Dynamic Programming

Lecture 13 (5/31/2017)

- A Forest Thinning Example -

	at age 10			
	Age 10			
Beginning	Volume	Residual	Ten-year	Volume
volume	thinned	volume	growth	at age 20
260	0	260	390	650
260	50	210	325	535
260	100	160	250	410

Projected yield (m3/ha) at age 20 as function of action taken

Projected yield (m3/ha) at age 30 as function of beginning volume at age 20 and action taken at age 20

	Age 20			
Beginning	Volume	Residual	Ten-year	Volume
volume	thinned	volume	growth	at age 30
	0	650	200	850
650	150	500	250	750
	200	450	200	650
	0	535	215	750
535	100	435	215	650
	175	360	140	500
	0	410	190	600
410	75	335	165	500
	150	260	140	400

Source: Dykstra's Mathematical Programming for Natural Resource Management (1984)

Dynamic Programming Cont.

- Stages, states and actions (decisions)
- Backward and forward recursion

 x_i = decision variable: immediate destination node at stage i;

 $f_i(s, x_i)$ = the maximum total volume harvested during all remaining stages, given that the stand has reached the state corresponding to node s at stage i and the immediate destination node is x_i ;

 x_i^* = the value of x_i that maximizes $f_i(s, x_i)$; and

 $f_i^*(s)$ = the maximum value of $f_i(s, x_i)$, i.e., $f_i^*(s) = f_i(s, x_i^*)$.

Solving Dynamic Programs

Recursive relation at stage *i* (Bellman Equation):

$$f_i^*(s) = \max_{x_i} \left\{ H_{s,x_i} + f_{i+1}^*(x_i) \right\},\,$$

where H_{s,x_i} is the volume harvested by thinning at the beginning of stage *i* in order to move the stand from state *s* at the beginning of stage *i* to state x_i at the end of stage *i*.

Dynamic Programming

- Structural requirements of DP
 - The problem can be divided into stages
 - Each stage has a finite set of associated states (discrete state DP)
 - The impact of a policy decision to transform a state in a given stage to another state in the subsequent stage is deterministic
 - Principle of optimality: given the current state of the system, the optimal policy for the remaining stages is independent of any prior policy adopted

Examples of DP

• The Floyd-Warshall Algorithm (used in the Bucket formulation of ARM):

Let c(i, j) denote the length (or weight) of the path between node i and j; and
Let s(i, j, k) denote the length (or total weight) of the shortest path between nodes i and j going through intermediate node 1, 2, ...,k.

Then, the following recursion will give the length of the shortest paths between all pairs of nodes in a graph:

$$s(i, j, k) = \begin{cases} c(i, j) \text{ if } k = 1\\ \min\{s(i, j, k-1), s(i, k, k-1) + s(k, j, k-1)\} \text{ otherwise} \end{cases}$$

Examples of DP cont.

 Minimizing the risk of losing an endangered species (non-linear DP):

Source: Buongiorno and Gilles' (2003) Decision Methods for Forest Resource Management

Minimizing the risk of losing an endangered species (DP example)

- Stages (t=1,2,3) represent \$ allocation decisions for Project 1, 2 and 3;
- States (i=0,1,2) represent the budgets available at each stage t;
- Decisions (j=0,1,2) represent the budgets available at stage t+1;
- $p_t(i, j)$ denotes the probability of failure of Project t if decision j is made (i.e., i-j is spent on Project t); and
- $V_t^*(i)$ is the smallest probability of total failure from stage t onward, starting in state i and making the best decision j*.

Then, the recursive relation can be stated as:

$$V_t^*(i) = \min_j \left\{ p_t(i, j) \cdot V_{t+1}^*(j) \right\}$$

Markov Chains (based on Buongiorno and Gilles 2003)

Volume by stand states		20-yr Trans	20-yr Transition probabilities w/o management			
State i	Volume (m2/he)	Start	End State j			
State I	volume (mo/na)	State i	L	Μ	Н	
L	<400	L	40%	60%	0%	
М	400-700	М	0%	30%	70%	
<u> </u>	700<	H	5%	5%	90%	
					R	

Transition probability matrix P

 p_t = probability distribution of stand states in period t

$$p_t = p_{t-1}P \qquad \forall t$$

- Vector p_t converges to a vector of steady-state probabilities p^* .
- p^* is independent of $p_0!$

Markov Chains cont.

• Berger-Parker Landscape Index

$$BP_{t} = \frac{p_{Lt} + p_{Mt} + p_{Ht}}{\max(p_{Lt}, p_{Mt}, p_{Ht})}$$

Mean Residence Times

$$m_i = \frac{D}{(1 - p_{ii})}$$

Mean Recurrence Times

$$m_{ii} = \frac{D}{\pi_i}$$

,where p_{it} is the probability that the stand is in state i = L, M or H in period t.

,where D is the length of each period, and p_{ii} is the probability that a stand in state *i* in the beginning of period *t* stays there till the end of period *t*.

,where π_i is the steady-state probability of state *i*.

Markov Chains cont.

 Forest dynamics (expected revenues or biodiversity with vs. w/o management:

20-yr Transition probabilities w/o management					
Start	End State j				
State i	L	М	Н		
L	40%	60%	0%		
Μ	0%	30%	70%		
Н	5%	5%	90%		

20-yr Transition probabilities w/ management				
Start	End State j			
State i	L	М	Н	
L	40%	60%	0%	
М	0%	30%	70%	
Н	40%	60%	0%	

Expected long-term biodiversity: $B = \pi_L B_L + \pi_M B_M + \pi_H B_H$ Expected long-term periodic income: $R = \pi_L R_L + \pi_M R_M + \pi_H R_H$

Markov Chains cont.

Present value of expected returns

$$V_{i,t+1} = R_i + \frac{1}{(1+r)^{20}} (p_{iL}V_{Lt} + p_{iM}V_{Mt} + p_{iH}V_{Ht})$$

where $V_{i,t}$ is the present value of the expected return from a stand in state in state i = L, M or H managed with a specific harvest policy with t periods to go before the end of the planning horizon. R_i is the immediate return from managing a stand in state i with the given harvest policy. p_{iL} , p_{iM} , p_{iH} are the probabilities that a stand in state i moves to state L, M or H, respectively.

Markov Decision Processes

ZU-yi man		acpentante					
No Cut			Cut				
Start		End State j Start End State j					
State i	L	М	Н	State i	L	М	Н
L	40%	60%	0%	L	40%	60%	0%
М	0%	30%	70%	М	40%	60%	0%
Н	5%	5%	90%	H	40%	60%	0%

20-yr Transition probabilities depending on the harvest decision

$$V_{i,t+1}^* = \max_{j} \left\{ R_{ij} + \frac{1}{(1+r)^{20}} \left(p_{iLj} V_{Lt}^* + p_{iMj} V_{Mt}^* + p_{iHj} V_{Ht}^* \right) \right\}$$

where $V_{i,t+1}^*$ is the highest present value of the expected return from a stand in state in state i = L, M or H managed with a specific harvest policy with t periods to go before the end of the planning horizon. R_{ij} is the immediate return from managing a stand in state i with harvest policy j. p_{iLj} , p_{iMj} , p_{iHj} are the probabilities that a stand in state i moves to state L, M or H, respectively if the harvest policy is j.