help the
DM understand the trade-offs between the competing
objectives.

In a multi-objective optimization problem, the level of
achievement of each objective defines each axis of the
objective space (Figure 1). Because the problems in this
article are mixed-integer programming (MIP) problems,
the set of attainable objective values, which can be rep-

resented in this space, is not a convex set. In fact, it is not
a continuous set; it consists of a set of discrete points
corresponding to the potentially large, but finite number
of feasible solutions such as Points A, B, C, D, and E in
Figure 1. The fact that this set is not convex requires us
to distinguish between supported and nonsupported
Pareto-optimal solutions. A series of weighted objective
functions, where weights are assigned to each of the
problem objectives and summed to obtain a single objec-
tive function value, can be used to identify the corner
points of the convex hull of the efficient solution set,
such as Points A and B in Figure 1. These points are
commonly called supported strong (or strict) Pareto-
optima (T’kindt and Billaut 2002). Efficient solutions
that are not on the border of the convex hull, such as
Point E in Figure 1, are called nonsupported strict Pareto-
optima. Such optima will not be identified by a weighted
objective function approach.

The set of strong Pareto-optima, both supported and
nonsupported, define the outside (convex) corners of a line
called the efficient frontier or trade-off curve. Points on the
vertical or horizontal line segments between these corners
may represent dominated solutions, such as Point D in
Figure 1. However, there does not necessarily exist a solu-
tion at every point on these line segments due to the integer
nature of the problem. Solutions on these line segments,
such as the one represented at Point D, are called weak
Pareto-optima. The efficient frontier separates the region
where additional efficient solutions are known not to exist
from the region where dominated solutions may exist.
Knowing the efficient frontier can be valuable to decision
makers because it demonstrates the possible trade-offs be-
tween the objectives of a given problem.

When only two objectives are of interest, a two-dimen-
sional efficient frontier can be generated to describe the
trade-offs between these objectives. Such curves can help
determine which forest management plans will result in the

Figure 1. Multicriteria optimization terminology.
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best combination of achievements with respect to each goal.
Importantly, trade-off curves allow the DM to assess the
amount of one goal that must be given up to achieve a given
increase in the amount of another goal. Trade-off curves for
forest and wildlife management problems have been pre-
sented in Roise et al. (1990), Holland et al. (1994), Cox and
Sullivan (1995), Arthaud and Rose (1996), Church et al.
(1996, 2000) Snyder and ReVelle (1997a), Williams (1998),
and Richards and Gunn (2000). Cohon et al. (1979) devel-
oped a technique for approximating the efficient frontier for
convex bi-criteria problems.

This research addresses the question of how to identify
the efficient frontier as efficiently as possible for spatially
explicit harvest scheduling models where the set of solu-
tions is not convex in the objective space. Efficiency is
important because the time required to identify even a single
efficient solution can be long (Miettinen 1999). This is
especially true with spatially explicit models such as the one
used in this article. These models are typically formulated as
mixed-integer programming (MIP) problems, which are, in
general, NP-Hard. Essentially this means that solution times
may increase with problem size faster than any polynomial
function of problem size. Wolsey (1998) provides a more
precise, but less intuitive, definition of the NP-Hard prop-
erty. This article tests the performance of five traditional
methods and one proposed method of generating the effi-
cient frontier for a bi-criteria, spatially explicit harvest
scheduling problem.

The Bi-Criteria Formulation

This section describes the formulation of the example
spatially explicit harvest scheduling model. It includes har-
vest flow constraints, maximum harvest opening size con-
straints, constraints that define the minimum area of large,
mature patch habitat over time, and a minimum average
ending age constraint. The model formulation of the mature
forest patch criterion is essentially the same as the one
presented in Rebain and McDill (2003a). Formulation of the
maximum harvest area constraints is a generalization of the
formulation presented in McDill et al. (2002).

Max Z � �
m�1

M

Am�cm0Xm0 � �
t�hm

T

cmt Xmt� (1)

Max � (2)

subject to

Xm0 � �
t�hm

T

Xmt � 1 for m � 1, 2, . . . , M, (3)

�
m�Mht

�mt � Am � Xmt � Ht � 0 for t � 1, 2, . . . T (4)

bltHt � Ht�1 � 0 for t � 1, 2, . . . , T � 1 (5)

�bhtHt � Ht�1 � 0 for t � 1, 2, . . . , T � 1 (6)

�
m�Mp

Xmt � nPi
� 1

for all p � P and t � hi, . . . , T (7)

�
j�Jmt

Xmj � Omt � 0

for m � 1, 2, . . . , M and t � 1, 2, . . . , T (8)

�
m�Mc

Omt � ncBct � 0

for c � C and t � 1, 2, . . . , T, (9)

�
c�Cm

Bct � BOmt � 0

for m � 1, 2, . . . , M and t � 1, 2, . . . , T (10)

�
m�1

M

AmBOmt � � for t � 1, 2, . . . , T (11)

�
m�1

M

Am� �Age0t
T � Age T�X0t

� �
t�hm

T

�Agemt
T � Age T�Xmt� � 0 (12)

Xmt � �0, 1�

for m � 1, 2, . . . , M and t � 0, hm, hm � 1, . . . , T

(13)

Bct � �0, 1� for c � C, t � 1, 2, . . . , T (14)

Omt, BOmt � �0, 1�

for m � 1, 2, . . . , M and t � 0, 1, . . . , T (15)

where

Xmt � A binary decision variable whose value is 1 if
management unit m is to be harvested in period
t for t � hm, hm�1, . . . , T. In other words, Xmt

represents a harvesting prescription for manage-
ment unit m. When t � 0, the value of the binary
variable is 1 if management unit m is not har-
vested at all during the planning horizon (i.e.,
Xm0 is the “do-nothing” alternative for manage-
ment unit m). Note: in some cases, the index j is
used to denote the harvest period. In these cases
Xmj is the same as Xmt if j � t.

hm � The first period in which management unit m is
old enough to be harvested.

� � The minimum area of mature forest habitat patch
overall periods.

M � The number of management units in the forest.
T � The number of periods in the planning horizon.
cmt � The discounted net revenue per hectare if man-

agement unit m is harvested in period t, plus the
discounted residual forest value based on the
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projected state of the stand at the end of the
planning horizon.

Am � The area of management unit m in hectares.
vmt � The volume of sawtimber in m3/hectare har-

vested from management unit m if it is harvested
in period t.

Mht � The set of management units that are old enough
to be harvested in period t.

Ht � A continuous variable indicating the total vol-
ume of sawtimber in m3 harvested in period t.

blt � A lower bound on decreases in the harvest level
between periods t and t � 1 (where, for example,
blt � 1 requires nondeclining harvest; blt � 0.9
would allow a decrease of up to 10%).

bht � An upper bound on increases in the harvest level
between periods t and t � 1 (where, for example,
bht � 1 allows no increase in the harvest level;
bht � 1.1 would allow an increase of up to 10%).

P � The set of all paths, or groups of contiguous
management units, whose combined area is just
above the maximum harvest opening size (the
term “path,” as used in this study, is defined in
the following discussion).

Mp � The set of management units in path p.
nMp

� The number of management units in path p.
hi � The first period in which the youngest manage-

ment unit in path i is old enough to be harvested.
Omt � A binary variable whose value may equal 1 if

management unit m meets the minimum age
requirement for mature patches in period t, i.e.,
the management unit is old enough to be part of
a mature patch.

Jmt � The set of all prescriptions under which manage-
ment unit m meets the minimum age requirement
for mature patches in period t.

C � The set of all clusters, or groups of contiguous
management units whose combined area is just
above the minimum large, mature patch size (the
term “cluster,” as used in this study, is defined in
the following discussion).

Mc � The set of management units that compose clus-
ter c.

nc � The number of management units in cluster c.
Bct � A binary variable whose value is 1 if all of the

stands in cluster c meet the minimum age re-
quirement for mature patches in period t, i.e., the
cluster is part of a mature patch.

BOmt � A binary variable whose value is 1 if manage-
ment unit m is part of a cluster that meets the
minimum age requirement for large mature
patches, i.e., the management unit is part of a
patch that is big enough and old enough to con-
stitute a large, mature patch.

Cm � The set of all clusters that contain management
unit m.

Agemt
T � The age of management unit m at the end of the

planning horizon if it is harvested in period t.

AgeT � The target average age of the forest at the end of
the planning horizon.

Equation 1 specifies the first objective function of the
problem, namely to maximize the discounted net revenue
from the forest during the planning horizon, plus the dis-
counted residual value of the forest. For age classes up to
the optimal rotation, residual forest values are equal to the
present value of the timber management costs and revenues
on the management unit, assuming that it will be harvested
at the optimal economic rotation, plus the present value of
the land expectation value (LEV) representing future rota-
tions. The LEV is the present value, per unit area, of the
projected costs and revenues from an infinite series of
identical even-aged forest rotations, starting initially from
bare land. For age classes beyond the optimal economic
rotation, residual forest values are equal to the liquidation
value; i.e., the value of immediately harvesting the timber,
plus the LEV for future rotations.

Equation 2 maximizes the minimum amount of total area
in large, mature forest patches over the time periods in the
planning horizon. This is the same objective specified by
Rebain and McDill (2003a, b). The logic of this objective is
that the period with the least amount of habitat will repre-
sent the key bottleneck affecting the viability of populations
of species that depend on this type of habitat. Such an objective
automatically precludes the possibility of increasing the
amount of mature patch habitat over what currently exists,
however. In situations where the current amount of habitat is
considered to be less than what is desirable, a different formu-
lation of the objective would be more appropriate.

Constraint set 3 consists of logical constraints that allow
only one prescription to be assigned to a management unit,
including a do-nothing prescription. Constraint sets 4–6 are
flow constraints. Constraint set 7 consists of adjacency
constraints generated with the Path Algorithm (McDill et al.
2002). These constraints limit the maximum size of a har-
vest opening, often necessary for legal or policy reasons, by
prohibiting the concurrent harvest of any contiguous set of
management units whose combined area just exceeds the
maximum harvest opening size. The exclusion period im-
posed by these constraints equals one planning period, but
the constraints can be modified easily to impose longer
exclusion periods in integer multiples of the planning pe-
riod. A “path” is defined for the purposes of the algorithm
as a group of contiguous management units whose com-
bined area just exceeds the maximum harvest opening size.
These paths are enumerated with a recursive algorithm
described in McDill et al. (2002). A constraint is written for
each path to prevent the concurrent harvest of all of the
management units in that path, because this would violate
the maximum harvest opening size. This is done for each
period in which it is actually possible to harvest all of the
management units in a path. (In the initial periods of the
planning horizon, some of the management units in a path
may not be mature enough to be harvested.)
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Constraint sets 8–11 are the mature patch size con-
straints. Constraint set 8 determines whether or not man-
agement units meet the minimum age requirement for ma-
ture patches. These constraints sum over all of the prescrip-
tion variables for a management unit under which the unit
would meet the age requirement for mature patches in a
given period. If any of these prescriptions have a value of 1,
then Omt may also equal 1, indicating that the management
unit will be “old enough” in that period. One of these
constraints is written for each management unit in each
period.

Constraint set 9 determines whether or not a cluster of
management units meets the minimum age requirement for
mature patches. Clusters are defined here as groups of
contiguous management units whose combined area just
exceeds the minimum mature patch size requirement. All
possible clusters are enumerated using a recursive algorithm
described in Rebain and McDill (2003a). A cluster meets
the age requirement for mature patches in period t if all of
the management units that compose that cluster meet the
age requirement, as indicated by the Omt variables for the
management units in that cluster. If cluster c meets the age
requirement in period t, then Bct is allowed to take a value
of 1. These constraints are written for each cluster in each
period.

Constraint set 10 determines whether or not individual
management units are part of a cluster that meets the min-
imum age requirement, i.e., whether a management unit is
part of patch that is big enough and old enough. Because the
clusters overlap, this constraint set is necessary to properly
account for the total area of large, mature patch habitat.
These constraints say that a management unit is part of a
patch that meets the minimum age and size requirement for
large, mature patches in period t (BOmt � 1) if at least one
of the clusters it is a member of meets the age requirement
in that period. Constraint set 11 specifies that the total
mature patch area for each period must be larger than � in
all periods. Thus, � cannot be larger than the area of large,
mature forest patch habitat in any period. Equations 2 and
11 work together to capture the minimum amount of total
area in the large, mature forest patches over all the time
periods (the value of the variable �) and to maximize this
minimum area.

Constraint 12 is an ending age constraint. It requires the
average age of the forest at the end of the planning horizon
to be at least AgeT years, preventing the model from over-
harvesting the forest. In the example below, the minimum
average ending age was set at 40 years, or one-half the
optimal economic rotation. Constraint sets 13–15 identify
the stand prescription and mature patch size variables as
binary.

Methods for Identifying the Efficient Frontier
of the Bi-Criteria Model

Several approaches have been developed to generate the
efficient solution set for discrete multicriteria optimization
problems. This section briefly describes the basic methods

and any variations from the original algorithms used in this
research. The methods are described here primarily from the
perspective of the objective space.

Whenever either the units or the scale of the values of the
objectives are different, these values must be normalized if
a weighted objective function is used. In this research the
“best value” normalization approach was used, where the
weight coefficients are divided by the corresponding ele-
ments of the ideal solution. The ideal solution is a vector
whose elements are defined by the optimal attainment of the
respective objective without regard to any of the other
objectives (Figure 1). For example, the first element of the
ideal solution vector for the example problem in this re-
search is obtained by maximizing the net present value
without regard to the minimum area of mature habitat; the
second element is obtained by maximizing the minimum
area of mature habitat without regard to the net present
value. Clearly, the ideal solution is not attainable if the
criteria conflict with one another. The ideal solution is
identified and the criteria values are normalized in the
initialization phase of each of the algorithms discussed
below.

The Weighted Objective Function Method (P�)

Multiple-objective programming models, where the ob-
jective function is a weighted combination of multiple
goals, have been applied to many forest and wildlife man-
agement planning problems (e.g., Roise et al. 1990, Hof and
Joyce 1993, Snyder and ReVelle 1997a, and Williams
1998). As the name implies, the weighted objective function
method assigns weights to each of the objectives and com-
bines them into a single scalar objective function. One way
to determine a set of efficient solutions while maximizing
the weighted objectives is to use the scalar maximum prob-
lem, known as the P� problem, as proposed by Geoffrion
(1968):

P� � Max��
i�1

P

�ifi�x� : �
i�1

P

�i � 1, �i � 0, x � X�,

(16)

where Equation 16 maximizes the sum of the P objective
functions, fi(x), weighted by scalars �i � 0, where the sum
of the weights is 1, and the values of x satisfy the constraints
of the problem as defined by feasible set X. As mentioned
above, since the scales and/or the units of the objectives are
typically different, the weights have to be normalized. As-
signing all combinations of weights to the objective func-
tions guarantees the identification of each efficient point
provided the following conditions are met:

THEOREM 1: Let �i � 0 (i � 1, . . . , P) be fixed. If x0

is optimal for P�, then x0 is a(n) (properly) efficient solu-
tion. [The concept of proper efficiency eliminates the situ-
ation where for some criterion the marginal gain in one
objective can be made arbitrarily large relative to the mar-
ginal losses in each of the remaining criteria (Geoffrion
1968).]
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THEOREM 2: Let X be a convex set, and let the fi be
concave on X. Then x0 is properly efficient if and only if x0

is optimal in P� for some � with strictly positive components
(Geoffrion 1968).

Because the above spatially explicit harvest scheduling
problem involves discrete (binary) decision variables, the
feasible set X cannot be assumed to be convex for this
problem. There is, therefore, no guarantee that this method
will generate all the efficient solutions. In fact, the weighted
objective function method can only identify the supported
strict Pareto-optima. Nevertheless, the weighted objective
function method can be used to create an initial set of
solution alternatives. In an interactive approach, these alter-
natives may be presented to the DM, who can then specify
the range within which further solution alternatives can be
sought using some other method.

A modification of a well-known algorithm (cf. Eswaran
et al. 1989) was used here to decompose the weight space
into sections (line segments in the bi-criteria case) that
correspond to the same efficient solutions. In an ideal ap-
plication of this method, a section can be eliminated from
further exploration whenever its end points result in the
same solution. However, the algorithm had to be modified
slightly because large-scale problems cannot always be
solved to exact optimality. The problems were solved with
CPLEX 8.1, which uses a branch-and-cut algorithm to solve
MIP problems. CPLEX was instructed to stop when the
optimality gap—the percentage difference between the ob-
jective function value of the current best integer solution
and the dual bound (Williams 1998, McDill and Braze
2001)—reached 0.001%. Although this is a very conserva-
tive stopping rule—the default value in CPLEX is
0.01%—there were cases where the solution found with one
weight combination dominated the solution found with an
adjacent weight combination. By definition, the dominant
solution would be better for any weight combination, so the
dominant solution was assumed to be the optimal solution
for both weight combinations, and also for any weight
combination in between them, and the line segment between
the two weight combinations was not explored further. If the
solutions corresponding to the end points of the line seg-
ment were different and neither dominated the other, a new
weight combination was generated by calculating the mean
of the two weight combinations at the end points. The new
solution for the new weight combination was then compared
with the solutions for the neighboring weight combinations
to determine whether the subsections on the other side of the
new weight combination could be eliminated from further
consideration. The algorithm was terminated when there
were no sections left to decompose. This process is referred
to as the decomposition algorithm; similar decomposition
algorithms are used in some of the other methods described
below.

The �-Constraining Method

This approach, introduced in Haimes et al. (1971), in-
volves the following steps.

Step 1: Determine the ideal solution by optimizing
each objective without regard to the other. Call these opti-
mal values Maximum Net Present Value (MNPV) and Max-
imum HABitat (MHAB), respectively.

Step 2: (a) Maximize NPV while constraining the min-
imum amount of large, mature habitat over all periods
(HAB) to be larger than or equal to MHAB. (b) Maximize
HAB while constraining NPV to be larger than or equal to
MNPV. This results in two efficient solutions that define the
two ends of the efficient frontier. The remaining efficient
solutions will be found within the rectangle defined by these
two points.

Step 3: Choose a point on one of the criteria axes
within the interval defined by the two points found in step
2 (we chose the HAB axis). Call this value HAB. Maximize
the other objective (NPV) on the feasible set, subject to an
additional constraint that restricts HAB to be larger than or
equal to HAB. Unfortunately, this solution (call it NPVHAB)
might only be a weak Pareto-optimal solution. Therefore, a
fourth step is necessary to either confirm the efficiency of
NPVHAB or find a solution that is efficient and dominates
NPVHAB.

Step 4: Maximize HAB subject to the usual constraints,
plus a constraint that requires NPV to be larger than or equal
to NPVHAB. Call this problem PHAB. According to Sadago-
pan and Ravindran’s (1982) Theorem 2, any solution that
solves this problem is an efficient solution. This theorem
enables us to find all efficient solutions by parametrically
solving PHAB for different values of HAB (0 	 HAB 	
MHAB).

The algorithm used in this research, outlined in Figure 2,
makes use of this theorem by gradually proceeding from
one end of the efficient frontier to the other. The first two
steps are the same as above. Step 3 is to maximize NPV
subject to a constraint that requires HAB to be larger than or
equal to the HAB value from the previous solution plus a
sufficiently small 	 value. At the first iteration, this HAB
value is equal to the objective function value of the solution
that maximized HAB while constraining NPV to be larger
than or equal to MNPV (step 2b). The small 	 value is
necessary to avoid the same solution that was obtained in
the previous step. Of course, this value introduces the pos-
sibility that the algorithm will miss solutions that are within
the interval defined by the arbitrary 	 value. Step 4 is to
maximize HAB subject to a constraint that restricts NPV to
be larger than or equal to the NPV value obtained in step 3.
The algorithm terminates when the HAB value reaches
MHAB.

The Decomposition Method Based on the
Tchebycheff Metric

Eswaran et al. (1989) proposed a procedure to generate
the entire efficient solution set for nonlinear integer bi-
criteria problems that uses the Tchebycheff metric and
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solves the following so-called P
 problem for all parametric
values of 
:

P
 � Min
x�X

���f�x� � ȳ��
 : ��f�x� � ȳ��
 � max
i


i�fi�x� � ȳi�,

�
i�1

P


i � 1, x � X� (17)

where

��f� x� � ȳ��
 � max
i


i�fi�x� � ȳi�

is the weighted Tchebycheff metric, y� represents the ideal
solution vector, y�i represents the ideal value of objective i,

i is the weight parameter corresponding to objective i, and
fi(x) is objective function i.

All the solutions identified by the parametric decompo-
sition of the 
 space, which is analogous to parametric
programming, are efficient solutions if the following suffi-
cient condition, Bowman’s Theorem 4, is met if an efficient
set is uniformly dominant, then all the solutions to the P


problem are efficient points (Bowman 1975). An efficient

set is said to be uniformly dominant if, for every dominated
point xd � X, there exists an efficient point x* � X such that
fi(x

d) 	 fi(x*), for all i (Bowman 1975). In other words,
Bowman’s Theorem 4 is upheld only when there are no
weak Pareto-optima (such as Point D in Figure 1). Because
it is not possible in general to determine a priori whether
weak Pareto-optima exist for a given problem, we cannot
conclude that the decomposition method based on the Tche-
bycheff metric will always identify strictly efficient solutions.

The same decomposition algorithm discussed in the
weighted objective function method section above was
used to decompose the weight space of the Tchebycheff
metric. As discussed above, the algorithm applied here
differs slightly from the one described by Eswaran et al.
(1989) because we did not solve every problem to full
optimality. Eswaran et al. (1989) assumed that all prob-
lems would be solved to optimality, so their algorithm
eliminates sections of the weight space only when the end
points result in the same solution. Our algorithm elimi-
nates sections of the weight space either when the end
points result in the same solution or when the solution at
one end point dominates the solution at the other end

Figure 2. The �-constraining algorithm.
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point. In the latter cases, the dominant solution was
assumed to be the optimal solution at both end points and
for all points in between.

Hybrid Methods

A number of hybrid methods have been described in the
operations research literature that, by combining some of
the above basic approaches, efficiently use the positive
features of more than one method. For example, Wendell
and Lee (1977) combined the weighted objective function
method with the �-constraining method (Wendell and Lee
1977). They fixed the weight coefficients, �i, and paramet-
rically solved the problem below for each �i. The advantage
of the method is that the weight coefficients do not have to
be altered.

Max Phybrid � Max��
i�1

P

�i fi�x� : fi�x� � �i,

�
i�1

P

�i � 1, �i � 0, x � X� (18)

for all i � 1, . . . , P, where fi(x) is objective function i. Both
of the algorithms below can be thought of as special cases
of the hybrid method introduced by Wendell and Lee
(1977). The alpha-delta method was developed by the au-
thors, and the triangles method is from Chalmet et al.
(1986).

The Alpha-Delta Method

This approach takes advantage of the fact that if we
assign a substantially larger weight to one objective than to
the other, strong Pareto-optima can be identified consecu-
tively along the efficient frontier using a procedure similar
to the �-constraining method. Figure 3 illustrates this pro-

cess. The initialization phase is the same as in the decom-
position method based on the Tchebycheff metric: calculate
the ideal solution and then the two end points of the efficient
frontier, (EFS(1) and EFS(2)), as in Figure 2. A very large
weight is then assigned to one objective and a minimal
weight to the other. In Figure 3, PQ demonstrates such an
allocation of weights. From here on, a combined objective
function with a large weight assigned to one objective (NPV
in our case) and a small weight assigned to the other
objective (HAB) is maximized at each step subject to a
constraint that requires the achievement value of the other
objective (HAB) to be greater than or equal to the achieve-
ment value obtained by the previous step plus a sufficiently
small 	 value. At the first iteration, this achievement value
is equal to the objective function value of the solution that
maximized the HAB objective while constraining NPV to
be larger than or equal to MNPV (MNPV is the first element
of the ideal solution vector). The small 	 value ensures that
a new solution will be found. For example, using the
weighted objective function PQ in Figure 3a, Point A would
be picked up repeatedly if the lower bound on HAB were
not augmented by 	 (AHab � 	). Instead, Point B will be
found next (Figure 3a). The next iteration is implemented
using the new lower bound of (BHab � 	), where the BHab
value was obtained in the previous step.

The parameter 	 has to be set to a small value to mini-
mize the probability that efficient points will be missed. In
Figure 3b, for example, Point C would be missed if 	 were
not reduced. Similarly, the parameter � (the slope of the
weighted objective function) has to be small to minimize the
probability that an efficient point will be missed. The algo-
rithm terminates when the achievement value of the habitat
reaches its upper bound (MHAB in our case). The advan-
tage of this algorithm is that the new solution at each step
will always neighbor the previous one along the efficient
frontier if sufficiently small � and 	 are used, and, while the

Figure 3. The alpha-delta method. a, A case when � is sufficiently small. b, A case when � is not suficiently small.
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�-constraining method finds each new solution in two steps,
this approach will do it in one.

The Triangles Method

This algorithm, developed by Chalmet et al. (1986),
seeks Pareto-optimal solutions between two adjacent, effi-
cient points that have already been identified (e.g., solutions
A and B in Figure 4). The weight coefficients on the
objective functions are fixed and arbitrary. We used equal
weights for both objectives in this research. At each step,
the search space (the gray area in Figure 4) is confined by
two constraints. These constraints are gained by adding a
small 	1 and 	2 to the lower achievements on the two
objectives at the two adjacent solutions. In Figure 4, for
example, the section of the efficient frontier between Point
A and Point B is explored (the gray area in Figure 4a). A
section between two adjacent efficient points will be elim-
inated from further investigation if no feasible solution is
found there (such as in Figure 4b) or, alternatively, if the
difference in one of the objective values between the two
solutions is smaller than a predetermined limit. The algo-
rithm terminates when there are no sections left to explore.
Again, 	1 and 	2 have to be small to minimize the possi-
bility that the algorithm will miss an efficient solution. As
an example, in Figure 4b, Point C would be missed if the
value of 	1 were not reduced.

A Case Study

To illustrate and test the performance of the various
algorithms for generating the efficient frontier, an example
hypothetical forest was created. This forest consisted of 50
stands and could be considered slightly over-mature, since
approximately 40% of the area is between 60–100 years old
and the optimal rotation is 80 years. The average stand size
was 18 ha, and the total forest area was 900 ha. A 60-year
planning horizon was considered, composed of three

20-year periods. The four possible prescriptions for a given
stand were cut the management unit in period 1, period 2, or
period 3, or do not cut it at all. The minimum rotation age
was 60 years. A maximum harvest opening size of 40 ha
was imposed, and adjacent stands were allowed to be har-
vested concurrently as long as they did not violate this
maximum opening size. All management units are smaller
than the maximum harvest opening size. The wildlife spe-
cies under consideration is assumed to need habitat patches
that are at least 50 ha in size and at least 60 years old.
Because the minimum habitat patch size is greater than the
maximum harvest opening size, these patches must be com-
posed of more than one management unit. There were 139
paths and 539 clusters associated with the model formula-
tion of the test problem.

We implemented the algorithms described in the Meth-
ods section using CPLEX 8.1 (ILOG CPLEX 2002) on a
Dual-AMD Athlon MP 2400� (2.00 GHz) computer with
2.0 GB RAM. Programs to automate the algorithms were
written in Microsoft Visual Basic 6 using the ILOG CPLEX
Callable Libraries. The relative MIP gap tolerance parameter
(optimality gap) was set to 0.00001 (0.001%), and the MIP
variable selection strategy parameter was set to 3 (i.e., strong
branching). The precise setting of the optimality gap was
needed to minimize the chances of obtaining dominated solu-
tions. The multiobjective techniques described above assume
that each subproblem is solved to full optimality. Achieving
full optimality, however, is unrealistic even for small-scale
harvest scheduling problems such as the one presented in this
article. This is why a compromise value was chosen. Last, the
following parameter settings were used in the respective mul-
tiple-objective algorithms: � � 0.1 ha in the �-constraining
method; � � 0.01° and 	 � 0.1 ha in the alpha-delta method;
and 	1 � 0.1 ha and 	2 � $1 in the triangles method. The
weighted, the triangles, and the Tchebycheff decomposition
methods were terminated either if there were no weight seg-
ments left to decompose or after 60 h of CPU time.

Figure 4. The triangles method. a, A case when �1 is sufficiently small. b, A case when �1 is not sufficiently small.

Forest Science 52(1) 2006 101



The experiment addressed the following questions: (1)
How many of the efficient solutions can each algorithm
identify? (2) How long does each algorithm take to
identify all of the solutions that are found? (3) How good
are these solutions in terms of optimality? The third
question refers to the fact that, even though the optimality
gap was set to 0.001% for each algorithm, some methods
might consistently generate solutions that are better than
the ones generated by other methods but still within this
range.

Results and Discussion

Figure 5 shows the efficient frontier generated by the
various methods. The DMs, if confronted by these alterna-
tive solutions, will see that the trade-offs are relatively flat
between alternatives A and E and between B and C. They
would likely prefer E or C to A or B, because these solutions
produce considerably more habitat while only a small
amount of profit is forgone. Because E and C are far apart,
however, they may be interested in a nonsupported com-
promise solution such as H. Also, the DMs might be inter-
ested in a cluster of alternatives, such as those around Points
F and G that, if implemented, would produce similar
amounts of profit and habitat. They might be interested in a
third decision factor (something other than profit or habitat
maximization) that could potentially tip the balance in favor
of one of these solutions. This solution might or might not
be a supported pareto optimum—e.g., not necessarily Point
F or G that can be found by the weighted method. More-
over, as there are plenty of efficient solutions along the
frontier, DMs with conflicting interests could select the best
compromise solution from a good pool of alternatives.

The weighted objective function method identified only
six efficient solutions (points A, E, C, F, G, D on Figure 5).
This method misses the majority of the efficient solutions
because most of the efficient solutions in this case are

nonsupported Pareto-optimal solutions. It is hard to say,
without looking at a large number of problems, whether this
is a typical situation or not. Furthermore, in general, sup-
ported solutions are more likely to be the most desirable
compromise solutions than nonsupported solutions. How-
ever, it is clear that one cannot be sure that desirable
nonsupported solutions do not exist unless one looks for
them, and they cannot be found with the weighted objective
function method. This is the fundamental drawback with
relying only on the weighted objective function method.

The �-constraining, the alpha-delta, and the triangles
methods all found the highest number of efficient solutions
(36). In terms of solution times, however, the alpha-delta
method was considerably faster than the others (6.27 hours),
followed by the triangles method (17.13 hours), and then the
�-constraining method (58.75 hours). The Tchebycheff de-
composition method found 34 solutions in 36.83 hours,
while the weighted method found 6 in 1.72 hours.

Table 1 summarizes the set of efficient solutions. In
terms of optimality, the �-constraining and the triangles
methods performed the best. The alpha-delta method pro-
duced the same solutions as those generated by the
�-constraining and the triangles methods in all but five
cases. In those cases, the achievements of the NPV objec-
tive obtained with the alpha-delta method were slightly less
(Table 2). In 3 of 34 cases, the Tchebycheff decomposition
method resulted in lower NPV achievements than the
�-constraining or the triangles methods. As the greatest
difference in NPV was only 0.0254%, these differences are
probably not a significant concern. However, it is notewor-
thy that the differences consistently favor some algorithms
over others. In the case of the Tchebycheff decomposition
method, for instance, there is a simple explanation for the
lower attainments. As described earlier (Equation 16), this
method minimizes the maximum (weighted) difference in
the attainments of the respective objectives between two

Figure 5. Efficient frontier of the bi-criteria harvest scheduling problem (supported solutions are shown with
open markers).
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solutions, one of which is the ideal solution. Once the
maximum of these weighted differences is minimized, there
is no incentive to further reduce the value of the other
differences. This is why the attainment values on one ob-
jective (the NPV of the forest in this case) can be subopti-
mal. By using another metric, the L1 metric, for example,
which measures the weighted sum (instead of the weighted
maximum) of the differences in the attainments on the
respective objectives, this problem can easily be overcome.

Table 1 also provides information on how the optimal

solution changes along the efficient frontier. The rightmost
columns show the IDs of those management units that form
mature forest patches in each planning period. It is note-
worthy that, given the various optimal harvest schedules,
combinations of almost half of the units (24) may become
old enough to be part of a patch over the planning horizon.
The results suggest that a small change in management
decisions, such as to cut a particular unit instead of another
one, may lead to a much better achievement on one objec-
tive at a minimal loss on the other objective. One such

Table 1. The set of efficient solutions

Efficient solutions

Constraining
period

Efficient
points
missed

Management units in mature forest patches

No.
NPV
($)

Habitat
(ha) Period 1 Period 2 Period 3

1 2,445,084 0 — — — —
2 2,427,424 64.3817 3 13, 18, 23, 43 5, 14, 48 7, 44, 48
3 2,423,119 64.9906 2 W 13, 18, 23, 43 5, 14, 48 5, 44, 48
4 2,410,088 66.3003 3 Ts, W 13, 18, 23, 43 5, 6, 11, 48 5, 44, 48
5 2,409,663 66.7425 1 W 13, 18, 23, 43 5, 6, 11, 48 5, 6, 7, 44
6 2,397,375 79.0436 3 W 2, 6, 28 5, 6, 11, 14, 48 7, 14, 44, 48
7 2,395,672 85.2725 1 W 2, 6, 29 5, 6, 11, 14, 48 14, 16, 21, 36, 44, 48
8 2,373,040 101.2655 1 W 6, 13, 18, 28, 43 5, 6, 11, 43, 48 7, 16, 21, 36, 48
9 2,372,633 119.0577 1 2, 6, 18, 28, 43 5, 6, 11, 14, 43, 48 7, 16, 21, 36, 44, 48

10 2,336,542 121.2323 1 W 2, 13, 18, 28, 43 5, 11, 13, 14, 43, 48 7, 16, 21, 36, 44, 48
11 2,327,001 121.3514 1 W 2, 6, 23, 28, 43 6, 11, 14, 23, 34, 43, 50 16, 21, 22, 34, 36, 47, 50
12 2,318,702 122.6209 1 W 2, 6, 13, 28, 43 5, 6, 11, 13, 14, 43, 48 7, 16, 21, 36, 44, 48
13 2,317,408 123.2003 3 W 2, 6, 18, 23, 28, 43 6, 11, 14, 23, 34, 43, 50 16, 17, 21, 34, 36, 42, 47
14 2,317,016 126.3608 3 W 2, 6, 18, 23, 28, 43 6, 11, 14, 23, 34, 43, 50 16, 21, 22, 34, 36, 47, 50
15 2,317,008 126.5215 3 Ts, W 2, 6, 18, 23, 28, 43 6, 11, 14, 23, 34, 43, 50 16, 21, 34, 36, 42, 47, 50
16 2,316,923 128.2639 3 W 2, 6, 18, 23, 28, 43 6, 11, 14, 23, 34, 43, 50 16, 21, 22, 34, 36, 42, 50
17 2,316,392 129.7142 2 W 2, 6, 18, 23, 28, 43 6, 11, 14, 23, 34, 43, 50 16, 21, 22, 34, 36, 42, 47,50
18 2,312,040 130.0187 3 W 2, 6, 18, 23, 28, 43 5, 6, 14, 23, 34, 43, 48 7, 14, 34, 42, 44, 47, 48
20 2,311,161 136.1711 1 W 2, 6, 13, 18, 23, 28, 43 5, 6, 11, 13, 14, 43, 48 7, 14, 16, 21, 36, 44, 48
21 2,308,774 136.8799 1 2, 6, 15, 18, 23, 28, 43 5, 6, 11, 14, 15, 43, 48 7, 14, 16, 21, 36, 44, 48
22 2,276,022 137.0762 1 W 2, 13, 18, 23, 28, 43 5, 11, 14, 15, 23, 43, 48 7, 14, 16, 21, 36, 44, 48
23 2,273,635 137.785 1 W 2, 15, 18, 23, 28, 43 5, 11, 14, 15, 23, 43, 48 7, 14, 16, 21, 36, 44, 48
24 2,268,411 138.2501 1 W 2, 13, 15, 18, 28, 43 5, 11, 13, 14, 15, 43, 48 7, 14, 16, 21, 36, 44, 48
25 2,268,166 138.4648 1 W 2, 6, 13, 23, 28, 43 6, 11, 13, 14, 23, 34, 43, 50 16, 21, 22, 34, 36, 42, 47, 50
26 2,267,415 139.0545 1 W 2, 13, 15, 18, 28, 43 5, 11, 13, 14, 15, 43, 48 5, 7, 16, 21, 36, 44, 48
27 2,263,109 139.1736 1 W 2, 6, 15, 23, 28, 43 6, 11, 14, 15, 23, 34, 43, 50 6, 11, 16, 21, 34, 36, 42, 44
28 2,255,576 140.4431 1 W 2, 6, 13, 15, 28, 43 2, 5, 6, 11, 43, 48 5, 6, 7, 11, 16, 21, 36, 44
29 2,252,026 143.2915 2 W 2, 6, 13, 18, 23, 28, 43 5, 6, 14, 23, 34, 43, 48 7, 16, 21, 34, 36, 42, 44, 47, 48
30 2,250,014 152.015 1 2, 6, 13, 18, 23, 28, 43 5, 6, 14, 23, 34, 43, 48, 50 7, 16, 21, 34, 36, 42, 44, 47, 48
31 2,246,204 152.7238 1 W 2, 6, 15, 18, 23, 28, 43, 48 5, 6, 14, 15, 23, 34, 43, 48 14, 16, 21, 34, 36, 42, 44, 47
32 2,238,791 153.9933 1 W 2, 6, 13, 15, 18, 28, 43 5, 6, 11, 13, 14, 15, 43, 48 6, 7, 11, 16, 21, 36, 44, 48
33 2,205,934 154.8984 1 W 2, 13, 15, 18, 23, 28, 43 2, 5, 14, 23, 34, 43, 48 5, 7, 16, 21, 34, 36, 42, 44, 47
34 2,194,305 156.287 1 W 2, 6, 13, 15, 23, 28, 43 2, 5, 6, 23, 34, 43, 48 5, 6, 7, 16, 21, 34, 36, 42, 44
35 2,174,106 163.5352 2 W 2, 6, 13, 15, 18, 23, 28, 43 2, 5, 6, 23, 34, 43, 48 5, 6, 7, 16, 21, 34, 36, 42, 44, 47
36 2,170,416 169.8372 1 2, 6, 13, 15, 18, 23, 28, 43 5, 6, 14, 15, 23, 34, 43, 48, 50 7, 14, 16, 21, 34, 36, 42, 44, 48

Notes: W and Ts stand for those efficient points that were missed by the weighted objective function and the Tchebycheff methods, respectively.

Table 2. Differences in solution optimality among the various methods

No.

�-Constraining
& triangles Alpha-Delta Tchebycheff

NPV ($)
Habitat

(ha) NPV ($)
Habitat

(ha)
Difference in

NPV (%) NPV ($)
Habitat

(ha)
Difference in

NPV (%)

2 2,427,424 64.3817 2,426,808 64.3817 0.0254 2,426,828 64.3817 0.0246
3 2,423,119 64.9906 2,423,028 64.9906 0.0038 2,422,636 64.9906 0.0199
4 2,410,088 66.3003 2,409,557 66.3003 0.0220 Efficient point missed

5 2,409,663 66.7425 2,409,088 66.7425 0.0239 2,409,608 66.7425 0.0023
36 2,170,416 169.8372 2,170,320 169.8372 0.0044 2,170,416 169.8372 0.0000
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example would be choosing harvest schedule no. 9 instead
of no. 8. It is also worth pointing out that in most of the
cases (23 of 36), period 1 was the constraining time period
in producing mature forest habitat. This is not surprising,
particularly for higher levels of habitat production, since the
available mature habitat in period 1 cannot be increased
beyond 169.84 ha and harvesting decisions can only de-
crease the amount of mature habitat in that period. There is
more flexibility to arrange harvesting decisions in earlier
periods to create large mature patches in later periods.

Figure 6 shows the cumulative time required to obtain
each solution for each method. The figure clearly shows that
the alpha-delta method dominates the others in terms of
solution time, finding all 36 efficient solutions in a little
more than 6 hours. The figure also shows that the alpha-
delta and the triangles methods found all 36 efficient solu-
tions well before the �-constraining found five. Although
the weighted objective functions method identified only six
of the efficient points, these six points were found relatively
quickly, and this “filtered” set of alternatives is most likely
to be among those that are most preferred and might be
useful for interactive methods involving the DM or to find
a good, distributed set of alternative solutions if solution
time is a constraint. There is no guarantee, however, that the
set of solutions found with this method will be evenly
distributed along the efficient frontier. An additional advan-
tage of the weighted method is that, unlike the other ap-
proaches, it does not require adding new constraints to the
original problem and thus it preserves the original constraint
structure (ReVelle 1993). This can be a huge benefit in
polynomially solvable integer programming problems that
have special constraint structures, such as total unimodular-
ity (Wolsey 1998). This structure would be destroyed if the
other methods were used. This is unlikely to be the case,
however, in realistic problems, where a large variety of
constraints will likely be imposed in the model.

Inasmuch as the weighted method can only identify

supported solutions, its success in finding a sufficient num-
ber of efficient alternatives for larger problems depends on
the proportion of supported versus nonsupported Pareto-
optima. Because the efficient frontier can take many shapes,
the proportion of supported solutions is problem-dependent
and hard to foresee. The frontier can be a strictly concave
curve with only two supported solutions (and hundreds of
nonsupported solutions). However, the frontier may consist
of many concave and convex segments, in which case many
supported Pareto-optima may exist. Another factor that will
influence the usefulness of the weighted method is the
distribution of the supported solutions. If there are large
gaps between supported solutions, some other method will
be needed to explore those gaps further.

Although none of the methods can guarantee that they
will find all of the efficient solutions to a problem, three of
the five methods that were tested found essentially the same
set of 36 efficient solutions. The Tchebycheff decomposi-
tion algorithm does not guarantee the identification of the
complete set of efficient alternatives unless the uniformly
dominant property of the feasible set of the harvest sched-
uling problem holds. This method failed to find 2 of the 36
efficient solutions found by the other methods. In general, it
is not likely that the uniformly dominant property will hold
for problems like the example problem used here. For
example, there generally are a very large number of feasible
solutions with a given minimum area of mature patch hab-
itat in one period, but with varying net present values. It is
hard to predict how many efficient solutions this method
would actually find for any given problem. In contrast, by
adjusting the parameters of the �-constraining (parameter
	), alpha-delta (parameters 	 and �), or triangles (parame-
ters 	1 and 	2) methods, one can reduce the probability of
missing any of the solutions with minimal additional com-
putational cost. It is likely that, for similar parameter set-
tings, the chance that the �-constraining method will miss an
efficient solution is lower than the chance of missing a

Figure 6. Cumulative solution times for each method.
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solution with alpha-delta or triangles methods as the former
has only one parameter—and hence only one area—that
controls the size of the area where missed solutions might
exist. In addition to not finding all of the efficient solutions,
the time required by the Tchebycheff method to find the 34
efficient solutions that it found was substantially longer than
the time required by either the alpha-delta or the triangles
methods to find 36 efficient solutions.

The potential of the methods discussed here to generalize
to the tri-criteria case is difficult to assess without actually
applying them to a specific case. However, a few observa-
tions can be made at this time with regard to this issue. First,
the weighted and the Tchebycheff methods are relatively
easy to generalize by decomposing the weight space, which
is a triangle in the three-objective case, into so-called indif-
ference regions that lead to identical efficient solutions.
However, as the results in this article suggest, these methods
can miss efficient solutions. Generalizing the other three
algorithms to deal with three objectives appears to be quite
complicated, but still possible. Each approach would require
adding a potentially large number of constraints to the
problem at each iteration. For the alpha-delta and the
�-constraining methods, the set of constraints that one might
add to the formulation at each step would form a nonconvex
feasible region in the objective space. By introducing a set
of binary variables, this region can easily be described
within one formulation. Generalizing the �-constraining ap-
proach to more than two objectives would be particularly
expensive computationally because, at each step, an effi-
cient solution can only be obtained after solving three
subproblems for the tri-criteria case (n subproblems for the
n-criteria case). This is the only way, however, to ensure
that the final solution is not dominated. This problem is
avoided by using a weighted objective function with non-
zero, fixed weights in the alpha-delta algorithm. In our
experience, the alpha-delta method has the further advan-
tage, over the other methods, of being very simple to trans-
late into computer code.

In some situations when computer time is a constraint
but involving the DMs in the planning process is possible,
the weighted- and the alpha-delta methods could be com-
bined. The forest manager could use the weighted method
first to obtain a rough estimate of the trade-offs relatively
quickly, and present this initial set of solutions to the DMs.
If the DMs are not satisfied with any of these initial solu-
tions, then certain segments of the efficient frontier could
further be explored in line with the DMs’ interests using the
alpha-delta method.

A larger number of efficient solutions is likely to exist
for problems with more stands and more area. In fact, the
number of efficient solutions could explode as the problem
size increases due to the combinatorial nature of spatially
explicit harvest scheduling. This would make the discussed
methods computationally very expensive or even intracta-
ble. In these cases, it may be that the weighted objectives
method will provide a large number of well-distributed
solutions, and the other approaches would not be needed.
However, there is no guarantee this will occur. One way of

reducing solution times is by widening the optimality tol-
erance gap. This would, however, increase the likelihood of
obtaining dominated solutions. Another option is to increase
the spacing of the efficient solutions in the objective space,
which can be done by increasing the values of parameters �
and 	 in the alpha-delta, � in the �-constraining algorithm, or
by changing the stopping rule for the other methods. This
approach can reduce the cumulative solution times without
jeopardizing the Pareto-optimality of the individual solu-
tions. If, however, one or more of the individual IP sub-
problems are intractable, then increasing the optimality tol-
erance gap is likely to be the only workable solution.

Conclusions

The multicriteria optimization techniques discussed in
this article provide useful alternatives to goal programming
or other multicriteria approaches when the decision-maker
does not have a priori understanding of the potentials for
and trade-offs between the conflicting objectives and there-
fore cannot readily specify preferences or a list of targets for
the objectives. This situation occurs frequently in forest
planning. Target values or preferences for criteria that de-
scribe wildlife habitat goals, such as the overall area to
maintain in mature forest patches or the amount of edges
within a given landscape, are often hard to specify a priori.
By providing exact information on the nature of the trade-
offs between such conflicting criteria, the methods dis-
cussed above would help the DM select the best compro-
mise solution and give him or her more insight into the
problem. We believe that this is the primary value of the
“frontier” methods described here. In those situations where
the DM is confident about what the targets should be, these
computationally expensive methods may not be appropriate.

The following conclusions are suggested by the theoret-
ical discussion and the analysis of the test problem in this
article: (1) If a complete set of efficient solutions is desired,
the discrete nature of the harvest scheduling problem rules
out the weighted objective function method as a useful
approach because many efficient solutions may be missed;
(2) In the bi-criteria case, the �-constraining, the Tcheby-
cheff decomposition, the alpha-delta, and the triangles
methods are all capable of identifying a very good set of
solutions; (3) The alpha-delta and the triangles methods
performed the best in terms of solution times for the test
problem; (4) There were infrequent and minor differences in
how the different algorithms performed in terms of solu-
tion optimality, but when differences occurred, the
�-constraining and the triangles method consistently per-
formed better than the other methods; (5) In our experience,
the alpha-delta method is the easiest to translate into com-
puter code; (6) Although each of the methods can be gen-
eralized to the tri-criteria case, the alpha-delta method ap-
pears to generalize the most easily.

Rigorous additional experimentation would be needed to
determine whether these results would apply to a wide range
of forest planning problems of various scales and various
structures. The primary avenue of future research, however,
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points to the development of algorithms that would effi-
ciently tackle the general, n-criteria case for discrete for-
mulations such as the spatially explicit harvest scheduling
problems. As multiple-use forest management becomes
more important for society, multiobjective optimization
techniques, such as the “frontier” methods discussed here,
will probably receive more attention in the future. Further-
more, their potential will rapidly expand as the performance
of both optimization software and computer hardware im-
proves. Currently, however, these techniques can only be
applied at a small-scale, pilot-study level. These pilot stud-
ies, however, are very important in testing and fine-tuning
these models before applying them to on-the-ground forest
planning with real constituents. Analyzing small models can
provide valuable insights for the forest planner about the
trade-offs in similar but computationally less tractable,
large-scale problems. It is also likely that the interactive
utilization of the frontier methods has a lot of potential for
multicriteria forest planning, as the involvement of various
stakeholders in the decision-making process will become
increasingly important.
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