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Abstract: Public forests have many conflicting uses. Designing forest management schemes that provide the
public with an optimal bundle of benefits is therefore a major challenge. Although a capability to quantify and
visualize the tradeoffs between the competing objectives can be very useful for decisionmakers, developing this
capability presents unique difficulties if three or more conflicting objectives are present and the solution
alternatives are discrete. This study extends four multiobjective programming methods to generate spatially
explicit forest management alternatives that are efficient (nondominated) with respect to three or more
competing objectives. The algorithms were applied to a hypothetical forest planning problem with three timber-
and wildlife-related objectives. Whereas the �-Constraining and the proposed Alpha-Delta methods found a
larger number of efficient alternatives, the Modified Weighted Objective Function and the Tchebycheff methods
provided better overall estimation of the timber and nontimber tradeoffs associated with the test problem. In
addition, the former two methods allowed a greater degree of user control and are easier to generalize to
n-objective problems. FOR. SCI. 55(2):117–131.
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MANAGEMENT PLANNING PROBLEMS with conflict-
ing objectives occur frequently in forestry. The
public expects more from forest resources than

merely timber production, including watershed protection,
wildlife habitat management, aesthetics, recreation, and car-
bon sequestration. Stakeholder groups such as the timber
industry and environmental organizations often hold
strongly conflicting values related to these uses, and con-
flicts between timber and nontimber objectives are com-
mon. Harvesting can fragment sensitive habitats, obstruct
the movement of wildlife, increase fire risk, and reduce the
aesthetic value of the forest. On the other hand, eliminating
timber production from public forests in industrialized na-
tions, as many suggest, would only increase the pressure on
forest resources in less developed nations, where environ-
mental controls may be less effective (Thomas 2000). More-
over, other uses, such as recreation, can also stress forest
ecosystems. However, the tradeoffs between conflicting
goals can often be balanced effectively within a landscape
or forest through careful planning (Rosenbaum 2000). In
most cases, quantifying the tradeoffs to determine the de-
gree of incompatibility between competing forest uses can
help decisionmakers (DMs) select the best compromise
management alternatives.

The spatial layout of forestry operations such as har-
vesting or road construction can have a profound impact on
many nontimber objectives. Spatially explicit forest man-
agement planning models are useful for efficiently de-
signing the location and timing of these operations while
also addressing wildlife habitat concerns (e.g., Rebain and
McDill 2003a, 2003b). These models, usually formulated
as integer programs (IPs), are used to determine when
specific harvest units should be cut and when and where
other site-specific management interventions should be per-

formed to balance various forest uses. Most often, these
models have been formulated as single-objective problems,
in which one forest use is optimized subject to a range of
restrictions (e.g., Leuschner et al. 1975, Mealey and Horn
1981, Cox and Sullivan 1995, Bettinger et al. 1997, Rebain
and McDill 2003a, 2003b). Some of these restrictions en-
sure that minimum requirements on both timber and non-
timber objectives are met. One example would be to max-
imize timber output or the discounted net revenues from a
forest subject to constraints requiring a balanced ending
age-class distribution, a smooth flow of timber production
over time, and maintaining a minimum amount of mature
forest habitat in large compact patches while never exceed-
ing a maximum harvest opening size. Alternatively, the
amount of mature forest habitat could be maximized subject
to minimum net present value (NPV) or minimum timber
output constraints.

In these types of formulations, the DM(s) is required to
specify the minimum requirements on some forest uses
before the optimization process. Defining harvest targets
might be relatively straightforward, but setting limits on the
amount of mature forest habitat patches, for instance, might
not. Without knowing which habitat requirements are fea-
sible and which are too modest, specifying such limits is
typically guesswork and can lead to poor decisions. Fur-
thermore, better decisions can be made if the DM(s) under-
stand the tradeoff structure between competing objectives
before setting requirements on various objectives. Another
frequently used approach, goal programming (Charnes et al.
1955), does not completely overcome this problem either, as
it requires the DM to set up targets on the objectives that,
unlike constraints, do not have to be met. Goal programs
(GPs) minimize the deviations from the targets in either an
order of preference (preemptive GP) or in line with a set of
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weights assigned to each objective (nonpreemptive GP).
Either way, the DM has to specify both the targets and the
weights or a preference list for the objectives before formu-
lating the model.

When possible, generating and visualizing the complete,
or an effectively filtered, set of efficient (i.e., Pareto-
optimal) (Pareto 1909) solutions to forest planning prob-
lems should help the DM(s) acquire a holistic view of the
problem and enable a more informed decision when select-
ing a best compromise management alternative. As opposed
to dominated solutions, efficient alternatives are those
whose objective achievements cannot be further improved
without compromising at least one objective. This unique
set of solutions defines the so-called efficient frontier.
Studying this frontier can be valuable to the DM(s) for two
reasons. First, the efficient frontier separates the region
where additional solutions do not exist from the region
where dominated solutions might exist (Tóth et al. 2006).
Thus, the DM can assess the limits of simultaneously
achieving several conflicting objectives. In other words, the
efficient frontier answers the question: what is possible?
Second, by moving along this frontier (i.e., by moving
between Pareto-optimal solutions), one can also assess the
amount of one objective that must be forgone to achieve a
given increase in the amount of another objective. Thus, the
efficient frontier identifies the structure of the tradeoffs
between the competing objectives represented by the axes
of the efficient frontier space.

Because in spatial forest planning many management
decisions are binary, such as whether or not a certain forest
unit with predefined boundaries should be cut within a
given time interval, the set of feasible model solutions is
discrete (Tóth et al. 2006). As a result, the set of attainable
objective function values, and hence the efficient frontier
itself, is also discrete and therefore nonconvex. This prop-
erty makes it computationally challenging to generate the
efficient frontiers for spatially explicit forest management
planning problems.

Tóth et al. (2006) evaluated and tested four traditional
methods of generating the efficient frontier for a bi-
objective spatially explicit forest management planning
problem. The four approaches, (1) the Weighted Objective
Function method (Geoffrion 1968), (2) the �-Constraining
method (Haimes et al. 1971), (3) the Decomposition method
based on the Tchebycheff metric (Eswaran et al. 1989), and
(4) the Triangles method (Chalmet et al. 1986), were tested
on a 50-management unit hypothetical forest planning prob-
lem. Tóth et al. (2006) also proposed a new approach called
the “Alpha-Delta” method that performed well compared
with the other approaches. The two objectives of interest in
their test case were to maximize the NPV of the forest and
to maximize the minimum amount of mature forest habitat
in large patches over the planning horizon.

Most forest planning problems involve more than two
competing objectives. A limited number of theoretical stud-
ies on generating the set of efficient alternatives for three or
more objective IPs have been documented. One primary
area of research has been the family of the so-called refer-
ence point methods (Ehrgott and Wiecek 2005). The con-
cept is simple: an efficient solution can be found by mini-

mizing the distance between a reference point, which can be
any unattainable solution in the objective space, such as the
ideal solution or goal programming targets, and potential
nondominated solutions (the ideal solution is a vector of
objective function values that are gained by optimizing the
problem for each objective, one at a time, without regard to
the rest of the objectives). The distance measure that is most
often used is the Weighted (or not) Tchebycheff metric and
its variants. Different efficient solutions can be found by
changing the weights on the distance metric (e.g., Eswaran
et al. 1989). Moreover, the reference points themselves can
be varied to identify other solutions (e.g., Alves and Clí-
maco 2001). However, due to the discrete nature of integer
programming, different weight combinations and different
reference points can also lead to identical solutions. Thus, a
“smart” decomposition of the weight space (or the reference
point space) into regions that lead to the same solutions is
needed to reduce the time spent finding redundant solutions.
These regions are called indifferent sets and are convex in
the weight space and nonconvex in the reference point space
(Alves and Clímaco 2001). The reference point methods
find efficient solutions by determining or approximating
these indifference sets.

An algorithm proposed by Chalmet et al. (1986) finds �Z�
efficient solutions with respect to n objectives by solving at
least n�Z� � 1 IPs. The efficiency of this approach is
questionable, given that the �-Constraining method (Sad-
agopan and Ravindran 1982), which appeared to be slow in
the biobjective case (Tóth et al. 2006), finds the same
number of solutions by solving only n�Z� IPs.

Case studies assessing the numerical and computational
performance of the available multiobjective methods as
applied to larger than “illustrative” problem instances are
not common. This finding is particularly true for the area of
forest resources and wildlife management. Although effi-
cient frontiers with respect to two objectives have been
studied in (Roise et al. 1990, Holland et al. 1994, Cox and
Sullivan 1995, Arthaud and Rose 1996, Church et al. 1996,
Snyder and ReVelle 1997, Williams 1998, Church et al.
2000, Richards and Gunn 2000), the efficient frontiers of
discrete forest management decision problems with three or
more objectives have apparently not been researched. Gen-
eralizing algorithms that work well for bi-objective prob-
lems to problems with three or more objectives is challeng-
ing because of the added mathematical and computational
complexity. Nevertheless, this task is important as few
forest-planning problems involve only one or two compet-
ing management objectives.

The present study builds on Tóth et al. (2006) by extend-
ing three of the four traditional approaches (the Weighted
Objective Function method, the �-Constraining method, and
the Decomposition method based on the Tchebycheff met-
ric) and the proposed Alpha-Delta method to handle three or
more objectives. The same 50-management unit hypotheti-
cal forest planning problem used in Tóth et al. (2006) is
used to demonstrate and evaluate the mechanics of the
extended methods in generating the efficient frontier of a
tri-objective spatial forest planning problem. Two of the
objectives are the same as those in Tóth et al. (2006):
maximize discounted net timber revenues and maximize the
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minimum area of mature forest habitat that evolves in large
patches over the planning horizon. The third is to minimize
the total perimeter of the patches (summed over all periods).
The formulation of this objective was introduced in Tóth
and McDill (2008). Maximizing the area of mature forest
habitat patches while minimizing their total perimeter pro-
motes forested landscapes with several desirable spatial
characteristics. This approach fosters the development of
patches with low perimeter-area ratios, increases their tem-
poral overlap, and results in fewer and larger patches.

Model Formulation

This section describes a tri-criteria integer programming
formulation that maximizes the net present value of the
forest, maximizes the minimum amount of mature forest
habitat in large patches over the planning horizon, and
minimizes the total length of the edges of these patches over
the planning horizon. The model includes harvest flow
constraints, maximum harvest opening size constraints, con-
straints that define the minimum area of mature forest
habitat patches, and an average ending age constraint. The
formulation of the mature forest patch criterion is a slightly
modified version of the one presented in Rebain and McDill
(2003b). Formulation of the maximum harvest area con-
straints is a generalization of the formulation presented in
McDill et al. (2002):

Max Z � �
m�1

M

Am�cm0Xm0 � �
t�hm

T

cmtXmt� (1)

Max � (2)

Min �
t�1

T

�t (3)

subject to

Xm0 � �
t�hm

T

Xmt � 1

for m � 1, 2, . . . , M (4)

�
m�Mht

vmt � Am � Xmt � Vt � 0

for t � 1, 2, . . . , T (5)

bltVt � Vt�1 � 0

for t � 1, 2, . . . , T � 1 (6)

�bltVt � Vt�1 � 0

for t � 1, 2, . . . , T � 1 (7)

�
m�Mp

Xmt � nPi
� 1

for all p � P and t � hi , . . . , T (8)

�
j�Jmt

Xmj � Omt � 0

for m � 1, 2, . . . , M and t � 1, 2, . . . , T (9)

�
j�Jmt

Xmj � �Jmt�Omt � 0

for m � 1, 2, . . . , M and t � 1, 2, . . . , T (10)

�
m�Mc

Omt � ncBct � 0

for c � C and t � 1, 2, . . . , T (11)

�
m�Mc

Omt � Bct � nc � 1

for c � C and t � 1, 2, . . . , T (12)

�
c�Cm

Bct � BOmt � 0

for m � 1, 2, . . . , M and t � 1, 2, . . . , T (13)

�
c�Cm

Bct � �Cm�BOmt � 0

for m � 1, 2, . . . , M and t � 1, 2, . . . , T (14)

�
m�1

M

AmBOmt � �

for t � 1, 2, . . . , T (15)

�
m�1

M

PmBOmt � 2 �
pq�1

N

CBpq�pq
t � �t

for t � 1, 2, . . . , T (16)

BOpt � BOqt � 2�pq
t � 0

for t � 1, 2, . . . , T, pq � 1, 2, . . . , N (17)

BOpt � BOqt � �pq
t � 1

for t � 1, 2, . . . , T pq � 1, 2, . . . , N (18)

�
m�1

M

Am��Agem0
T � AgeT�Xm0 � �

t�hm

T

�Agemt
T � AgeT�Xmt	

� 0 (19)

Xmt � 
0, 1�

for m � 1, 2, . . . , M and

t � 0, hm, hm � 1, . . . , T (20)

Bct � 
0,1�

for c � C, t � 1, 2, . . . , T (21)

Omt, BOmt � 
0, 1�

for m � 1, 2, . . . , M and t � 0, 1, . . . , T (22)

Forest Science 55(2) 2009 119



�pq
t � 
0, 1�

for pq � N (23)

where the decision variable is Xmt � a binary variable
whose value is 1 if management unit m is to be harvested in
period t for t � hm, hm�1, …, T (when t � 0, the value of
the binary variable is 1 if management unit m is not har-
vested at all during the planning horizon [i.e., Xm0 repre-
sents the “do-nothing” alternative for management unit m]).

The auxiliary and accounting variables are: Omt � a
binary variable whose value may equal 1 if management
unit m meets the minimum age requirement for mature
patches in period t, i.e., the management unit is old enough
to be part of a mature patch; Bct � a binary variable whose
value is 1 if all of the management units in cluster c meet the
minimum age requirement for mature patches in period t,
i.e., the cluster is part of a mature patch; BOmt � a binary
variable whose value is 1 if management unit m is part of a
cluster that meets the minimum age requirement for large
mature patches, i.e., the management unit is part of a patch
that is big enough and old enough to constitute a large,
mature patch; �pq

t � a binary variable whose value is 1 if
adjacent management units p and q are both part of a cluster
that meets the minimum age requirement for large mature
patches in period t; Vt � a continuous variable indicating
the total volume of sawtimber in m3 harvested in period t;
and �t � the total perimeter of mature forest habitat patches
in period t.

The parameters are: hm � the first period in which
management unit m is old enough to be harvested; � � the
minimum area of mature forest habitat patch over all peri-
ods; M � the number of management units in the forest;
N � the number of pairs of management units in the forest
that are adjacent; T � the number of periods in the planning
horizon; cmt � the discounted net revenue per ha if man-
agement unit m is harvested in period t, plus the discounted
residual forest value based on the projected state of the
management unit at the end of the planning horizon; Am �
the area of management unit m in ha; Pm � the perimeter of
management unit m in meters; CBpq � the length of the
common boundary between the two adjacent management
units p with q in meters; vmt � the volume of sawtimber in
m3/ha harvested from management unit m if it is harvested
in period t; Mht � the set of management units that are old
enough to be harvested in period t; blt � a lower bound on
decreases in the harvest level between periods t and t � 1
(where, for example, blt � 1 requires nondeclining harvest;
blt � 0.9 would allow a decrease of up to 10%); bht � an
upper bound on increases in the harvest level between
periods t and t � 1 (where, for example, bht � 1 allows no
increase in the harvest level; blt � 1.1 would allow an
increase of up to 10%); P � the set of all paths, or groups
of contiguous management units, whose combined area is
just above the maximum harvest opening size (the term
“path,” as used in this article, is defined in the following
discussion); Mp � the set of management units in path p;
nMp

� the number of management units in path p; hi � the
first period in which a management unit in path i can be
harvested; Jmt � the set of all prescriptions under which

management unit m meets the minimum age requirement for
mature patches in period t; C � the set of all clusters, or
groups of contiguous management units whose combined
area is just above the minimum large, mature patch size (the
term “cluster,” as used in this article, is defined in the
following discussion); Mc � the set of management units
that compose cluster c; nc � the number of management
units in cluster c; Cm � the set of all clusters that contain
management unit m; Agemt

T � the age of management unit
m at the end of the planning horizon if it is harvested in
period t; and AgeT � the target average age of the forest at
the end of the planning horizon.

Equation 1 specifies one of the three objective functions
of the problem, namely to maximize the discounted net
revenue from the forest during the planning horizon plus the
discounted residual value of the forest. Equation 2 maxi-
mizes the minimum amount of total area in large, mature
forest patches over the time periods in the planning horizon.
The rationale behind this objective is to ensure that the
needs of sensitive species that require a minimum area of
contiguous old forest habitat at any particular point in time
to survive and to disperse will be met by the solution to the
model. Equation 3 minimizes the sum of the perimeters of
these patches over the entire planning horizon with the goal
of promoting patch shapes that contain as much interior
habitat versus edge habitat as possible. Our primary goal
with these objective functions was to provide a realistic
example that demonstrates the mechanisms and the utilities
of the proposed multicriteria methods.

Constraint set 4 consists of logical constraints that allow
only one prescription to be assigned to a management unit,
including a do-nothing prescription. To prevent manage-
ment units from being scheduled for harvest before they
reach a minimum harvest age, harvest variables (Xmt) are
created only for periods during which management unit m is
old enough to be harvested. Constraint set 5 consists of
harvest accounting constraints that assign the harvest vol-
ume for each period to the harvest variables (Vt). Constraint
sets 6 and 7 are flow constraints that restrict the amount by
which the harvest level is allowed to change between peri-
ods. In the example below, harvests were allowed to in-
crease by up to 15% from one period to the next or to
decrease by up to 3%.

Constraint set 8 consists of adjacency constraints gener-
ated with the Path algorithm (McDill et al. 2002). These
constraints limit the maximum size of a harvest opening,
often necessary for legal or policy reasons, by prohibiting
the concurrent harvest of any contiguous set of management
units whose combined area just exceeds the maximum har-
vest opening size. The exclusion period imposed by these
constraints equals one planning period. A “path” is defined
for the purposes of the algorithm as a group of contiguous
management units whose combined area just exceeds the
maximum harvest opening size. These paths are enumerated
with a recursive algorithm described in McDill et al. (2002).
A constraint is written for each path to prevent the concur-
rent harvest of all of the management units in that path,
because this would violate the maximum harvest opening
size. This is done for each period in which it is actually
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possible to harvest all of the management units in a path. (In
the initial periods of the planning horizon, some of the
management units in a path may not be mature enough to be
harvested.)

Constraint sets 9–15 are the mature patch size con-
straints. Constraint sets 9 and 10 determine whether or not
management units meet the minimum age requirement for
mature patches. These constraints sum over all of the pre-
scription variables for a management unit under which the
unit would meet the age requirement for mature patches in
a given period. Omt is equal to 1 if and only if one of these
prescriptions has a value of 1, indicating that the manage-
ment unit will be “old enough” in that period. One pair of
these constraints is written for each management unit in
each period.

Constraint sets 11 and 12 determine whether or not a
cluster of management units meets the minimum age re-
quirement for mature patches. Clusters are defined here as
contiguous groups of management units whose combined
area just exceeds the minimum mature patch size require-
ment. All possible clusters are enumerated using a recursive
algorithm described in Rebain and McDill (2003b). A clus-
ter meets the age requirement for mature patches in period
t if all of the management units that compose that cluster
meet the age requirement, as indicated by the Omt variables
for the management units in that cluster. Bct takes a value of
1 if and only if cluster c meets the age requirement in period
t. These pairs of constraints are written for each cluster in
each period.

Constraint sets 13 and 14 determine whether or not
individual management units are part of a cluster that meets
the minimum age requirement, i.e., whether a management
unit is part of patch that is big enough and old enough.
Because the clusters may overlap, this constraint set is
necessary to properly account for the total area of large,
mature patch habitat. These constraints say that a manage-
ment unit is part of a patch that meets the minimum age and
size requirement for large, mature patches in period t (BOmt

� 1) if and only if at least one of the clusters it belongs to
meets the age requirement in that period. Constraint set 15,
working in concert with objective function 2, assigns the
smallest of the three total mature patch areas that corre-
spond to the three planning periods to an accounting vari-
able: �. This is done by specifying through constraint set 15
that � cannot be larger than the mature forest patch area in
any period. Objective function 2 maximizes � to ensure that
it will not take a value that is less than the smallest of the
three total habitat areas.

Constraint sets 16–18 also work together. Constraint 16
calculates the total perimeter of the mature forest patches
that arise in each period and assigns this value to accounting
variable �t (denoting the total perimeter of the patches in
period t). The sum of the total perimeters over the planning
horizon is minimized by objective function 3. Constraints
17 and 18 define a new binary variable �pq

t that substitutes
for what would otherwise be a nonlinear cross-product term
(�pq

t � BOptBOqt) in 16. Constraint set 18 is not necessary
if objective function 3 is to minimize the perimeter. On the
other hand, if the objective was to maximize edge habitat,

then constraint set 18 would be necessary and 17 could be
dropped.

Constraint 19 is an ending age constraint. It requires the
average age of the forest at the end of the planning horizon
to be at least AgeT years, preventing the model from over-
harvesting the forest. In the example below, the minimum
average ending age was set at 40 years or one-half the
optimal economic rotation. Constraint sets 20–23 identify
the management unit prescription, mature patch size, and
the �pq

t variables as binary.

Methods

This section describes how the four bi-objective-
generating techniques tested in Tóth et al. (2006) can be
generalized to identify the efficient set with respect to three
or more objectives. These techniques are the Alpha-Delta,
the �-Constraining, the Modified Tchebycheff, and the
Weighted Objective Function methods.

The Alpha-Delta Method

The Alpha-Delta method finds efficient solutions by
progressively moving from one end of the efficient frontier
to the other (Tóth et al. 2006). A slightly sloped weighted
objective function is used with weights that are constant
throughout the algorithm. The weights are normalized, and
the criteria values are scaled using the ideal solution vector.
The relative difference in the weights assigned to the re-
spective objectives is controlled by the parameter 	 (slope).
This parameter has to be small enough to not miss any
solutions but must be greater than zero to avoid dominated
solutions. At each iteration a new efficient solution is found,
and the search space is constrained using the achievement
vector corresponding to the new solution. Constraining the
search space for problems with three or more objectives is
not trivial, however.

Suppose that the tri-criteria problem described in the
Model Formulation section is solved after the three objec-
tives are scalarized using the slope parameter (	) of the
Alpha-Delta algorithm. Let N1, H1, and E1 denote the
achievements on objective functions 1, 2, and 3, respec-
tively. As long as 	 � 0, the following will be true for the
rest of the efficient solutions: f1(x)  N1 and either f2(x) �
H1 or �f3(x) � E1, where fi(x) denotes the value of objective
function i. The latter two of these constraints can be used to
restrict the search space for the remaining solutions. In-
equality f1(x)  N1 must hold for any solution in this region,
because if f1(x) � N1 was true for any one of the remaining
efficient solutions then that solution would have been found
at the first iteration. As long as 	 is small enough, we can
rule out the region where f2(x) � H1 and �f3(x) � E1 both
hold because if there were a solution in that region that
dominates (N1, H1, or E1), it would have had a higher f1(x)
than N1 and should have been found at the first iteration. To
ensure that the search space is confined to objective func-
tion values of f2(x) � H1 or �f3(x) � E1 at the second
iteration, the following set of constraints are added to the
original problem.

� � �H1 � 
hab�y1 (24)
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��
t�T

�t � �E1 � 
edge�y2 (25)

y1 � y2 � 1 (26)

y1, y2 � 
0, 1� (27)

where � � the minimum area of mature forest habitat in
patches over all periods; �t � the total perimeter of mature
forest habitat patches in period t; H1 � achievement on �
from iteration one; E1 � achievement on ��t�T�t from
iteration one; 
hab, 
edge � user-defined, sufficiently small
constants; and y1, y2 � binary variables that ensure that only
one of the constraints 24 and 25 is enforced.

Constraints 24-27 ensure that either the minimum area of
mature forest habitat patches over all periods (�) is strictly
greater than H1 or the total perimeter of the patches
(�t�T�t) is strictly smaller than E1. The strictly greater (or
smaller) requirement is needed to avoid repeatedly picking
up the same solution. This requirement is achieved by
adding sufficiently small constants, 
hab and 
edge, to the
bounds on habitat area (H1) and perimeter (�E1). The
either-or relationship between constraints 24 and 25 is

achieved by using constraints 26 and 27, which require that
either y1 � 1 and y2 � 0 or vice versa. If y1 � 1 then only
constraint 24 is enforced, and if y2 � 1 then only constraint
25 is enforced. The problem is then solved again with these
additional constraints. After each iteration, a new quadru-
plet of constraints like 24–27 is added to the formulation.
The process is repeated until the problem becomes
infeasible.

Figure 1 illustrates the general implementation of this
algorithm when applied to n-objective problems. In the first
step, the ideal solution is identified, as it is needed for
scaling and normalization. In step 2, the weighted objective
function is generated with slope 	. This objective function
is then maximized subject to the original set of constraints
(x � X). If this problem is infeasible, then the algorithm
terminates; there are no solutions to the problem. Otherwise
the problem is solved, and the attainment values on the
objectives with the smaller weights (Fi

k, for i � P\{j}) are
used to build and add a new set of constraints to the original
problem (steps 3 and 4). These constraints will be similar to
24–27, except now there are (n � 1) restricted objectives,

Figure 1. The Alpha-Delta algorithm.
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and only one of the n constraints, fi(x) � Fi
k � 
i (for i �

1, …, n but i � j), must hold. Step 5 checks whether the
newly constructed constraint set from step 4 dominates any
of the previously constructed sets. If it does, i.e., if Fi

m � Fi
k

(for each i � P\{j} and for m  k), then the dominated
constraint set (the one that was generated in iteration m) can
be eliminated from the problem. After optionally removing
the redundant constraints (we found in test runs that this
step did not improve efficiency and therefore we did not use
it), the new IP is solved and the process (steps 2–5) is
repeated until the problem becomes infeasible.

The �-Constraining Method

The implementation of the �-Constraining method is
very similar to that of the Alpha-Delta method. The key
difference is that at each iteration n IPs are solved, as
opposed to one (for an n-objective problem), to guarantee an
efficient solution. Suppose the following iteration is the kth
iteration. First, one of the n objectives, say f1

k(x) is maxi-
mized without regard to the rest of the objectives. If this
problem is infeasible, the algorithm terminates; no more
efficient solutions exist. Otherwise, the problem is solved
and the resulting objective function value, F1

k(x), is re-
corded. Next, another objective is maximized, say f2

k(x)
subject to f1

k(x) � F1
k. This problem is feasible because we

know that there exists at least one solution with f1
k(x) � F1

k.
Call the objective function value of the resulting solution
F2

k. Now, a third objective is maximized subject to f1
k(x) �

F1
k and also to f2

k(x) � F2
k. The process is repeated until each

of the objectives is maximized.
When the last objective, fn

k(x), is maximized, the rest of
the objectives are constrained to f1

k(x) � F1
k, f2

k(x) � F2
k, …,

fn�1
k (x) � Fn�1

k , where Fi
k (i � 1, 2, …, n � 1) is the

objective function value that was obtained by maximizing
fi

k(x). The resulting objective function value, Fn
k, together

with the previously obtained F1
k, F2

k, …, Fn�1
k constitute the

attainment values on the n objectives for efficient solution k
(step 3). Steps 4 and 5, as well as the stopping rule, are
exactly the same as in the Alpha-Delta algorithm.

An important common characteristic of the two methods
is that as the solutions are progressively found along the
efficient frontier, the attainment on one objective gradually
gets worse at each new solution, whereas the attainment on
the other objectives gradually, although not necessarily
monotonically, improves. This algorithmic property can be
beneficial in decisionmaking as it enables one to find effi-
cient management alternatives that are similar in achieve-
ment values.

The Weighted Objective Function and the
Tchebycheff Metric-Based Methods

Both the Weighted and the Tchebycheff methods make
use of an efficient decomposition of weights when applied
to bi-objective problems (Tóth et al. 2006). In the case of
the Weighted method, these weights are assigned to the
competing objectives and the sum of these weighted objec-
tives is maximized. In the case of the Tchebycheff ap-
proach, the weights are assigned to the components of the

Tchebycheff metric, which measures the maximum differ-
ence between the attainment values of a potential solution
and that of the ideal solution. The Tchebycheff metric is
then minimized to obtain solutions that are as close to ideal
as possible. One problem with using the Tchebycheff metric
is that it may find weak Pareto-optima; solutions that lead to
objective values that lie on the efficient frontier but are not
corner points. In other words, at least one of the objectives
can still be improved. This problem is well documented in
the literature and can be overcome by using the augmented
(Steuer 1986, Steuer and Choo 1983) or the modified (Kal-
iszewski 1987) version of the metric. In this study we used
the latter approach. Instead of minimizing the maximum, we
minimized the weighted differences between the attainment
values with a much higher weight put on the difference in
NPV than on the difference in minimum habitat area or edge
length. This weight allocation, which results in a slightly
sloped Tchebycheff metric, is kept constant throughout the
decomposition process.

Although varying the relative weights on the competing
objectives or on the components of the Modified Tcheby-
cheff metric will often yield different efficient solutions, it
is also possible that two different combinations of weights
result in the same solution. To minimize the number of
redundant solutions and the amount of computer time that is
needed to find these solutions, Tóth et al. (2006) used an
algorithm that decomposes the set of possible normalized
weight combinations into sections (line segments in the
bicriteria case) that correspond to the same efficient solu-
tions (Eswaran et al. 1989). The decomposition for bi-
objective problems is based on the fact that if two different
weight combinations yield the same solution then any linear
combination of these weights will do so as well. Thus, these
linear combinations can be eliminated from further
consideration.

The decomposition of the weight space is not as straight-
forward with three or more objectives. For three objectives,
the set of possible normalized weight combinations can be
mapped as a triangle (Figure 2). The apexes of the triangle
represent the combinations when a weight of one is assigned
to one objective (or to one component of the Tchebycheff
metric) and zeros are assigned to the other two. This triangle
is illustrated in Figure 2 with apexes (1, 0, 0), (0, 1, 0), and
(0, 0, 1). The proposed procedure, the Triangles Algorithm,
decomposes this triangle into triangular sections (indiffer-
ence regions) that correspond to the same efficient solu-
tions. At each iteration one triangle is considered. If the
three weight combinations that represent the three apexes of
the triangle yield the same solution, then no further decom-
position of that triangle is necessary. Any point within the
triangle (or, equivalently, any linear combination of apex
weights) will yield the same solution. If, however, the
weights at the apexes yield two or three different solutions,
the triangle must be divided into four smaller but identically
shaped subtriangles. These are ((1⁄2, 1⁄2, 0), (0, 1⁄2, 1⁄2), (1⁄2, 0,
1⁄2)), ((1, 0, 0), (1⁄2, 1⁄2, 0), (1⁄2, 0 1⁄2)), ((1⁄2, 1⁄2, 0), (0, 1⁄2, 1⁄2),
(0, 1, 0)), and ((0, 0, 1), (0, 1⁄2, 1⁄2), (1⁄2, 0, 1⁄2)) in Figure 2.
The apexes of the subtriangles are either identical to one of
the apexes of the “parent” triangle ((1, 0, 0), (0, 1, 0), and
(0, 0, 1)) or are constructed as the mean of the two of those
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apexes. If two of the three solutions from the “parent”
triangle was the same, e.g., weights (1, 0, 0) and (0, 1, 0)
both yielded the same solution, then weight combination
(1⁄2, 1⁄2, 0), which is a linear combination of (1, 0, 0) and (0,
1, 0), can be assigned that solution as well. There is no need
to solve the problem with weights (1⁄2, 1⁄2, 0).

At the next iteration, one of the four subtriangles is
selected, and the same process as in the first iteration is
followed. The weights that define the apexes of the subtri-
angle are applied to the objectives of the problem (or to the
components of the Tchebycheff metric, depending on which
method is used). It is entirely possible that one of the weight
combinations corresponding to one of the apexes of the
subtriangle has already been applied to the problem and
solved at a previous iteration, either as part of the larger
triangle or when an adjacent triangle was explored. In this
case, there is no need to solve the problem with these
weights again. The solution from the adjacent triangle can
be used in the comparisons needed to determine whether the
current subtriangle should be further decomposed. Those of
the three problems that have not been solved before or are

not linear combinations of other weights that yield the same
solution are then solved, and their solutions are compared
with the solutions at the other apexes. The algorithm termi-
nates either when there are no more subtriangles left to
decompose or the largest difference between the weight
combinations that correspond to the apexes of the remaining
subtriangles that could potentially require decomposition is
smaller than this predefined limit: a minimum mesh or
triangle size.

The following notation is used to illustrate the mecha-
nism of the Triangles Algorithm. Let T be the set of “active”
(unexplored) triangles. Let

Wi � �w11
i w12

i w13
i

w21
i w22

i w23
i

w31
i w32

i w33
i
�

denote the weights associated with the apexes of triangle �i

� T and �i � �Max(�w11
t � w21

t �, �w11
t � w31

t �) denote the
depth of �i. This latter metric, “depth” describes the size of
a given triangle and is used in the algorithm to identify the

Figure 2. The triangular decomposition of the weight space for the Weighted and Tchebycheff methods.
Each point on the triangle represents a weight combination that sums to 1.
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largest triangles. The greater the value of �i, the larger
triangle �i is. The algorithm decomposes the largest active
triangles first. Lastly, let Fi

k (for k � 1, 2, 3) denote the
objective function values that correspond to the solutions of
problems Pi

k � Max{wk1
i f1(x) � wk2

i f2(x) � wk3
i f3(x) : x �

X} for k � 1, …, 3, respectively, where f1(x), f2(x), and f3(x)
are the objective functions.

Steps 1 and 2 are the initialization phase of the algorithm.
Step 1 is to obtain the ideal solution, which is needed to
scale and normalize the weights for both methods. The
minimum mesh size parameter, �, is also defined (by the
user) to limit the size of the triangles to be decomposed. At
this point, set T is empty. Step 2 is to add the first triangle
to the list of active triangles (set T). This triangle is the
so-called “parent” triangle whose apexes represent weight
combinations (1, 0, 0), (0, 1, 0), and (0, 0, 1). The solutions
to these single-objective problems have already been ob-
tained in step 1 when the ideal solution was identified.

At the beginning of each iteration, set T is checked. If set
T is empty, the algorithm terminates. If set T is nonempty,
then one of the largest triangles, say triangle �i, is selected.
If �i is smaller than the predefined � or the solutions that
correspond to the apexes of �i are identical, then �i is
removed from set T. Otherwise, four new triangles are
created (��T��1, ��T��2, ��T��3, and ��T��4) with the follow-
ing weights on the apexes (step 3):

W�T��1

� �
1⁄2�w11

t � w21
t � 1⁄2�w12

t � w22
t � 1⁄2�w13

t � w23
t �

1⁄2�w21
t � w31

t � 1⁄2�w22
t � w32

t � 1⁄2�w23
t � w33

t �
1⁄2�w11

t � w31
t � 1⁄2�w12

t � w32
t � 1⁄2�w13

t � w33
t �
	 ,

W�T��2

� � 1⁄2�w11
t � w21

t � 1⁄2�w12
t � w22

t � 1⁄2�w13
t � w23

t �
1⁄2�w21

t � w31
t � 1⁄2�w22

t � w32
t � 1⁄2�w23

t � w33
t �

w21
t w22

t w23
t

� ,

W�T��3

� � 1⁄2�w11
t � w21

t �
w11

t

1⁄2�w11
t � w31

t �

1⁄2�w12
t � w22

t �
w12

t

1⁄2�w12
t � w32

t �

1⁄2�w13
t � w23

t �
w13

t

1⁄2�w13
t � w33

t �
� ,

W�T��4

� � w31
t

1⁄2�w21
t � w31

t �
1⁄2�w11

t � w31
t �

w32
t

1⁄2�w22
t � w32

t �
1⁄2�w12

t � w32
t �

w33
t

1⁄2�w23
t � w33

t �
1⁄2�w13

t � w33
t �
� ,

The next step is to generate and solve 12 problems
(P�T��1

i , P�T��2
i , P�T��3

i , and P�T��4
i for i � 1, 2, 3) with the

weight combinations that correspond to the apexes of the
four triangles (step 4). At most, only 3 of the 12 problems
would have to be solved, because the same weight combi-
nations are assigned to more than one apex (Figure 2).
Furthermore, if any pair of apexes in the parent triangle led
to the same solution, then any linear combination of these
apexes will do so as well. There is no need to solve for a
new apex if it corresponds to the linear combination of

parent apexes that led to identical solutions. Finally, the four
new triangles are added to set T (step 5), and the process
starts all over again by selecting another triangle.

A Case Study

To demonstrate the four methods as they generate the
efficient set with respect to three objectives, a hypothetical
forest planning problem, the same as in Tóth et al. (2006),
was used. This forest consisted of 50 management units and
could be considered slightly overmature, because approxi-
mately 40% of the area is between 60 and 100 years old and
the optimal rotation is 80 years (Figure 3). The average
management unit size was 18 ha, and the total forest area
was 900 ha. A 60-year planning horizon was considered,
composed of three 20-year periods. The four possible pre-
scriptions for a given management unit were to harvest the
management unit in period 1, period 2, or period 3, or not at
all. The minimum rotation age was 60 years. A maximum
harvest opening size of 40 ha was imposed, and groups of
contiguous management units were allowed to be harvested
concurrently as long as their combined area was less than
the maximum opening size. All management units were
smaller than the maximum harvest opening size. The wild-
life species under consideration was assumed to need hab-
itat patches that are at least 50 ha in size and at least 60
years old. Because the minimum patch size was greater than
the maximum harvest size, these patches had to be com-
posed of more than one unit. We also specified in the IP
formulation that at least one habitat patch must develop over
the 60-year planning horizon. This meant that no efficient
management alternatives were sought below 50 ha of ma-
ture forest patch production.

The tri-criteria IP described in the Model Formulation
section was built for this hypothetical forest, resulting in a
model with 4,794 constraints and 2,412 variables. Table 1
shows the distribution of the constraints by constraint types.
The algorithms introduced in the Methods section were
implemented using a two-thread CPLEX 11.1 (ILOG

Figure 3. The test forest. The figures in each polygon denote
the harvest unit identification number and the initial age class
of the unit. For example, “1” represents the 0–20 year age
class, “2” represents 21–40, and so on. Darker polygons rep-
resent higher initial age classes.
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CPLEX 2008) on a dual processor Intel XEON CPU 3.00
GHz computer with 3.25 GB of RAM under a Windows
platform (Microsoft Windows XP Professional Version
2002, Service Pack 3). Programs to automate the algorithms
were written in Microsoft Visual Basic 6 and .Net 2005
using the ILOG CPLEX Callable Libraries. The relative
MIP gap tolerance parameter (optimality gap) was set to 0
and the integrality tolerance parameter was set to 1.e�07
(0.00001%). These strict settings were needed to avoid
dominated solutions and to make sure that the numerically
sensitive algorithmic constructs, such as the either-or con-
straints in the Alpha-Delta and the �-Constraining methods
and the composite weighted expressions in the other two
techniques, would work properly. The working memory
limit was set to default 1 MB. The parameters of the
Alpha-Delta and the �-Constraining algorithms, 	, 
hab, and

edge,were set to 1°, 0.01 ha, and 0.47 m (1 pixel), respec-
tively (	 only applies to the Alpha-Delta method). The latter

two settings instruct the algorithms not to look for solutions
that simultaneously lead to a less than 0.01-ha difference in
patch area production and less than 0.47 m in edge produc-
tion. We tried smaller values for these parameters but found
no change in the efficient set. The depth parameter in the
Triangles algorithm (�) was set to zero for both the
Weighted Objective Function and the Modified Tcheby-
cheff metric-based approaches meaning that running time
was the only constraint for these algorithms to find efficient
solutions. We set the parameters for each technique so that
the highest number of efficient solutions would be found
given a time limit. Although rigorous parameter tuning was
outside of the scope of this study, we made an attempt to
optimize the performance of the algorithms. Our primary
goal was to provide an insight for the reader about the pros
and cons of the mechanisms of the proposed methods.

The experiment addressed the following questions: (1)
How many of the efficient solutions can each algorithm
identify within 20 hours of computer time? (2) How evenly
are these solutions distributed along the efficient frontier?
(3) How easily can a user filter the solutions in line with the
DM’s interests? and (4) How easily do the methods gener-
alize to the n-objective case?

Results and Discussion
Number and Distribution of Efficient Solutions

The �-Constraining method found the highest number of
Pareto-optimal management alternatives (99) within the
preset time interval of 20 hours. The Alpha-Delta method
found 97, the Tchebycheff method found 76, and the
Weighted method found 35 solutions. Figures 4 and 5 graph
the solutions in the objective space: Figure 4 in a three-

Table 1. Test problem size parameters: the number of con-
straints is listed for each constraint type

Constraint type
(equation number)

No. of
constraints

4 50
5 3

6 and 7 2 each
8 248

9 and 10 150 each
11 and 12 1,617 each
13 and 14 150 each
15 and 16 3 each
17 and 18 324 each

19 1
Total 4,794

Figure 4. Efficient alternatives found by the four techniques. Multishaded markers indicate solutions that
were found by more than one algorithm.
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dimensional rendering and Figure 5 in two-dimensional
projections. The solution times are summarized in Figure 6,
in which the main diagram displays the cumulative solution
times for each method. The four smaller charts show the
individual solution times that were required to find each
new efficient solution. Note that because the �-Constraining
method finds each new solution in three steps, the Alpha-
Delta method in one step, and the Tchebycheff and the
Weighted methods in many steps, the individual solution
times do not necessarily correspond to individual IPs. One
common trend that can be seen from the diagrams is that,
after a very productive initial phase, finding new efficient
solutions became increasingly time-consuming for each
method. We provide an explanation for this trend in the
discussion that follows.

The Alpha-Delta and the �-Constraining methods found
solutions mostly on one side of the efficient frontier,
whereas the solutions identified by the other two methods
were more evenly distributed. Even though the Weighted
and especially the Tchebycheff methods provided a better
overall estimation of the frontier, the �-Constraining and the
Alpha-Delta methods described one part of the frontier in
more detail. The main reason for the difference is that
whereas the Alpha-Delta and the �-Constraining methods
worked gradually off of one starting point and found solu-
tions sequentially, the other two methods found more
evenly distributed solutions as they start out with solutions
that are as contrasting with respect to their assigned weights
as possible. It is important to point out, however, that both
the Alpha-Delta and the �-Constraining methods can be

Figure 5. Efficient alternatives in two-dimensional projections. Multishaded markers indicate solutions
that were found by more than one algorithm.
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instructed to find solutions that are more separated from
each other along the frontier by assigning higher values to
parameters 
hab and 
edge.

All methods except the Weighted Objective Function
method are capable of identifying nonsupported Pareto-
optima (nonsupported Pareto-optima are efficient solutions
that are not corner points of the convex hull of the efficient
set) (Tóth et al. 2006). As a result, the three methods can
explore the efficient frontier in more detail than the
Weighted method. However, as the Alpha-Delta and the
�-Constraining methods explore the efficient frontier start-
ing from one end (from the highest levels of NPVs) and they
require a set of either-or constraints with associated binary
variables to be added to the problem at each iteration, the IP
that needs to be solved becomes increasingly hard as the
algorithms proceed (see bottom charts in Figure 6). The
structure of the tri-criteria forest management planning

problem used in this experiment might also account for this
increasing combinatorial complexity. Optimal solutions that
lead to greater amounts of mature forest habitat in large
patches and to lesser amounts of timber revenues might be
harder to identify. This is because a higher number of spatial
arrangements of mature forest habitat exist if larger areas
are allowed and this larger set must be evaluated in the
optimization process to find optimal solutions. Depending
on when the IP becomes too time-consuming to solve and
what time constraints are imposed, the Alpha-Delta and the
�-Constraining methods might or might not be able to scan
the entire efficient frontier. One way to mitigate this prob-
lem is to run three separate algorithms, each starting from a
different end of the frontier. The Alpha-Delta method can be
instructed to work its way off the highest possible level of
minimum habitat area or from the lowest possible length of
perimeter. This way, only the central part of the efficient

Figure 6. Solution times. The line graph shows the cumulative and the bar graphs show the sequential
individual solution times for each efficient solution and for each of the four algorithms.
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frontier would have to be explored using a larger burden of
either-or constraints, and the peripheral solutions might be
found relatively easily. This combined algorithm can stop
once the three subalgorithms (n subalgorithms for an n-
objective problem) “meet” somewhere in the middle of the
efficient frontier, i.e., when they find an identical efficient
solution. Of course, there is no guarantee that the IPs would
not become intractable before these subalgorithms meet.
This combined approach, however, should increase the
number and diversity of efficient solutions found.

Although the Weighted method found only 35 solutions,
it might still be a preferred alternative to solve multiobjec-
tive IPs if the original problem has a special structure (e.g.,
total unimodularity) (Wolsey 1998) that would be destroyed
by using other methods (e.g., ReVelle 1993). In these cases,
destroying this structure to find the nonsupported Pareto-
optima and thus better describing the efficient frontier might
not be worthwhile. Totally unimodular or other special
structures are unlikely, however, in realistic forest planning
problems in which in most cases a large variety of compli-
cating constraints need to be imposed in the model (Tóth et
al. 2006).

In conclusion, as in the bicriteria case, a combined ap-
proach can be recommended. The forest planner could use
the Weighted or the Tchebycheff methods to obtain a well-
distributed efficient set and present the results to the DM.
Then, in line with the DM’s interests, one area of the
efficient frontier could further be explored using the
�-Constraining or the Alpha-Delta method. This approach
would take advantage of the algorithmic differences in each
method.

Filtering the Efficient Solutions

Besides using the Weighted or the Tchebycheff methods
as initial filters, there are several other, indirect ways to
control the “spacing” of the efficient solutions along the
efficient frontier with the proposed algorithms. Filtering the
efficient set might be advantageous because: it can signifi-
cantly reduce computing time and a well-distributed subset
of the efficient frontier might provide a sufficient pool of
alternatives for the DM to choose from or to guide him or
her to further explore a particular subregion of interest along
the frontier.

Increasing the values of parameters 	, 
hab and 
edge in
the Alpha-Delta algorithm and parameters 
hab and 
edge in
the �-Constraining algorithm will increase the spacing of
the efficient solutions in the objective space. The settings of

hab and 
edge will ensure that no two solutions will be found
whose achievements in terms of minimum habitat area and
edge length are both within 
hab and 
edge, respectively. The
spacing of the efficient solutions with the Weighted Objec-
tive Function and the Tchebycheff metric-based approaches
can be controlled to some extent by adjusting the minimum
mesh size parameter � in the Triangles algorithm. In prac-
tice, it might be useful to start with a large mesh size and
cover the entire weight space and then focus the search to a
subregion of interest using a smaller mesh size in that
region. How large should the initial mesh size be? In our test
case, both the Weighted and the Tchebycheff methods were

processing triangles at the [1⁄128] level after 20 hours of
computing time. The Weighted method decomposed 88%
and the Tchebycheff method 77% of these triangles.

Generalization to the n-Objective Case

One additional advantage of the Alpha-Delta and the
�-Constraining methods over the other two approaches is
that their generalization to the n-objective case is fairly
straightforward, at least from a technical, integer program-
ming point of view (see Figure 1). Generalizing the Trian-
gles Algorithm to the n-objective case is not as straight-
forward as with the above two methods. Instead of the
triangles in the tri-objective case, n-dimensional polyhedra
(tetrahedra in the four-objective case) would have to be
decomposed into n-dimensional subpolyhedra. Because
each n-dimensional polyhedron has n apexes, n new prob-
lems would have to be solved and compared (n! pairwise
comparisons) at each iteration. This increased computa-
tional burden, however, might be offset by the fact that the
IP subproblems (the problems that are solved at the apexes
of the n-dimensional polyhedra) are simpler than those of
the Alpha-Delta- or the �-Constraining methods. Unlike the
feasible region of the latter two methods, the feasible region
of the IP subproblems in the Triangles algorithm is constant,
only the weights on the objectives (or the components of the
Tchebycheff metric) change.

Ecological and Management Implications

The tradeoff information generated for the hypothetical
test problem demonstrates the utility that one can expect
from the proposed techniques in real applications. Looking
at Figure 4 or the diagram in the center of Figure 5, one can
conclude, for instance, that minimum mature forest habitat
patch production costs roughly $70,000–$100,000 in terms
of forgone timber revenues for every 50-ha increase be-
tween the 50-ha required minimum and the 170-ha potential
maximum. An extra $100,000–$200,000 is needed if min-
imum boundary patches are desired.

The vertical clustering of efficient solutions around some
minimum habitat area thresholds, such as 135, 150, or 170
ha (Figure 5, bottom), implies that the forest manager would
have some flexibility (as much as $200,000 at the 170-ha
level) (Figure 5, top) to simultaneously generate mature
forest patches as well as timber revenues. The potential
losses or gains associated with edge production are traded
off against potential gains or losses in timber revenues when
one switches between management alternatives within these
clusters. This result demonstrates the benefits of the multi-
criteria techniques in that they offer a range of choices
whenever possible and without the DM’s a priori bias that
would otherwise manifest in the form of targets or hard
constraints if alternative approaches such as goal program-
ming were used.

The vertical clustering around some minimum habitat
area thresholds might have landscape ecological implica-
tions as well. Consider, for instance, the cluster around the
170-ha level one more time (Figure 5, bottom). Starting at
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the option that leads to the least amount of NPV, approxi-
mately $2 M (see the lowest point in the center diagram in
Figure 5), a fair amount of additional harvesting is possible
to achieve as much as $2.18 M in timber revenues without
having to forgo any of the 170 ha of minimum mature forest
habitat production. The only loss is the increase in perim-
eter-area ratios of the patches. Once, however, anything
beyond the $2.18 M is desired, the extra harvests that would
be needed would cause a significant drop in minimum
mature forest habitat production. One would have to switch
to the 150-ha cluster to find more profitable alternatives.
Are these discrete drops between the clusters characteristic
of this particular problem? The forest planner would benefit
from knowing about thresholds for which small amounts of
change in harvest intensity can cause significant losses in
habitat structure or cohesion. The techniques proposed in
this article can help in identifying these thresholds.

Finally, any clustering of solutions in the objective space
can carry significant value for the DMs. Clusters of solu-
tions that are similar in terms of achieving the objectives
that are explicitly incorporated in the model can be analyzed
in terms of their contribution to a fourth or fifth objective.
Although there is no guarantee that any of the points in the
cluster would be Pareto-optimal with respect to an addi-
tional criterion, this criterion might help the DMs eliminate
some solutions from the pool.

Numerical Issues

It is important to point out that the algorithms proposed
in this study build on numerically sensitive constructs such
as the either-or constraints in the �-Constraining and the
Alpha-Delta methods or the composite objective functions
in the other two methods. Some of these constructs do not
function properly if the optimality and integrality tolerance
parameters in the IP solvers are not set tight enough. If a
weighted objective function is used, for example, the small-
est amounts of suboptimality might lead to solutions that are
totally irrespective of the assigned weights. Consider the
example in Figure 7: although the weighted objective func-
tion (dashed line) in this case in maximized at point A, using
a small optimality tolerance gap could easily lead to Point
D. It is easy to see how this loss of optimality can make the
triangular decomposition process dysfunctional. The as-
sumption that the linear combination of two sets of weights

that lead to identical solutions would also lead to the same
solution does not hold anymore. Another obvious conse-
quence of suboptimality is that the multiobjective tech-
niques might produce dominated solutions. The only way to
avoid this situation is to set the optimality tolerance gap as
small as possible, which has the associated cost of increased
computing time.

Conclusions

The primary value of generating the set of efficient
solutions to forest management problems is to help DMs
acquire a more holistic understanding of the problem by
providing information about the tradeoffs, the production
possibilities, and the degree of incompatibility between
competing objectives. This understanding should facilitate
selecting the best compromise management alternatives.

We presented four ways to generate the set of Pareto-
optimal solutions to spatial forest planning problems with
three or more competing objectives. Although generalizing
the bi-objective algorithms to three objectives is not trivial,
generalizing the proposed tri-criteria algorithms to handle
problems with four or more objectives is methodologically
straightforward. The results from one test of the four algo-
rithms suggest that there is no clear winner in terms of
computational performance: each method has positives and
negatives. Given the algorithmic differences behind the
techniques and the snapshot of computational results, we
can conclude that a combined utilization of the beneficial
properties of either the Weighted or the Modified Tcheby-
cheff methods and either the �-Constraining or the Alpha-
Delta methods would probably work the best in practice.
Use of one of the former two methods to generate an initial
rough estimate of the tradeoffs can be followed up by use of
one of the latter two techniques to find further solutions in
the DM’ regions of interest.

Applying the four methods to larger problems might be
computationally expensive if, as in this study, truly optimal
solutions are sought. Reducing the optimality tolerance, i.e.,
accepting suboptimal solutions is certainly an option if
computing time is a constraint: the efficient frontier could
be approximated in a fraction of the time that would be
needed to provide an exact representation. Because of the
numerically sensitive nature of multiobjective program-
ming, however, some of the proposed techniques might
exhibit adverse algorithmic behaviors leading to dominated
solutions or to too few efficient solutions. How much opti-
mality can be forgone while still providing a meaningful
representation of the tradeoff frontier for the DMs? This
question can only be answered by comprehensive compu-
tational experiments that explore the tradeoffs between so-
lution times and Pareto-optimality on larger forest planning
problems. In the meantime, small-scale, pilot applications
of the techniques with real DMs still remain important as
they can answer questions such as how important it is to
find nonsupported Pareto-optima, how to visualize and
present the alternatives to the DMs, and (3) to what extent
can these methods promote consensus between multiple
stakeholders. By the time these questions are answered, our
computational capabilities may improve to a degree thatFigure 7. Suboptimality and multiple dominance.
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allows us to solve large problems to desired levels of
optimality. In the last 3 years alone, optimization technol-
ogy improved so dramatically that we could run the exper-
iments presented in this study in 20 hours in 2008 instead of
the 3 weeks we needed in 2005.

Finally, we emphasize that finding the best ways to
visualize the efficient management alternatives and optimiz-
ing the interaction with the DMs are key issues that need to
be addressed in future research to successfully apply these
methods. Visualizations with the potential to display three
or more management objectives have already been proposed
(e.g., Schilling 1976 or Lotov et al. 2004), and recent
improvements in computer-aided three-dimensional render-
ing and animation could significantly enhance the viability
of these tools in natural resource decisionmaking.
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