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Spatial Forest Planning
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Balancing the Age-class 
Distribution
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Spatially-explicit Harvest 
Scheduling Models

• Set of management units
• T planning periods
• Decision: whether and when to harvest 

management units
– Modeled with 0-1 variables
– xmt = 1 if unit m is harvested in period t, 0 

otherwise 



Spatially-explicit Harvest 
Scheduling Models (continued)

• Constraints
– Logical: can only harvest a unit once, at most
– Harvest volume, area and revenue flow control
– Ending conditions

• Minimum average ending age
• Extended rotations
• Target ending inventories

– Maximum harvest area (green-up)
– Others spatial concerns:

• Roads, mature patches, etc…



one constraint for each                 and for each t=hi,…,T

Integer Programming Model for Spatial 
Forest Planning
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subject to:

one constraint for each m=1,2,…,M

one constraint for each t=1,2,…,T

one constraint for each t=1,2,…,T-1

one constraint for each t=1,2,…,T-1

for each m=1,2,…,M and for each t=1,2,…,T



Notation

where
hm =the first period in which management unit m is old enough to be harvested,
xmt = a binary variable whose value is 1 if management unit m is to be harvested 

in period t for t = hm, ... T; when t = 0, the value of the binary variable is 1 if 
management unit m is not harvested at all during the planning horizon (i.e., 
xm0 represents the “do-nothing” alternative for management unit m),

M =the number of management units in the forest,
T = the number of periods in the planning horizon, 
cmt = the net discounted net revenue per hectare plus the discounted expected 

forest value at the end of the planning horizon if management unit m is 
harvested in period t,

Mht = the set of management units that are old enough to be harvested in period t,
Am = the area of management unit m in hectares,
vmt = the volume of sawtimber in m3/ha harvested from management unit m if it is 

harvested in period t,
Ht = the total volume of sawtimber in m3 harvested in period t, 



and
bl,t =a lower bound on decreases in the harvest level between periods t and t+1

(where, for example, bl,t = 1 would require non-declining harvests and bl,t = 
0.9 would allow a decrease of up to 10%),

bh,t = an upper bound on increases in the harvest level between periods t and t+1
(where bh,t = 1 would allow no increase in the harvest level and bh,t = 1.1 
would allow an increase of up to 10%),

C = the set of indexes corresponding to the management units in cover C,
= the set of covers that arise from the problem,

hi = the first period in which the youngest management unit in cover i is old 
enough to be harvested,

= the age of management unit m at the end of the planning horizon if it is 
harvested in period t; and

= the minimum average age of the forest at the end of the planning horizon. 

Notation cont.
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The Challenge of Solving Spatially-
Explicit Forest Management Models

• Formulations involve many binary (0-1) 
decision variables
– Feasible region is not convex, or even 

continuous
– In fact, it is a potentially immense set of 

points in n-dimensional space
• Solution times could increase more than 

exponentially with problem size



1.) Unit Restriction Model (URM):
adjacent units cannot be cut 
simultaneously

2.) Area Restriction Model (ARM):
adjacent units can be cut simultaneously 
as long as their combined area doesn’t 
exceed the maximum harvest opening 
size



Pair-wise Constraints for 
URM

Pair-wise adjacency 
constraint for AB is

1At Btx x 

A, 14 B, 4 C, 10

F, 4

D, 8

E, 7

Adjacency list:
AB

BC
BD
BE
CD

AD
AE

DF



What is a “better” formulation?



Maximal Clique Constraints 
for URM

Clique adjacency constraint 
for ABD is

1At Bt Dtx x x  

A, 14 B, 4 C, 10

F, 4

D, 8

E, 7

Maximal clique list:

BCD
DF

ABD
ABE



Cover Constraints for ARM

Cover constraint for FDC is:
2C t Dt F tx x x  

A, 14 B, 4 C, 10

F, 4

D, 8

E, 7

Cover list:
ABC

AE
BCE
BDEF
CDF

AD
BCD

1mt
m C

x C

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In general:

max 20A ha

McDill et al. 2002



GMU Constraints for ARM

A, 14 B, 4 C, 10

F, 4

D, 8

E, 7

GMU variable for BDF is: BDF tx

GMU list:
A-F

BD
BDE
BDF
BE

AB
BC

CD
CF
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in general form:

Where              is the set of  GMUs that contain at least 
one stand in max clique j;
J is the set of  max cliques; and
hj is the first period in which the youngest 

stand in clique j is old enough to be cut.

max 20A ha

McDill et al. 2002 and Goycoolea et al. 2005

jtK



The “Bucket” Formulation of ARM

• Introduce a class of “clearcuts”:     , and
• Introduce variables         that take the 

value of 1 if management unit m is 
assigned to clearcut i in period t.

• Objective function:

Constantino et al. 2008


it
mx

0
0

1
[ ]

m

M T
i it

m m m mt m
m i t h

MaxZ a c x c x
  

  



The “Bucket” Formulation of ARM 
(cont.)

• Constraints:

0,
1
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The “Bucket” Formulation of ARM 
(cont.)

• Constraints:
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The “Bucket” Formulation of ARM 
(cont.)

• takes the value of one whenever a 
unit in maximal clique      is assigned to 
clearcut i in period t;

• is a maximal clique in the set of 
maximal cliques.

it
Qw

Q

Q



Strengthening and Lifting Covers

13 14 43 50 3x x x x   

24 38 1x x 
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max 48A ha



Formalization

maxjj C
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1jj C
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  max\ jj C l
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where C  is a set of  management units (nodes) that form
a connected sub-graph of  the underlying adjacency graph,
and for which holds, but

for any

The minimal cover constraint has the general form of:

maximum harvest area

area of  unit j



Strengthening the Minimal Covers
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denote the set of  all possible minimal covers that
arise from a certain forest planning problem (or
adjacency graph).

Notation: Let

For every set of  management units A, let
the set of  all management units adjacent, but not 
belonging, to A.

Define:

represent

Define:

Number of  units in the forest



Proposition: Consider a minimal cover C ( ).s N C
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Strengthening the Minimal Covers
Cont.
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Strengthening the Minimal Covers
Cont.
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Proof: Consider If , then the inequality holds by the

If , then:

definition of  minimal cover C.
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How strong are these inequalities?

max 3A ha

332211
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Sequential Lifting Algorithm
 

 \{ }C 

NO 
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YES

Pick a cover, C from set  .

Generate the set of management units, S  
that are adjacent to at least 2 units of C.

 Pick a unit, s from set S.

* 1s  ?

 Determine *s using
 Proposition 1. 

  ?

STOP

NO

YES

Generate the set of 
minimal covers, 
 using the Path 

Algorithm 
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Strengthening and lifting

Compatibility testing



Open Questions:

1) Can one define a rule for multiple 
lifting?

2) Can one find even stronger 
inequalities?

3) Is there a better formulation?



A “Cutting Plane” Algorithm for the 
Cover Formulation

21 37 47 2X X X  

8 18 40 2X X X  


