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Abstract: Spatially explicit harvest scheduling models to enforce maximum harvest opening size restrictions
often lead to combinatorial problems that are hard to solve. This article shows that the inequalities required by
one of the three existing formulations, the Path model are typically lazy. In other words, these constraints are
rarely binding during optimization, especially if the maximum opening size is large relative to the average
management unit size. By solving 60 hypothetical and 8 real forest problems with varying maximum clearcut
sizes and to varying target optimality gaps, we confirm that applying the path constraints only when they are
violated during optimization leads to shorter solution times. Although the Lazy Path constraints performed better
than the other formulation/solution approaches, the relative superiority of the method was more obvious at larger
optimality gaps. Nearly 95% of the problem instances solved fastest with the “lazy” method at a target gap of
1%, and almost 92% solved fastest at 0.05%. At 0.01%, the Lazy Path approach was still superior in the majority
of cases, but the percentage was much lower (57%). This is a significant improvement compared with the 14,
10, and 19% shares of the other approaches. If only the real instances are considered, the Lazy Path approach
performed best in 68% of the instances with 1 and 0.01% optimality gaps and in 61% of the instances with 0.05%
gap. A closer analysis of the results suggests that the relative superiority of the approach increases with problem
size and maximum clearcut size. FOR. SCI. 59(2):157–176.
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S PATIALLY EXPLICIT HARVEST SCHEDULING MODELS

optimize the spatial and temporal layout of forest
management actions to best meet management ob-

jectives such as profit maximization, even flow of products,
and wildlife habitat preservation while satisfying a variety
of constraints, including maximum harvest opening size
restrictions. These models assign various silvicultural pre-
scriptions, such as clearcuts, thinning, or shelterwood treat-
ments, to forest management units within a predetermined
land base. In addition, spatially explicit decisions may also
be modeled. These decisions, such as whether to treat a
harvest unit or to build a road link in a given planning
period, are typically represented with binary variables that
can take only the values of 0 or 1. A variety of other
restrictions, some spatially explicit and some not, are also
typically included such as timber-flow smoothing con-
straints (e.g., Thompson et al. 1994), minimum average
ending age or inventory constraints (e.g., McDill and Braze
2000), and maximum harvest opening size restrictions (e.g.,
Meneghin et al. 1988).

The need for spatial specificity in these models and the
use of discrete optimization have emerged primarily as a
result of adjacency restrictions. Adjacency (“green-up”)
constraints limit the maximum size of contiguous harvest
openings. These restrictions, which are often required by
law or policy in North America (e.g., Barrett et al. 1998,
American Forest & Paper Association 2000, Boston and

Bettinger 2002), have been promoted as a tool to mitigate
the negative impacts of harvesting forested ecosystems
(e.g., Thompson et al. 1973, Jones et al. 1991, Murray and
Church 1996a, 1996b, Snyder and ReVelle 1996a, 1996b,
1997a, 1997b, Carter et al. 1997, Murray 1999). Although
maximum harvest opening size constraints do indeed dis-
perse harvesting activities across the landscape and thus
reduce the concentration of this type of human disturbance,
they have also been shown to fragment and disperse mature
forest habitats (Harris 1984, Franklin and Forman 1987,
Barrett et al. 1998, Borges and Hoganson 2000). To mitigate
these negative consequences of these restrictions, Rebain
and McDill (2003a, 2003b) proposed a 0-1 programming
formulation that allows the forest planner to promote or to
require the preservation, maintenance, or creation of a cer-
tain amount of mature forest habitat in large patches over
time in models with maximum harvest opening size con-
straints. A drawback of combining both harvest opening
size and mature patch habitat constraints is that the resulting
models are large, complex, and hard to solve. Considerable
effort has been made to improve our ability to obtain high-
quality solutions for these models within reasonable time
frames such as a few hours. This study focuses on improv-
ing the performance of models with harvest opening size
constraints. We show that the so-called path constraints
(McDill et al. 2002), which are required by one of the existing
models to ensure maximum harvest opening size restrictions,
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are rarely active (binding) during optimization, especially if
the size limit on harvest openings is large. Furthermore,
because these constraint sets tend to be large, we hypothe-
size that putting these inequalities in lazy constraint pools,
i.e., using them only when they are violated by a solution
during optimization, can lead to dramatic improvements in
solution times.

The rest of the Introduction discusses the existing exact
optimization models for maximum harvest opening size
restrictions and further explains our hypothesis about the
“lazy” nature of path constraints. In particular, the potential
significance of this property with respect to the computa-
tional performance of harvest scheduling models is dis-
cussed. The empirical study described in this article com-
pares the solution times that can be achieved by the existing
models with those of the Lazy Path approach using 60
hypothetical and 8 real test problem instances, and different
maximum harvest opening size levels.

The simplest type of maximum harvest opening size
constraints prevent adjacent management units from being
harvested within the same time period (McDill and Braze
2000). This case, referred to as the unit-restriction model
(URM; Murray 1999), assumes that the combined area of
any two units in the forest would exceed this maximum
area. The area-restriction model (ARM; Murray 1999) is
more general, allowing groups of contiguous management
units to be harvested concurrently as long as their combined
area is less than the maximum opening size. Depending on
the average area of management units, the maximum har-
vest opening size, and the age-class distribution of the
forest, the ARM formulation might allow for a significantly
higher net present value (NPV) of the forest. Furthermore,
the ARM approach gives harvest scheduling models more
flexibility in building up treatment units in a variety of ways
to meet different forest management objectives. Unfortu-
nately, formulating and solving forest planning problems
with ARM constraints is generally considerably more dif-
ficult than formulating and solving such problems with
URM constraints.

URM constraints can be written in a number of different
ways. McDill and Braze (2000) identify 16 different ways
URM constraints have been formulated in the literature. The
URM problem, which can be stated as selecting a subset of
management units from a forest for logging in such a way
that no two adjacent units are cut and that the net revenues
are maximized, is equivalent to the well-researched maxi-
mum weight stable set problem (SSP). Nemhauser and
Wolsey (1988, p. 259–265) provided a detailed discussion
of the SSP. The equivalence of URM and SSP is evident if
one considers the graph representation of the URM, in
which the nodes correspond to the management units and
the arcs represent the adjacency relationships among these
units. If the weight assigned to a node represents the net
revenues that are earned if the corresponding unit is cut,
then the one-period URM problem is to identify a subset of
unconnected nodes with maximum total weight. This is the
maximum weight stable set problem. This equivalence is
easily generalized to the n-period URM problem (Barahona
et al. 1990).

There are two important implications of the equivalence

of URM and SSP with respect to spatially explicit harvest
scheduling models. One is that harvest scheduling models,
both URM and ARM, are NP-Hard. In other words, the
solution times for these problems increase more than poly-
nomially as a function of the number of constraints and
variables that are required to formulate the models because
the ARM is a generalization of the URM, and the URM is
equivalent to the SSP, which is known to be NP-Hard
(Nemhauser and Trotter 1974). The other implication is that
families of inequalities that have already been found useful
for SSPs, such as those based on maximal cliques (Padberg
1973), can be useful for URM problems as well. The con-
cept of maximal cliques, maximal sets of nodes in a graph
that are mutually connected by edges, translates to maximal
sets of mutually adjacent management units in forest plan-
ning. The useful combinatorial properties of maximal clique
inequalities in URM problems has been mentioned in Mur-
ray and Church (1996a, 1997) and was later used by Goy-
coolea et al. (2005) and Murray et al. (2004) in solving
ARM problems.

In contrast to the URM, ARM problems were initially
deemed impossible to formulate in a linear model (Murray
1999), and only heuristics were used to solve them (e.g.,
Lockwood and Moore 1993, Caro et al. 2003, Richards and
Gunn 2003). However, McDill et al. (2002) identified two
exact, linear, 0-1 programming formulations of the ARM.
Their first formulation uses constraints that allow groups of
contiguous management units to be harvested as long as
their combined area does not exceed the maximum harvest
opening limit. McDill et al. (2002) present an algorithm,
which they call the Path algorithm, that recursively enumer-
ates all sets of contiguous management units whose com-
bined areas just exceed the maximum allowable harvest
level. The constraints created this way are similar to cover
inequalities in 0-1 knapsack problems (c.f. Wolsey 1998,
p. 147), and, thus, they are occasionally referred to as cover
inequalities in this article. The disadvantage of the
Path/Cover formulation is that the number of these con-
straints can be very large, and this number grows exponen-
tially as the number of times the recursive algorithm that
generates them calls itself. Thus, the number of constraints
increases exponentially as the ratio between the average size
of the management units and the maximum harvest opening
size decreases. The advantage of the Path/Cover formula-
tion over the two alternatives, discussed next, is that it does
not require the introduction of additional 0-1 decision vari-
ables. The potentially very large number of Path/Cover
constraints relative to the number of 0-1 variables suggests
that with larger maximum harvest opening sizes, these con-
straints might be less likely to be binding during optimiza-
tion. This behavior could be used to produce shorter solu-
tion times.

The other formulation of McDill et al. (2002) uses sep-
arate variables for each possible combination of contiguous
management units within the forest whose total area does
not exceed the allowable harvest opening size. McDill et al.
(2002) refer to these combinations as generalized manage-
ment units (GMUs). These GMUs need to be enumerated
before the model can be constructed. With this formulation,
the same types of adjacency constraints as those used in
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URMs can be written on the set of GMUs. McDill et al.
(2002) used pairwise constraints in their initial experiments,
whereas Goycoolea et al. (2005) applied maximal cliques
and found that these formulations performed better. In ad-
dition, in a more recent work, Goycoolea et al. (2009) also
provide theoretical evidence that the Maximal Clique GMU
(“Cluster”) formulation is always at least as tight as the Path
formulation in its approximation of the convex hull of the
ARM. In other words, the linear programming relaxation of
the GMU model always leads to an objective function value
that is at least as close as or closer to the objective function
value of the true optimum as that of the Path model. This is
an important result because tighter formulations often lead
to shorter solution times. In contrast to the Path formulation,
in which the number of constraints grows exponentially as
the ratio of the maximum harvest opening size is increased,
with the GMU model the number of variables grows expo-
nentially as the ratio of the maximum harvest opening size
is increased.

The third exact 0-1 programming formulation of the
ARM, proposed by Constantino et al. (2008), is very dif-
ferent from the Path/Cover and GMU/Cluster formulations
in that it does not rely on a recursive, potentially time-con-
suming, a priori enumeration of spatial constructs such as
minimally infeasible (as in the Path model) or feasible
clusters of management units (as in the GMU model).
Because the number of clearcuts in a forest cannot exceed
the number of management units (given that a management
unit can only be harvested once) a parsimonious set of
clearcut assignment variables can be defined that represent
the decisions to assign management units to a particular
clearcut (also referred to as a “bucket” in Goycoolea et al.
2009) in a given planning period. In the context of the
model of Constantino et al. (2008), a clearcut or bucket may
comprise units that are disconnected. Additional constraints
are present in the formulation to ensure that the area of these
clearcuts never exceeds the maximum opening size and that
two or more clearcuts never overlap and are never adjacent.
Because the number of assignment variables in this formu-
lation is bounded by n � n � T, where n is the number of
management units in the forest and T is the number of
planning periods, the model of Constantino et al. (2008)
leads to smaller problems than the other two formulations
when the maximum harvest opening size is large relative to
the typical size of a management unit. Further, substantial
reductions in problem size can be achieved by eliminating
those assignments from the model where the area of the
minimum-area path between the two management units
involved is greater than the maximum harvest opening size.
The model of Constantino et al. (2008) is significant be-
cause it keeps the size of the ARM from growing exponen-
tially with increasing maximum harvest opening sizes rela-
tive to the average unit size.

At least two other ARM constraint sets have been pro-
posed. One can be viewed as an extension of the McDill et
al. (2002) Path model and the other as a hybrid method that
can be solved using exact optimization techniques but can-
not guarantee solutions that do not require postfixing for
ARM feasibility. Crowe et al. (2003) appended what they
call “ARM clique constraints” to the McDill et al. (2002)

path or cover inequalities, arguing that the “clique” concept
can be applied to ARMs if the total area of a mutually
adjacent set of management units exceeds the maximum
opening size. The clique constraints of Crowe et al. (2003)
are very similar to knapsack constraints and are written for
each mutually adjacent set of units, where the left-hand side
coefficients are the areas of the units and the right-hand side
is the allowable cut limit. Crowe et al. (2003) found that the
appended formulation did not outperform the McDill et al.
(2002) Path approach computationally. It can be shown,
however, that some of these ARM clique constraints cut off
fractional solutions from the linear programming (LP) re-
laxation defined by the McDill et al. Path/Cover formula-
tion, and thus they could possibly be used to tighten the
Path/Cover formulation (i.e., better approximate the ARM’s
integral convex hull). The results of Crowe et al. (2003)
illustrate how obtaining a tighter formulation does not nec-
essarily result in improved solution times. Although addi-
tional constraints may tighten the formulation, they increase
the size of the LP relaxation that must be solved at each
node in the branch-and-bound tree, slowing down the rate at
which nodes are processed.

The “stand-centered” constraints of Gunn and Richards
(2005) can also be used as an alternative or complement to
the cover inequalities of McDill et al. (2002). One stand-
centered constraint is written for each management unit and
period. The constraint prevents the harvest of the unit in a
given period if the combined area of the adjacent units that
are scheduled for harvest in the same period exceeds the cut
limit minus the area of the unit. Gunn and Richards (2005)
observe that these constraints do not prevent every possible
harvest area violation, but they argue that these violations
will be few when the areas of management units are not too
small compared with the harvest opening area limit and that
those that do occur can be easily detected and “postfixed” at
a relatively small loss in optimality. Although the constraint
set of Gunn and Richards (2005) is not an exact formulation
of the ARM, it is attractive because the number of stand-
centered constraints needed is equal to the number of units
in a forest, which is much less than the number of covers
that might be needed and unlike finding the covers of
McDill et al. (2002), generating stand-centered constraints
does not require a potentially very time-consuming recur-
sive enumeration. However, the constraint set of Gunn and
Richards (2005) can be expected to be less effective as the
ratio of the maximum harvest opening limit to the typical
management unit size increases.

The goals of this article are to test empirically whether
the Path or Cover inequalities of McDill et al. (2002) are
often lazy in a sense that most of them are rarely active
(binding) in otherwise feasible integer solutions that are
potential candidates for the true optimum and to test
whether this property can be used to solve area-based har-
vest scheduling models more efficiently. Specifically, we
test whether specifying the path constraints as a lazy con-
straint pool leads to more efficient solution times (i.e.,
whether a target dual gap can be achieved more quickly or
whether a tighter gap can be achieved within a given
amount of time). Whereas the construction of lazy con-
straint pools still requires the a priori enumeration of paths,
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minimally infeasible clusters of management units, the con-
straints in the pool are only applied during optimization if
they are violated by a solution that has the potential to
improve on the objective function value of the incumbent.
Note that lazy constraints are different from redundant
constraints in that the latter can never be active in any of the
solutions because they are found outside of the feasible
region. Lazy constraints are also different from cutting
planes because they are required to fully identify the set of
feasible solutions; without them, an infeasible integer solu-
tion would be allowed.

We also note that our proposed approach bears some
resemblance to the McNaughton and Ryan integrated col-
umn and constraint generation method. Our method is
markedly different in three ways. First, whereas the lazy
constraint approach is applied to the Path formulation, the
McNaughton and Ryan (2008) technique is applied to the
cluster packing (Goycoolea et al. 2005) or equivalently to
the GMU-based formulation (McDill et al. 2002). Second,
we do generate all of the adjacency constraints, which are in
our case path constraints, up front but use them only when
needed during optimization. McNaughton and Ryan (2008)
do not generate any of the GMU-based adjacency con-
straints up front. However, they enumerate the GMUs and
construct the associated GMU variables and constraints
only on those GMUs that turn out to be involved in clearcut
size or green-up violations at particular solution candidates.
Last, one big advantage of our approach is that all it requires
from the user for implementation is to label the path con-
straints as “lazy.” Although most off-the-shelf optimization
packages, such as IBM’s ILOG CPLEX, offer several op-
tions to define model constraints as lazy, the efficacy of the
approach in forest planning has not been investigated so far.
The approach of McNaughton and Ryan (2008) requires
setting up what is essentially a branch-and-cut-and-price
algorithm for the ARM, which is a far more technical task.

The next section describes the computational experiment
that was conducted to check whether the path constraints are

indeed lazy in various problem instances, and to test
whether and under what conditions the use of lazy con-
straint pools leads to shorter solution times compared with
those of other methods. We also give formal, mathematical
definitions of the models and algorithms that we used in the
comparison.

Methods
Test Forests

The “laziness” of the path constraints and the computa-
tional efficiency that can be afforded by the use of lazy
constraint pools was tested on 60 hypothetical and 8 real
forest planning problems, all of which are available in a
public data repository (Integrated Forest Management Lab
2006). Multiple levels of maximum harvest opening size
restrictions were used (Table 3). Thirty of the hypothetical
forests had 300 units, and 30 had 500 units. The real forests,
Kittaning 4, Five Points, Phyllis Leeper, Bear Town, Pack,
El Dorado, Shulkell, and NBCL5 consisted of 32, 71, 89,
90, 186, 1,363, 1,019, and 5,224 units, respectively. In this
article, a management unit is simply the smallest contiguous
predefined spatial unit that will be treated using a single
prescription (i.e., it cannot be split). Adjacent management
units may be aggregated, however, to create larger treatment
units that will be collectively treated using a single prescrip-
tion. The hypothetical problems had one forest type and one
site class, whereas some of the real problems had four, five,
or six forest types and two, three, four, or six site classes
(Table 2). Forests in different categories exhibit different
growth and yield patterns. The initial age-class distribution
of the hypothetical forests mimics a typical Pennsylvania
hardwood forest (Table 1). Because the hypothetical forests
comprise different spatial configurations of management
units and the acreage of the individual units is predefined,
the actual percentages of the age classes might deviate
slightly from the figures in the table. The hypothetical
problems were generated in batches using a program called
MakeLand (McDill and Braze 2000), which creates hypo-
thetical forests consisting of contiguous irregular polygons
that can be assigned different stand characteristics. Make-
Land was instructed to randomly assign age classes to the
polygons of each randomly generated forest map in such a
way so that the overall age-class distribution would approx-
imate the one shown in Table 1. This random age-class
assignment was done 3 times for each of 20 maps, resulting
in the 30 300-stand and 30 500-stand problems. Neighbor-
hood adjacency (the average number of adjacent stands or
vertex degree in the adjacency graph) was varied by chang-
ing the initial number of points that MakeLand was in-
structed to use to construct the polygons. The age classes
and yields of each unit in the real problems were based on
onsite measurements.

The planning horizon was 60 years for the hypothetical
models, and 50, 45, 40, or 25 years for the real problems.
The length of the planning periods was 10 years for each
problem except for El Dorado, Shulkell, and Pack forests,
for which it was 5 years. The minimum rotation age was 60
for the hypothetical, 80 for the four small real problems

Table 1. Initial age-class distribution and yield table for the
hypothetical forests.

Age
classes

(yr)

Total
area
(%)

Stand
age

Yield
(MBF/ha)

Annual
value

growth
rate

1 0–10 8 10 0.0 NA
2 11–20 8 20 0.0 NA
3 21–30 3 30 3.7 NA
4 31–40 3 40 12.4 0.1279
5 41–50 2 50 29.7 0.0915
6 51–60 2 60 61.8 0.0762
7 61–70 13 70 103.2 0.0526
8 71–80 13 80 144.6 0.0343
9 81–90 24 90 188.4 0.0269
10 91–100 24 100 232.3 0.0211
Sum 100 110 269.3 0.0149

120 306.4 0.0130
130 333.6 0.0085
140 360.8 0.0079
150 381.8 0.0057

MBF, thousand board feet; NA, not applicable.
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from Pennsylvania, 45 for Pack Forest, and 35 for El Do-
rado and Shulkell, and it ranged from 20 to 100 years for
NBCL5, depending on the forest type. Because the initial
age and the minimum rotation age of a management unit
determine whether it can be cut during the planning horizon
and this in turn can have an impact on the difficulty of the
harvest scheduling problem, we note that the percentage
area of the forests that cannot be cut at all is zero for the
majority of the test problems. More specifically, it is zero
for the 60 hypothetical problems, Pack Forest, and Shulkell;
and it is 6.18% for Kittaning 4, 3.66% for Five Points,
1.83% for Phyllis Leeper, 0.44% for Bear Town, 1.27% for
NBCL5, and 20.1% for El Dorado. The financially optimal
rotation age, based on maximizing the land expectation
value, was 80 years for the hypothetical, 50 years for the
small real problems and Pack Forest, 90 years for NBCL5,
70 years for Shulkell, and 35 years for El Dorado. The
possible prescriptions were to cut the management units in
period 1, 2, 3, 4, 5, and 6 (in the hypothetical forests) or not
at all. Maximum harvest opening sizes of 40, 50, and 60 ha
were imposed on the hypothetical problems, 40, 50, 60, and
80 ha on the four smallest real problems, 24.28, 32.37,
40.47, and 48.56 ha on Pack Forest, 48.56, 60.70, and 72.84
ha on El Dorado, 40 and 60 ha on Shulkell, and 21, 30, and
40 ha on NBCL5. Adjacent management units were allowed
to be harvested concurrently as long as their combined area
was less than the maximum opening size. All units were
smaller than the maximum harvest opening size. In the case
of Kittaning 4, Five Points, Phyllis Leeper, and Bear Town,
units greater than 40 ha were divided into smaller units by
a Pennsylvania Bureau of Forestry employee using contour
lines, roads, trails, streams, and shape. In NBCL5 and
Shulkell, units greater than 21 and 40 ha, respectively were
excluded because we had no site-specific knowledge to
make meaningful delineations. We also excluded those
units from NBCL5 that had no yield information. The
average age of the forests at the end of the planning horizon
was set to be at least half of the minimum rotation age. We
used a 3% real discount rate for each formulation except for
the four Pennsylvania forests for which we used 4% and in
Pack Forest for which we used 7% as prescribed by the
respective administrators. The 3% rate was used to be
consistent with Goycoolea et al. (2009).

Table 2 summarizes the spatial characteristics of each
real problem and each hypothetical problem batch. In addi-
tion to the minimum, maximum, and mean unit sizes, the
unit-size distribution, the total forest area, the average ver-
tex degrees and the number of forest types, site classes, and
planning periods are listed.

To evaluate potential solution time savings of the Lazy
Path approach, we formulated each problem three different
ways: using the Path/Cover constraints of McDill et al.
(2002), the Maximal Clique GMUs (Clusters) of Goycoolea
et al. (2005), and the clearcut assignment variables of Con-
stantino et al. (2006). We used a green-up exclusion period
of one-period length. This means that depending on whether
a 5- or 10-year-long planning period was used, 5 or 10 years
were assumed to be long enough for a clearcut to be re-
planted or naturally regenerated into a new stand that had
adequate canopy closure and height. We assumed that ad-

jacent units with a combined area above the maximum
opening size can both be cut as long as there is at least one
planning period between the two harvests to allow green-up.
As a reference for the readers, we note that the length of the
exclusion period ranged between 10 and 20% of the finan-
cially optimal rotation age in these test problems. We solved
the Path formulation with and without treating the
Path/Cover inequalities as lazy constraint pools. We did not
test the lazy constraint approach with the models of Goy-
coolea et al. (2005) and Constantino et al. (2006) because
those formulations do not require exponentially large con-
straint pools; they require more variables. Lazy constraint
pools are expected to work well only in cases in which the
number of lazy constraints substantially exceeds the number
of variables and only a few constaints in the lazy constraint
pool are likely to be binding. The more constraints there are
relative to the number of variables, the less likely that they
will all intersect in the neighborhood of a new, potentially
optimal solution, hence the “lazy” designation.

The following two subsections give formal definitions
for each of the models and for each of the preprocessing
algorithms that were used in this experiment.

Model Formulations
The Path Model (the Cell or Cover Model)

The general structure of the Path model of McDill et al.
(2002) is as follows:

MaxZ � �
m�1

M

am�cm0xm0 � �
t�hm

T

cmtxmt� (1)

subject to

xm0 � �
t�hm

T

xmt � 1 for m � 1, 2, . . . , M (2)

�
m�Mht

vmt � am � xmt � Ht � 0 for t � 1, 2, . . . T (3)

bl,tHt � Ht�1 � 0 for t � 1, 2, . . . T-1 (4)

� bh,tHt � Ht�1 � 0 for t � 1, 2, . . . T-1 (5)

�
j�C

xjt � �C� � 1 � C � � and for t � hi, . . . T (6)

�
m�1

M

am��Agem0
T � AgeT�xm0

� �
t�hm

T

�Agemt
T � AgeT�xmt� � 0 (7)

xmt � 	0, 1
 for m � 1, 2, . . . , M and t � hm, . . . T (8)

where the variables are

xmt � 1 if management unit m is to be harvested in
period t for t � hm, …, T, 0 otherwise; when t �
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0, the value of the binary variable is 1 if manage-
ment unit m is not harvested at all during the
planning horizon (i.e., xm0 represents the “do-
nothing” alternative for management unit m), and

Ht � the total volume of sawtimber in m3 harvested in
period t,

and the parameters are

hm � the first period in which management unit m is
old enough to be harvested,

M � the number of management units in the forest,
T � the number of periods in the planning horizon,
cmt � the net discounted net revenue per hectare plus

the discounted expected forest value at the end of
the planning horizon if management unit m is
harvested in period t,

Mht � the set of management units that are old enough
to be harvested in period t, am, the area of man-
agement unit m in ha,

vmt � the volume of sawtimber in m3/ha harvested
from management unit m if it is harvested in
period t,

bl,t � a lower bound on decreases in the harvest level
between periods t and t � 1 (where, for example,
bl,t � 1 would require nondeclining harvests and
bl,t � 0.9 would allow a decrease of up to 10%),

bh, t � an upper bound on increases in the harvest level
between periods t and t � 1 (where bh, t � 1
would allow no increase in the harvest level and
bh, t � 1.1 would allow an increase of up to
10%),

C � a set of management units, also called a cover or
path, that forms a contiguous area just greater in
size than the maximum harvest opening limit,

� � the set of covers (or paths) that arise from a
forest planning problem,

hi � the first period in which the youngest manage-
ment unit in cover i is old enough to be har-
vested,

Agemt
T � the age of unit m at the end of the planning

horizon if it is harvested in period t, and
AgeT � the minimum average age of the forest at the end

of the planning horizon.

Table 2. Test problem characteristics.

Problem identification

Management unit-size distribution

Area
(ha)

Unit size

Planning
periods Vertexo

Forest
types

Site
classes0–5 6–10 11–15 16–20 21–25 26–30 31–35 36–50 Total

Mini-
mum

Maxi-
mum Mean

. . . . . . . . . . . . . . . . . . . .(ha). . . . . . . . . . . . . . . . . . . .

Real problems
Pack Forest,

Washington
62 56 31 16 21 0 0 0 186 1,708 0.55 24.27 9.18 9 � 5 yr 4.78 1 1

NBCL5, Canada 2,833 1,577 623 211 0 0 0 0 5,244 34,739 0.99 20.23 6.65 4 � 10 yr 2.87 6 1
El Dorado, California 107 421 267 183 134 94 88 69 1,363 21,147 4.05 47.09 15.52 5 � 5 yr 5.30 1 1
Shulkell, Nova

Scotia
299 377 188 67 49 16 17 6 1,019 9,443 0.31 39.33 9.27 5 � 5 yr 4.05 6 6

Kittaning 4,
Pennsylvania

1 3 4 13 5 6 0 0 32 588 4.02 29.32 18.38 3.27 4 2

Five Points,
Pennsylvania

0 15 19 10 26 14 6 0 90 1,673 5.80 31.75 18.58 5 � 10 yr 3.71 5 4

Phyllis Leeper,
Pennsylvania

6 3 15 30 21 13 1 0 89 1,597 1.25 30.46 17.95 3.19 5 3

Bear Town,
Pennsylvania

0 7 11 20 19 13 1 0 71 1,349 5.96 30.81 19.00 2.90 5 3

300-unit hypothetical
problems

75–77 0 147 80 38 20 9 4 2

300

3,600 5.39 38.25 12.00

6 � 10 yr

4.63

1 1

81–83 0 135 101 35 17 9 2 1 3,600 5.61 38.84 12.00 5.03
87–89 0 132 108 35 11 11 3 0 3,600 5.78 32.56 12.00 4.95
90–92 0 143 79 46 20 6 6 0 3,600 5.20 35.00 12.00 4.87
93–95 0 130 101 43 17 7 2 0 3,600 5.60 33.86 12.00 4.93
96–98 0 133 98 43 13 12 1 0 3,600 5.95 31.27 12.00 5.00
99–101 0 140 85 48 18 5 3 1 3,600 5.86 35.51 12.00 4.99
102–104 0 141 85 38 24 5 4 3 3,600 5.15 38.89 12.00 4.69
189–191 0 143 104 31 15 3 1 3 3,480 5.59 38.56 11.60 5.06
192–194 0 156 84 37 15 5 2 1 3,480 5.91 39.29 11.60 5.25

500-unit hypothetical
problems

108–110 0 233 170 45 34 12 6 0

500

6,000 5.56 34.98 12.00

6 � 10 yr

4.94

1 1

111–113 0 241 151 72 21 4 9 2 5,725 5.15 39.97 11.45 4.79
120–122 0 189 161 82 33 22 9 4 6,750 6.93 39.79 13.50 5.29
135–137 0 295 122 58 13 7 2 3 5,300 5.40 39.31 10.60 5.28
141–143 0 242 164 56 19 9 10 0 5,800 5.82 34.89 11.60 5.36
144–146 0 256 142 48 33 15 5 1 5,800 5.70 35.67 11.60 5.44
150–152 0 299 131 39 20 5 3 3 5,300 5.43 39.87 10.60 5.50
153–155 0 280 146 55 11 5 2 1 5,300 5.37 35.20 10.60 5.47
159–161 31 270 126 53 14 4 1 1 5,000 4.78 38.73 10.00 5.46
168–170 0 209 150 88 29 14 9 1 6,300 6.35 36.34 12.60 5.46
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Equation 1 specifies the objective function of the prob-
lem, namely to maximize the discounted net revenue from
the forest during the planning horizon plus the discounted
ending value of the forest. Constraints 2 are logical con-
straints. They require a management unit to be assigned to
at most one prescription, including a do-nothing prescrip-
tion. Harvest variables (xmt) are only created for periods in
which the stand is old enough to be harvested (i.e., it is older
in that period than in the predefined minimum rotation age).
Constraints 3 are harvest accounting constraints. They sum
the harvest volume for each period and assign the resulting
value to harvest accounting variables Ht. Constraint sets 4
and 5 are flow constraints. They limit the rate at which the
harvest volume can increase or decrease from one period to
the next. Constraint set 6 captures the maximum harvest
opening size restrictions as minimal cover constraints gen-
erated by the Path algorithm. These constraints assume that
the exclusion period equals one planning period: once a
management unit, or group of contiguous units, has been
harvested, no adjacent management units can be harvested
until at least one period has passed. The structure of these
constraints is easy to generalize to alternative exclusion
periods, which are integer multiples of a planning period
(see, for example, Snyder and ReVelle 1997b). Constraint 7
is an ending age constraint. It requires that the average age
of the forest at the end of the planning horizon is at least
AgeT years. In the real forests with multiple forest types,
such as NBCL5, one ending age constraint was written for
each forest type. The target ending age was set to one-half
of the minimum rotation age associated with the forest type.
These constraints help prevent the model from overharvest-
ing the forest during the planning horizon and define a
minimum criterion for a desirable ending condition. Last,
constraint 8 identifies the management unit variables as
binary.

The Maximal Clique GMU Model

As discussed in the Introduction, the key step in con-
structing the Maximal Clique GMU (Cluster) model is to
enumerate each possible combination of contiguous man-
agement units within the forest whose total area does not
exceed the allowable harvest opening size. The choice vari-
ables xut in this model represent the decision whether all
management units in GMU or Cluster u should be cut in
period t or not. We note that these variables are defined for
t � 0 (the do-nothing option) only if they denote a GMU
that consists of one unit. This is necessary to ensure that the
minimum average ending age constraint 15 functions as
intended. As in Goycoolea et al. (2005), we used maximal
clique constraints in this benchmark model to impose the
maximum harvest opening restrictions:

MaxZ � �
u

au�cuxu0 � �
t�hu

T

cutxut� (9)

subject to

�
u�Gm

� xu0 � �
t�hu

T

xut� � 1 for m � 1, 2, . . . , M (10)

�
u�Gt

vut � au � xut � Ht � 0 for t � 1, 2, . . . T (11)

bl,tHt � Ht�1 � 0 for t � 1, 2, . . . T-1 (12)

�bh,tHt � Ht�1 � 0 for t � 1, 2, . . . T-1 (13)

�
n�Kjt

xnt � 1 for all j � J and t � hjt . . . , T (14)

�
u,t

�Age T�AgeT� �
m�u

amxut � 0 (15)

xut � 	0, 1
 for �u and t � hut . . . T (16)

where

u � a generalized management unit (GMU or clus-
ter): a set of management units that forms a
connected subgraph of the underlying adjacency
graph, for which �j�u aj � Amax (aj is the area of
unit j and Amax is the maximum harvest limit),

Gm � the set of GMUs that contain management unit m,
hu � the first period in which the youngest manage-

ment unit in u is old enough to be cut,
Gt � the set of GMUs formed by management units

that are each old enough to be cut in t,
Kjt � the set of GMUs that contain at least one unit in

maximal clique j of management units and where
all units comprising the GMU are old enough to
be harvested in period t (a maximal clique is a set
of mutually adjacent management units where no
other units exist that are adjacent to all of the
units in the clique),

hj � the first period in which the youngest unit in
clique j is old enough to be cut,

J � the set of maximal cliques of the management
units, and

Ageut
T � the age of GMU u in years at the end of the

planning horizon if it is cut in period t.

The Bucket Model

To formulate the Bucket model of Constantino et al.
(2008), define class K as a class of clearcuts. Each clearcut
is uniquely indexed by a management unit (stand). Thus, �K�
� M, where M is the number of units in the forest. Further,
the elements of a clearcut Ki � K are management units
defined by the following function (0-1 program). Function
11–14 assigns a set of units, (which can be the empty set) to
each clearcut via the use of binary variables xit

m that take the
value of 1 if unit m is assigned to clearcut i in period t. The
value of this variable is 0 otherwise.

MaxZ � �
m�1

M �
i�K

am�cm0xm0 � �
t�hm

T

cmtxm
it � (11)

subject to

�
m

xm0 � �
t�hm

T �
i�K

xm
it � 1 for m � 1, 2, . . . , M (12)
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�
m�1

M

amxm
it � Amax for i � K and t � hm, . . . T (13)

xm
it � 	0, 1
 for i � K, m � 1, 2, . . . , M and t � hm,. . . T

(14)

Equation 11, the objective function, is equivalent to
Equation 1 in the Path model. It maximizes the discounted
net timber revenues from the forest over the planning hori-
zon plus the discounted ending value of the forest. Con-
straint set 12 comprises the logical constraints for the
Bucket model. They allow a management unit to be har-
vested only once in the planning horizon or not at all.
Constraints 13 prevent the formation of any clearcut i in
class K whose area exceeds the maximum harvest opening
size. Last, constraint set 14 defines variables xit

m as binary.
Note that because constraint set 13 does not prevent

clearcuts in class K from being adjacent or overlapping, it
alone cannot prevent maximum harvest opening size viola-
tions. Additional constraints are necessary. To that end, the
model of Constantino et al. (2008) model introduces a new
set of binary variables of form wit

Q that take the value of 1
whenever a unit in maximal clique Q � � is assigned to
clearcut i in period t. As with the GMU/Cluster model, set
�, the set of maximal cliques of management units, must be
enumerated during the model formulation phase. The fol-
lowing two constraint sets, along with constraints 13 guar-
antee that the maximum harvest opening size is never ex-
ceeded. The contribution of constraint sets 15–16 is to
ensure that the units in each maximal clique can only belong
to at most one clearcut in any given planning period:

xm
it � wQ

it for Q � �, m � Q, i � m and t � hm, . . . T

(15)

�
i�K

wQ
it � 1 for Q � � and t � hm, . . . T (16)

wQ
jt � 	0, 1
 for i � K, Q � � and t � hm , . . . T (17)

To account for harvest volumes in each planning period
and to ensure a minimum average ending age, we modify
constraint sets 3 and 7 and add them to the Bucket model
18–19. The harvest flow constraints are identical to con-
straint sets 4–5.

�
m�Mht, i�K

vmt � am � xm
it � Ht � 0 for t � 1, 2, . . . T (18)

�
i�K

�
m�1

M

am��Agem0
T � AgeT�xm

i0

� �
t�hm

T

�Agemt
T � AgeT�xm

it � � 0 (19)

The model defined by 11–18 and 4–5 is identical to what
Constantino et al. (2008) refer to as ARMSCV-C. We add a

minimum average ending age constraint 19 to this model to
prevent the forest from being overharvested. Finally, Con-
stantino et al. (2008) propose a variety of preprocessing
techniques that can improve the computational performance
of the Bucket model. We describe the algorithms that we
used in a subsequent section titled Preprocessing.

The Lazy Path Approach

The Lazy Path approach solves the Path formulation 1–8
by specifying that constraints 6, i.e., the Path/Cover inequal-
ities, are placed in a lazy constraint pool. The integer
programming solver is instructed to stop at each node in the
branch-and-bound algorithm where a new feasible solution
is found with an objective function value that is better than
the current incumbent solution. The solver checks whether
the solution at the node violates any of the Path inequalities
in the lazy constraint pool. If none of the inequalities are
violated and the solution is integer feasible, the solver
designates the new solution as the incumbent and proceeds
with pruning inferior nodes and processing any remaining
unprocessed nodes in the branch-and-bound tree. If none of
the inequalities in the lazy pool are violated, but the solution
is fractional, the new node remains active for further
branching. If, on the other hand, a violation is found, the
violated constraints are added to the model, and the sub-
problem at the node is resolved. If the new solution is still
feasible and integer and has an objective function value that
is better than that of the incumbent, then a new incumbent
solution is found and, again, the branch-and-bound process
is resumed. If the node has an inferior objective function
value compared with the current incumbent after the vio-
lated constraint(s) has been added, it is pruned from the
branch-and-bound tree. If the solution at the node is not
integer feasible but still has an objective function value
superior to that of the incumbent, it becomes an unprocessed
node, and the branch-and-bound process is resumed. When
there are no more nodes to explore, the algorithm terminates
at the node that yields the best objective function value
without violating any of the path constraints that remain in
the lazy constraint pool. We implemented the Lazy Path
approach in IBM ILOG CPLEX 12.1 (IBM ILOG, Inc.
2009) by using the “lazy constraints” label for Path inequal-
ities. To estimate how lazy the path constraints were, we
kept track of the number of lazy constraint violations that
occurred during the course of optimization, and these num-
bers were compared with the number of path constraints that
were needed to fully define the ARM. We note that CPLEX
12.1 offers several options for the user to define or label
certain constraints as lazy. The options differ based on the
modeling environment used, i.e., whether the Concert Tech-
nology, the Callable Libraries, or other methods were used
to access CPLEX.

Preprocessing

Each of the three models above requires preprocessing.
The Path model, whether one uses the Lazy Path approach
or not, needs the set of paths or minimal covers to be
enumerated before it can be formulated. The Maximal
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Clique GMU/Cluster model, requires the enumeration of
both feasible clusters of units (GMUs) and the maximal
cliques. The enumeration of maximal cliques is also neces-
sary for the Bucket model. In addition, the computational
performance of the Bucket model greatly benefits from the
elimination of clearcut assignment variables that can never
take the value of 1 in a feasible solution.

For the simultaneous enumeration of both the clusters
(GMUs) and minimal covers, we used Algorithm I as pro-
posed by Goycoolea et al. (2009, p. 164). Following the
recommendation in that article, we used special computer
programming structures such as hash tables and linked lists
to store enumeration results and to check for repetitions. For
finding the set of maximal cliques (mutually adjacent man-
agement units), we used the following algorithm:

Step 1: Pick a management unit and create a linked list of
units that are adjacent to it. As an example, A1 �
{2, 3, 5} is the set of units that are adjacent to unit 1.
Repeat Step 1 for each stand.

Step 2: Using an adjacency table or matrix that specifies
which units are adjacent, check if Ai � Aj � A for each
pair of adjacent units i, j with i � j. If the intersection is
empty, save {i, j} as a maximal clique. Otherwise, cre-
ate a list of three-member cliques of form {i, j, k} for
@k � {Ai � Aj � A}.

Step 3: For each 3-member clique {i, j, k}, check if Ai � Aj

� � 1. If �Ai � Aj � � 1, then save {i, j, k} as a maximal
clique. Otherwise, create a list of 4-member cliques of
form {i, j, k, l} for @l � {Ai � Aj} with k � l.

Step 4: For each 4-member clique of form {i, j, k, l}, check
if l � A. If the condition holds (i.e., units k and l are
adjacent), then save {i, j, k, l} as a maximal clique.

Step 5: Go through all the saved maximal cliques and
discard the redundant ones.

This algorithm could be extended for higher-order cliques
(i.e., with more than four elements), but it was not necessary
in this case because adjacency was defined in this article as
sharing a common boundary, not just a point. In this case,
the Four Color Theorem (Appel et al. 1977) guarantees that
no cliques with more than four elements will exist.

Apart from enumerating the maximal cliques, prepro-
cessing for the Bucket model involves the identification of
clearcut assignments that can never be part of a feasible
solution. For example, a management unit should never be
assigned to a particular clearcut (bucket) if the total area of
the minimum area shortest path between this unit and the
unit that indexes the clearcut exceeds the maximum harvest
opening size. In this context, paths are defined as contigu-
ous sets of management units that connect a pair of units.
Constantino et al. (2008) note that the vast majority of
clearcut assignments can be eliminated via a minimum-
weight shortest path algorithm that determines, for each pair
of units, whether they can form a feasible clearcut or not. As
an example, the following program, which is a modified
version of the standard shortest path model, can, if solved,
make such a determination. Given a directed graph repre-
sentation of the forest, G(V, E), where V is the set of units
and E is the set of adjacencies or edges among the units,
solve

zs, t � min��i�V aixij � at: �j�Ai
xij � �j�Ai

xji

� �
1 if i � s

� 1 if i � t

0 otherwise
� i � V, xij � 0 � ij � E� (20)

for each pair of units s, t� V (s stands for source and t for
terminal unit). As before, parameter ai is the area of unit i,
and Ai is the set of units adjacent to unit i. Variable xij

represents the decision whether directed edge ij should be
part of the minimum area path between s and t. If zs, t �
Amax, then an assignment variable for s and t is necessary;
otherwise, it is not. A potentially more efficient alternative
that solves the minimum-weight shortest path algorithm for
all pairs of units at once is the Floyd-Warshall Algorithm
(Roy 1959, Floyd 1962, Warshall 1962). This recursive,
dynamic programming algorithm was used both in Constan-
tino et al. (2008) and in this study to reduce the size of the
Bucket formulation for the computational experiment.

The Computational Experiment

All preprocessing and model formulation tasks were
automated using Java and IBM-ILOG CPLEX v. 12.1 Con-
cert Technology (4-thread, 64-bit, released in 2009) on a
Power Edge 2950 server that had four Intel Xeon 5160
central processing units at 3.00 Gz frequency and 16 GB of
random access memory. The only exceptions were the Path
and Maximal Clique GMU formulations of the Pack Forest
problem with the 48.56 ha maximum harvest opening size
and the Bucket formulations of NBCL5 and El Dorado. In
these cases, a different, more powerful machine was used: a
Power Edge 510 with two Intel Xeon x5670 CPUs at 2.93
Gz frequency and 32 GB memory. The operating system
was MS Windows Server 2003 R2, Standard x64 Edition
with Service Pack 2 (2003) on the Power Edge 2950, and it
was MS Windows Server 2008 R2 Standard x64 Edition
(2009) on the 510. As shown in Results and Discussion, the
fact that for a few problems the formulation times were
measured using a faster machine had no impact on our
conclusions because these formulation times were longer
than those obtained with the alternative models using the
slower machine. Finally, we note that the formulation time
measurements included computer times that were required
to write out the linear programming formulations into text
files. The formulation times, the number of constraints and
0-1 variables that ensure the maximum harvest opening size
restrictions, and the distribution of paths/minimal covers in
terms of the number of units they contain are listed in
Tables 3 and 4 for each of the 68 problems. The information
in these tables, along with that in Tables 1 and 2, should
allow readers to evaluate the results (e.g., solution times) in the
context of the spatial and other attributes of the problems.

Every problem instance was solved on the Power Edge
2950 server with CPLEX 12.1 until a predefined target
optimality gap or 6 hours of runtime was reached, which-
ever happened first. We set the target optimality gaps at
three different levels (1, 0.05, and the CPLEX default of
0.01%) to see how robust the results were with respect to
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this parameter. The use of a relatively loose 1% gap is
illustrative of forest planning exercises for which the input
data already carry some error, there are simplifications in
model development, perhaps because only rough first esti-
mates or strategic benchmarks are sought, and it is not
critical to identify accurate solutions. At the other end of the
spectrum, model runs with the default gap of 0.01% will
demonstrate the power of the proposed lazy approach to
generate research-grade solutions that are assumed to be

based on high-quality input data. Finally, the goal of the
0.05% runs is to strike balance between these two extremes.
We present the 0.05% solutions in more detail and use
worst-case analyses and other statistical tools to determine
whether these results were robust with respect to the 1 and
the 0.01% gaps. All solver parameters were set to their
default levels except the working memory limit which was
set at 1 GB. Because CPLEX allows only primal reductions
for preprocessing formulations with lazy constraint pools,

Table 3. Test problem formulation characteristics: Cover/path size distribution.

Problem IDs Amax (ha)

Cardinality distribution of covers/paths

Total15 14 13 12 11 10 9 8 7 6 5 4 3 2

Real problems
Pack Forest

Washington
24.28 0 0 0 0 0 5 72 201 640 828 620 386 212 161 3,125

32.37 0 0 1 18 304 1,063 2,908 4,305 4,020 2,349 1,175 477 302 68 16,990
40.47 62 311 2,166 5,632 13,924 21,573 22,659 16,469 8,708 3,652 1,664 838 316 14 97,988
48.56 3,212* 12,586 35,507 77,330 111,530 129,198 109,547 68,371 33,022 12,938 5,707 2,613 942 175 603,419

NBCL5,
Canada

21.00 0 0 0 0 0 0 0 0 62 463 1,867 4,148 3,749 1,566 11,855

30.00 0 0 0 0 0 1 193 990 3,328 8,151 11,058 8,413 3,021 163 35,318
40.00 0 0 0 26 528 2,620 9,051 27,885 41,540 34,432 20,893 6,554 537 0 144,066

El Dorado,
California

48.56 0 0 0 0 0 0 0 3 536 3,476 6,626 6,205 3,127 657 20,630

60.70 0 0 0 0 0 0 156 3,424 13,335 20,240 17,543 9,859 2,966 193 67,716
72.84 0 0 0 0 36 1,958 18,700 47,749 65,734 54,688 31,672 10,609 1,971 18 233,135

Shulkell, Nova
Scotia

40.00 0 0 5 44 105 183 290 790 1,674 3,014 3,603 2,042 845 378 12,973

60.00 755† 1,626 2,747 2,782 5,328 12,870 21,376 26,141 22,532 13,902 6,798 2,066 394 181 119,734
Kittaning 4,

Washington
40.00 0 0 0 0 0 0 0 0 0 0 0 1 44 15 60

50.00 0 0 0 0 0 0 0 0 0 0 0 4 63 1 68
60.00 0 0 0 0 0 0 0 0 0 0 2 68 28 0 98
80.00 0 0 0 0 0 0 0 0 0 7 117 33 0 0 157

Five Points,
Washington

40.00 0 0 0 0 0 0 0 0 0 0 0 9 74 80 163

50.00 0 0 0 0 0 0 0 0 0 0 4 41 188 28 261
60.00 0 0 0 0 0 0 0 0 0 1 27 160 192 2 382
80.00 0 0 0 0 0 0 0 0 5 84 278 462 26 0 855

Phyllis Leeper,
Washington

40.00 0 0 0 0 0 0 0 0 0 0 0 3 72 59 134

50.00 0 0 0 0 0 0 0 0 0 0 4 17 201 8 230
60.00 0 0 0 0 0 0 0 0 0 0 26 133 130 0 289
80.00 0 0 0 0 0 0 0 0 2 35 359 290 0 0 686

Bear Town,
Washington

40.00 0 0 0 0 0 0 0 0 0 0 0 0 58 47 105

50.00 0 0 0 0 0 0 0 0 0 0 0 14 123 8 145
60.00 0 0 0 0 0 0 0 0 0 0 5 91 99 0 195
80.00 0 0 0 0 0 0 0 0 0 12 226 166 3 0 407

300-unit
hypothetical
problems

75–77 40.00 0 0 0 0 0 0 0 0 34 496 1,055 1,414 704 64 3,767
50.00 0 0 0 0 0 0 0 210 1,485 2,892 3,764 2,230 350 12 10,943
60.00 0 0 0 0 0 5 754 4,095 7,891 10,051 6,614 1,523 116 4 31,053

81–83 40.00 0 0 0 0 0 0 0 0 0 172 1,126 2,228 837 49 4,412
50.00 0 0 0 0 0 0 0 3 509 2,905 5,960 3,164 317 10 12,868
60.00 0 0 0 0 0 0 18 1,382 8,090 15,955 11,177 1,893 87 3 38,605

87–89 40.00 0 0 0 0 0 0 0 0 0 625 1,191 2,458 747 47 5,068
50.00 0 0 0 0 0 0 0 166 1,960 3,916 6,007 2,808 340 6 15,203
60.00 0 0 0 0 0 0 1,364 5,565 13,879 16,681 9,595 1,966 79 1 49,130

90–92 40.00 0 0 0 0 0 0 0 0 0 206 1,067 1,891 650 68 3,882
50.00 0 0 0 0 0 0 0 8 569 3,043 4,761 2,069 444 12 10,906
60.00 0 0 0 0 0 0 76 1,650 8,376 12,509 6,897 1,944 165 0 31,617

93–95 40.00 0 0 0 0 0 0 0 0 0 64 1,623 2,292 737 46 4,762
50.00 0 0 0 0 0 0 0 0 295 4,075 6,461 2,670 348 5 13,854
60.00 0 0 0 0 0 0 0 1,092 10,604 18,805 9,581 1,807 87 0 41,976

96–98 40.00 0 0 0 0 0 0 0 0 0 208 1,393 2,193 829 45 4,668
50.00 0 0 0 0 0 0 0 0 742 3,393 5,788 2,829 401 4 13,157
60.00 0 0 0 0 0 0 97 2,631 8,855 15,742 9,817 2,203 72 0 39,417
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we set the primal and dual reduction type parameter to 1
(primal reductions only) for the Lazy Path approach. Solu-
tion times and constraint activity information for the Lazy
Path inequalities (i.e., the number and percentage of lazy
constraints that were found to be active during optimization)
are listed in Table 5 for the eight real problems.

Results and Discussion
The Laziness of Path/Cover Inequalities

On average only 0.20, 0.33, and 0.54% of the Path/Cover
inequalities were found to be active in the hypothetical
problems with the 40-ha maximum opening size restriction
and with 1, 0.05, and 0.01% target optimality gaps, respec-
tively (Table 6). The same measures were 0.04, 0.08, and
0.13% for the same set of problems with 50 ha, and 0.01,

0.02, and 0.03% with 60-ha maximum harvest opening size.
The percentages varied more widely for the real problems
(Table 6). Although only fractions of a percentage of the
constraints were found to be active during optimization for
most of the Pack Forest, NBCL5, and El Dorado problems,
as many as 23–24% of the constraints were active in some
of the Phyllis Leeper or Kittaning 4 instances at the 40-ha
maximum opening size. With a few exceptions, namely the
Phyllis Leeper, Kittaning 4, Five Points, and Bear Town
problems with 40- or 50-ha maximum opening size settings,
the Path/Cover inequalities were rarely active in the over-
whelming majority of test cases. The activity rate ranged
between 0 and 1.47% in the hypothetical and between 0 and
23.81% in the real problems. This empirical result suggests
that, in many cases, only a fraction of the path constraints
might be necessary to find optimal solutions to area-based

Table 3. Continued.

Problem IDs Amax (ha)

Cardinality distribution of covers/paths

Total15 14 13 12 11 10 9 8 7 6 5 4 3 2

99–101 40.00 0 0 0 0 0 0 0 0 0 99 1,379 2,512 727 47 4,764
50.00 0 0 0 0 0 0 0 0 397 3,894 6,868 2,778 307 8 14,252
60.00 0 0 0 0 0 0 10 1,519 11,704 20,057 9,802 1,622 90 2 44,806

102–104 40.00 0 0 0 0 0 0 0 0 12 45 767 1,694 656 71 3,245
50.00 0 0 0 0 0 0 0 45 145 1,807 4,217 2,236 361 16 8,827
60.00 0 0 0 0 0 1 68 494 5,074 10,673 7,354 1,513 146 3 25,326

189–191 40.00 0 0 0 0 0 0 0 0 0 175 2,355 2,890 627 45 6,092
50.00 0 0 0 0 0 0 0 0 875 7,209 8,317 2,725 213 13 19,352
60.00 0 0 0 0 0 0 16 4,215 23,064 25,753 10,515 1,130 106 2 64,801

192–194 40.00 0 0 0 0 0 0 0 0 0 408 3,392 2,611 693 52 7,156
50.00 0 0 0 0 0 0 0 3 2,351 10,408 8,096 2,808 299 8 23,973
60.00 0 0 0 0 0 0 115 11,656 33,098 26,782 10,438 1,692 112 0 83,893

500-unit
hypothetical
problems

108–110 40.00 0 0 0 0 0 0 0 0 0 120 2,113 3,395 1,297 93 7,018
50.00 0 0 0 0 0 0 0 1 477 5,445 9,086 4,596 637 12 20,254
60.00 0 0 0 0 0 0 14 1,732 14,482 25,964 15,732 3,090 189 1 61,204

111–113 40.00 0 0 0 0 0 0 0 0 16 340 2,686 3,363 984 92 7,481
50.00 0 0 0 0 0 0 0 56 1,586 7,087 9,140 3,700 454 23 22,046
60.00 0 0 0 0 0 11 497 5,506 20,151 25,758 12,466 2,341 191 3 66,924

120–122 40.00 0 0 0 0 0 0 0 0 0 7 603 3,398 1,471 199 5,678
50.00 0 0 0 0 0 0 0 0 11 1,176 7,743 4,859 1,078 54 14,921
60.00 0 0 0 0 0 0 0 17 2,557 17,450 14,754 4,852 536 8 40,174

135–137 40.00 0 0 0 0 0 0 0 0 227 3,245 7,019 4,782 1,087 58 16,418
50.00 0 0 0 0 0 0 7 2,711 13,440 23,861 16,291 4,920 320 9 61,559
60.00 0 0 0 0 0 1,035 14,946 57,353 80,853 61,841 19,561 2,078 93 0 237,760

141–143 40.00 0 0 0 0 0 0 0 0 0 513 4,033 4,986 1,169 101 10,802
50.00 0 0 0 0 0 0 0 1 2,052 11,468 14,684 4,902 675 12 33,794
60.00 0 0 0 0 0 0 63 7,723 33,014 44,575 19,502 3,637 146 3 108,663

144–146 40.00 0 0 0 0 0 0 0 0 2 926 4,564 4,729 1,423 79 11,723
50.00 0 0 0 0 0 0 0 90 3,489 14,110 14,962 5,778 566 14 39,009
60.00 0 0 0 0 0 0 892 13,832 44,865 49,854 22,099 3,249 203 0 134,994

150–152 40.00 0 0 0 0 0 0 0 0 1 3,299 10,800 5,633 819 71 20,623
50.00 0 0 0 0 0 0 0 323 18,732 38,426 19,319 3,584 439 15 80,838
60.00 0 0 0 0 0 0 6,213 95,252 139,898 69,352 15,972 2,525 146 0 329,358

153–155 40.00 0 0 0 0 0 0 0 0 33 3,448 10,482 6,156 920 41 21,080
50.00 0 0 0 0 0 0 0 628 18,197 37,199 20,878 4,507 293 4 81,706
60.00 0 0 0 0 0 30 7,588 83,597 136,886 77,729 19,441 1,907 60 0 327,238

159–161 40.00 0 0 0 0 0 0 0 13 1,371 7,076 11,369 5,785 818 34 26,466
50.00 0 0 0 0 0 0 500 11,425 31,552 41,593 20,841 3,848 236 7 110,002
60.00 0 0 0 0 15 8,550 65,482 143,837 154,467 78,924 17,876 1,460 72 0 470,683

168–170 40.00 0 0 0 0 0 0 0 0 0 53 1,683 3,717 1,807 117 7,377
50.00 0 0 0 0 0 0 0 0 245 3,957 9,772 6,452 948 16 21,390
60.00 0 0 0 0 0 0 1 698 9,994 25,526 21,072 5,199 244 3 62,737

* At Amax � 48.56 ha, Pack Forest has an additional 684 16-, 56 17-, and 1 18-unit cover.
† At Amax � 60 ha, Shulkell has an additional 223 16-, and 23 17-unit cover.
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harvest scheduling problems. Not surprisingly, the results in
Table 6 also imply that the larger the maximum harvest
opening size, the less likely it is that a given path constraint
will be active during optimization. As the evidence in the

next section suggests, this implication could in turn lead to
significant solution time savings. Before we move on to
solution times, we note that the degree of laziness could also
depend on other factors including the length of the green-up

Table 4. Test problem formulation characteristics: problem size and formulation time.

Problem
identification Amax (ha)

No. of 0–1 variables No. of ARM constraints Average formulation time(s)

Cluster Path Bucket Cluster Path Bucket Cluster Path Bucket

Real problems
Pack Forest

Washington
24.28 54,570 1,216 7,181 1,733 7,872 33,689 36.65 36.53 104.78

32.37 344,110 12,626 1,808 34,302 59,695 2,752.73 2,846.41 135.68
40.47 2,171,170 19,229 1,810 170,232 91,063 162,727.63 164,079.31 121.32
48.56 15,643,562 26,178 1,818 924,133 122,709 5,303,282.04a 5,302,396.93a 176.00

NBCL5,
Canada

21.00 109,630 23,422 75,096 15,397 32,691 164,920 171.98 182.14 210,716.77a

30.00 337,965 126,431 15,495 88,248 277,596 2,829.54 2,931.58 789,070.12a

40.00 1,360,425 187,363 15,507 326,796 407,233 74,514.28 83,743.45 949,889.21a

El Dorado,
California

48.56 128,466 8,184 38,032 9,209 54,024 187,059 1,515.96 1,499.91 56,252.90

60.70 426,012 55,780 9,230 164,401 274,575 20,144.21 20,160.48 64,383.68
72.84 1,508,178 77,413 9,230 521,154 379,145 233,878.77 234,218.79 39,149.23a

Shulkell,
Nova
Scotia

40.00 155,016 6,240 27,361 5,368 50,562 97,470 585.50 548.87 68,264.58

60.00 1,726,446 65,827 5,370 425,760 222,448 72,297.81a 72,823.93a 24,555.11a

Kittaning 4,
Washington

40.00 414 150 311 98 147 731 3.16 1.42 0.44

50.00 594 420 101 165 954 3.02 1.38 0.22
60.00 882 533 101 192 1,193 2.77 1.38 0.23
80.00 1,836 734 101 307 1,553 2.52 1.38 0.30

Five Points,
Washington

40.00 1,200 390 841 313 450 2,431 3.01 1.34 2.84

50.00 1,914 1,260 324 653 3,626 2.49 1.34 3.47
60.00 2,994 1,704 324 941 4,804 2.52 1.33 4.47
80.00 6,960 2,566 324 1,847 7,057 2.85 1.59 6.64

Phyllis
Leeper,
Washington

40.00 1,104 509 947 435 577 2,499 2.58 1.23 2.49

50.00 1,734 1,452 440 951 3,977 2.36 1.22 3.67
60.00 2,688 1,944 440 1,126 5,175 2.69 1.23 4.83
80.00 6,474 3,020 440 2,421 7,774 2.68 1.44 9.79

Bear Town,
Washington

40.00 756 411 718 325 487 1,787 2.61 1.49 3.08

50.00 1,182 1,102 325 661 2,679 3.00 1.48 3.39
60.00 1,668 1,427 325 883 3,416 2.77 1.48 4.11
80.00 3,630 2,319 325 1,830 5,288 3.41 1.56 6.19

300-unit
hypothetical
problems

75–77 40.00 13,159 1,832 13,074 2,250 12,160 13,074 9.74 7.26 297.19
50.00 68,859 21,928 2,253 31,510 13,599 119.12 113.10 1,493.94
60.00 198,807 32,330 2,253 81,057 13,751 1,669.52 1,654.85 2,532.97

81–83 40.00 13,237 1,823 13,220 2,578 13,954 13,220 9.83 7.76 285.69
50.00 67,480 22,282 2,581 36,177 16,428 138.94 133.52 1,167.92
60.00 200,221 33,861 2,581 97,560 16,579 2,468.89 2,453.76 3,139.36

87–89 40.00 15,748 1,829 13,923 2,435 15,938 13,923 12.82 10.65 340.17
50.00 79,681 23,276 2,437 42,398 15,849 223.73 215.85 1,371.53
60.00 255,626 35,460 2,437 123,580 15,977 10,587.19 10,568.65 3,669.02

90–92 40.00 12,960 1,828 13,122 2,365 11,982 13,122 10.33 7.18 269.28
50.00 67,655 21,660 2,370 29,642 14,764 127.09 120.45 1,443.80
60.00 197,974 32,534 2,370 76,758 14,968 2,779.65 2,765.56 3,273.09

93–95 40.00 14,473 1,832 14,097 2,342 15,909 14,097 10.98 8.92 341.17
50.00 72,968 23,458 2,342 41,615 15,426 170.21 164.22 1,819.45
60.00 217,392 35,392 2,342 113,949 15,581 2,735.79 2,719.88 3,417.82

96–98 40.00 14,685 1,838 13,778 2,524 16,540 13,778 10.35 8.23 331.70
50.00 70,315 22,861 2,524 42,805 16,268 141.77 136.21 1,352.35
60.00 209,713 34,613 2,524 117,748 16,386 2,178.78 2,164.06 3,413.22

168 Forest Science 59(2) 2013



period or on the tightness of harvest flow and minimum
average ending age constraints. The longer the green-up and
the more relaxed the forestwide constraints, the more likely
it is that a given path constraint becomes active. Last, we
wish to point to the result that the proportion of active path
constraints increases with tighter optimality gaps. More
violations are likely during optimization if more accurate
solutions are sought. As we will see, one implication of this
result is that the proposed lazy approach is somewhat less
effective with tighter optimality gaps.

Solution Times

Table 7 lists the number and percentage of “wins” for
each of the three benchmark models and for the proposed
lazy approach for both the real and the hypothetical prob-

lems at the prespecified 1, 0.05, and 0.01% target optimality
gaps. We chose the number and percentage of wins as the
primary performance metric because not all problems
solved to the desired gaps within the predefined 6 hours of
runtime. We counted the wins based on the number of times
a particular model/method solved the problem instance
faster than any of the other models. If none of the
models/methods were able to find a solution within the
preset optimality gap and the 6 hours of runtime, we se-
lected the “winner” based on the tightness of the optimality
gap that was achieved. The model that led to the tightest gap
for a given instance was considered to be the winner for that
particular problem.

We start with the observation that the lazy approach far
outperformed the three benchmarks at the 1 and the 0.05%

Table 4. Continued.

Problem
identification Amax (ha)

No. of 0–1 variables No. of ARM constraints Average formulation time(s)

Cluster Path Bucket Cluster Path Bucket Cluster Path Bucket

99–101 40.00 14,488 1,834 14,179 2,487 16,283 14,179 10.91 8.75 356.68
50.00 74,011 23,903 2,487 44,479 16,161 171.21 165.87 1,738.68
60.00 228,697 36,094 2,487 128,770 16,302 2,770.44 2,753.50 3,473.52

102–104 40.00 11,452 1,830 12,547 2,217 10,406 12,547 6.61 4.75 281.53
50.00 56,210 21,254 2,221 24,941 13,670 70.83 66.74 1,412.88
60.00 159,019 32,050 2,221 63,440 13,909 1,070.91 1,060.27 3,251.74

189–191 40.00 16,457 1,821 22,907 2,557 19,338 22,907 17.01 14.52 6,291.70
50.00 93,170 38,913 2,560 54,718 25,992 1,253.17 1,246.39 14,301.59
60.00 309,484 59,153 2,560 165,274 26,255 5,646.42 5,623.78 22,560.71

192–194 40.00 17,699 1,810 24,824 2,768 21,102 24,824 25.95 23.04 6,674.27
50.00 115,598 41,018 2,770 62,394 23,713 1,459.86 1,450.85 14,202.39
60.00 395,360 61,627 2,770 195,118 24,103 10,613.52 10,584.38 19,862.15

500-unit
hypothetical
problems

108–110 40.00 22,643 3,068 18,644 4,085 23,888 18,644 28.17 24.33 2,448.78
50.00 111,048 31,779 4,093 61,823 30,258 406.96 395.93 8,523.89
60.00 330,575 48,247 4,093 169,752 30,884 6,920.04 6,890.28 17,748.60

111–113 40.00 26,156 3,050 33,657 3,830 24,924 33,657 40.84 36.47 10,038.91
50.00 137,074 57,368 3,838 65,817 30,250 608.00 595.16 20,697.16
60.00 420,371 87,033 3,838 180,368 30,485 14,530.98 14,491.35 30,740.52

120–122 40.00 17,220 3,057 27,181 4,642 20,436 27,181 15.02 12.24 7,688.99
50.00 74,235 45,491 4,652 49,348 31,455 171.11 164.37 15,434.25
60.00 198,940 69,320 4,652 122,099 31,676 3,647.06 3,628.28 24,365.35

135–137 40.00 43,061 3,052 27,715 4,578 48,923 27,715 241.91 234.15 7,638.60
50.00 310,037 47,271 4,588 160,994 32,571 4,936.36 4,905.92 15,683.86
60.00 1,188,313 71,433 4,588 557,488 32,841 129,895.00 129,781.14 26,663.42

141–143 40.00 30,129 3,051 35,538 4,763 34,699 35,538 81.19 75.86 10,143.24
50.00 169,757 58,937 4,772 97,204 33,683 1,254.79 1,237.15 19,267.10
60.00 546,063 88,894 4,772 283,289 33,949 35,702.50 35,645.51 31,542.25

144–146 40.00 32,933 3,056 35,098 4,917 38,667 35,098 109.15 103.45 11,123.05
50.00 194,096 58,726 4,924 115,408 33,397 1,932.03 1,912.50 21,404.01
60.00 668,388 88,670 4,924 361,239 33,534 40,145.54 40,068.83 31,508.70

150–152 40.00 49,090 3,046 39,553 5,102 63,527 39,553 2,973.76 350.95 13,224.18
50.00 369,159 65,220 5,106 221,387 33,259 5,515.69 8,078.36 23,266.02
60.00 1,501,787 98,045 5,106 811,518 33,415 160,533.47 160,338.75 33,898.84

153–155 40.00 48,495 3,043 21,923 5,078 62,263 21,923 5,097.38 386.16 4,421.20
50.00 372,582 37,677 5,080 213,411 32,807 6,107.62 10,629.55 9,334.47
60.00 1,504,258 57,403 5,080 773,017 33,076 167,768.99 167,581.37 19,401.93

159–161 40.00 63,985 3,044 15,425 5,018 76,663 15,425 789.36 775.33 442.03
50.00 554,743 25,917 5,023 279,577 16,595 47,693.36 47,634.63 2,283.87
60.00 2,417,709 38,767 5,023 1,060,839 16,772 423,982.86 423,672.59 4,092.80

168–170 40.00 22,199 3,055 15,822 5,005 25,559 15,822 30.94 27.45 447.52
50.00 107,177 26,623 5,010 67,463 17,996 1,665.73 1,656.44 2,365.92
60.00 317,002 39,705 5,010 180,288 18,153 5,377.14 5,344.47 4,163.09

a Cells representing formulation times that were obtained on a different, higher-performance computer.
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target optimality gaps for the hypothetical problems. At 1%,
it solved 178 of the 180 (98.9%) instances faster than the
McDill et al. (2002) Path model, the Goycoolea et al. (2005)
Maximal Clique GMU model, or the Constantino et al.
(2008) Bucket model. At 0.05%, the proposed method
“won” in 174 of 180 (96.7%) hypothetical cases (Table 7).
The computational advantage of the lazy approach was
dramatic: it was at least 1 order of magnitude faster than the
other methods in solving these problems. Whereas the ag-
gregate solution time at the 0.05% was less than 1 hour for
the lazy approach, it was more than 53 hours for the Path
model, more than 63 hours for the Bucket model, and more
than 78 hours for the Maximal Clique GMU model. Fur-
thermore, this comparison does not even account for the fact
that the Maximal Clique GMU model was not able to solve
7 of the hypothetical problems at the target gap of 0.05%. At
the 1% target gap, the lazy approach was also at least 1
order of magnitude faster on average, although this advan-
tage was not as dramatic because most hypothetical prob-

lems were solved in a matter of seconds. Nonetheless, it is
worth pointing out that the total solution time was 1.37
minutes with the lazy approach, whereas it was 18.65 min-
utes with the Bucket model, more than 1⁄2 hour with the Path
model, and almost 13 hours with the Maximal Clique GMU
model. At the 0.01% gap, the advantage of the Lazy method
in solving the hypothetical problems was still overwhelming
although not as dramatic as it was at 1 or 0.05%. The
proposed solution technique led to 99 wins of the 180
hypothetical instances (55%) as opposed to the 21 (11.7%),
40 (22.2%), and 20 (11.1%) wins with the Path, Bucket, and
GMU models, respectively (Table 7). There were 26 cases
in which the lazy approach was not able to find an optimal
solution within the 0.01% gap in 6 hours. The number of
such “timeouts” was 36, 78, and 49 for the Path, Bucket,
and GMU models. To further illustrate the advantage of the
lazy approach in the 0.01% gap runs for the hypothetical
problems, we created two charts (Figure 1) that show the
percentage of wins for each approach by maximum harvest

Table 5. Solution characteristics for 0.05% target gap runs: Real problems.

Test problems
No. of
stands

Maximum harvest
opening size (ha)

Solution time(s)/Optimality gap (%)

Reduction of NPV
due to ARM (%)Cluster Bucket

Path/Cover/Cell

Conventional Lazy

Pack Forest,
Washington

186 24.28 0.44% 1.83% 0.21%* 0.24% 1.35

32.37 0.58% 0.95% 0.20% 0.19%* 0.98
40.47 0.92% 0.86% 0.44% 0.21%* 0.96
48.56 No solution 1.01% 0.55% 0.23%* 0.27

NBCL5,
Canada

5,224 21.00 21.27 s 532.14 s 11.23 s* 25.56 s 0.70

30.00 86.63 s 0.07% 22.63 s 11.78 s* 0.28
40.00 12,747.56 s 19,515.86 s 79.78 s 5.02 s* 0.08

El Dorado,
California

1,363 48.56 32.23 s 0.08% 20.16 s* 96.5 s 0.71

60.70 115.92 s 0.14% 75.61 s 36.67 s* 0.55
72.84 530.95 s 0.56% 3518.24 s 354.53 s* 0.43

Shulkell, Nova
Scotia

1,019 40.00 53.44 s 133.28 s 4.30 s* 4.36 0.06

60.00 7,315.89 s 3,339.63 s 52.56 s 8.06* 0.01
Kittaning 4,

Pennsylvania
32 40.00 162.23 s 235.19 s 13.48 s* 13.52 s 7.78

50.00 473.14 s 2,724.56 s 8.92 s 3.99 s* 0.74
60.00 1,164.09 s 13,322.46 s 4.38 s 12.13 s 0.41
80.00 138.88 s 0.27% 13.81 s 11.91 s 0.00

Five Points,
Pennsylvania

90 40.00 210.25 s 6.97 s 4.03 s 3.09 s* 11.89

50.00 461.71 s 7,074.70 s 0.56 s* 0.72 s 4.52
60.00 229.89 s 10,342.17 s 0.78 s* 0.83 s 4.51
80.00 2,426.52 s 35.297 s 0.33 s* 0.66 s �0.01

Phyllis Leeper,
Pennsylvania

89 40.00 0.16% 0.18% 0.07% 0.05%* 0.04

50.00 0.16% 0.11% 0.08% 11,678.69 s* 0.01
60.00 0.15% 0.21% 19,553.28 s 1,117.45 s* 0.01
80.00 0.13% 0.20% 1,796.89 s* 20,081 s 0.00

Bear Town,
Pennsylvania

71 40.00 0.18% 0.21% 0.15% 0.10%* 0.15

50.00 0.24% 0.14% 0.12% 0.07%* 0.07
60.00 0.14% 0.38% 0.14% 0.10%* 0.07
80.00 0.24% 0.51% 0.06%* 0.09% 0.05

The negative sign for the percent NPV reduction due to the 80-ha maximum clearcut size restriction for Five Points occurs because both the problem with
and without ARM constraints was solved to 0.05% optimality. This is the reason that the profit-maximizing objective value in the ARM can exceed the
objective value of the problem without ARM by 0.01%.
* Values represent the shortest solution times or smallest optimality gaps.
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opening size and by the number of units. The top chart in
Figure 1 shows that the Bucket model wins the largest
number of 300-unit instances when the smaller, 40- to 50-ha
opening sizes are applied, but the lazy approach gains as the
opening size is increased and wins the most at the 60ha
opening size. In solving the 500-unit problems, the lazy
approach wins the largest number of cases for all opening
sizes, and the result is increasingly strong as the opening
size is increased (middle chart in Figure 1). Noteworthy is
the relatively bad performance of the Maximal Clique GMU
model despite the fact that theoretical evidence exists that
this formulation is tighter than either the Path (Goycoolea et
al. 2009) or the Bucket models (Martins et al. 2011). Solu-
tion times are functions of both the number of branches that
need to be created and processed by the solution algorithm

and the complexity of the LP subproblems. It is possible that
the GMU model leads to harder and/or larger subproblems
at the nodes of the branch-and-bound algorithm because of
the higher number of variables even though fewer branches
might be required to reach the desired level of optimality.

As far as the real problems are concerned, the Lazy Path
approach outperformed the other methods in 18 of the 28
problems (64.3%) at the 1% gap, in 17 of the 28 problems
(60.7%) at the 0.05% gap, and in 19 of the 28 problems
(67.9%) at the default 0.01% gap. In the instances in which
the lazy approach did not yield the shortest solution times or
the tightest optimality gaps, it was almost always the orig-
inal Path model that performed the best (Table 7). The
Bucket model never led to better solution times or to better
optimality gaps in any of the real problems. The Maximal

Table 6. Number and percentage of path constraints used during optimization under three different optimality gaps.

Test problems
No. of
stands

Maximum harvest
opening size (ha)

Adjacency constraints in lazy constraint pools

1% 0.05% 0.01%

No. % No. % No. %

Pack Forest, Washington 186 24.28 38 0.48 93 1.18 93 1.18
32.37 23 0.07 51 0.15 51 0.15
40.47 13 0.01 37 0.02 37 0.02
48.56 8 0.00 26 0.00 26 0.00

NBCL5, Canada 5,224 21.00 1,009 3.09 966 3.36 962 2.94
30.00 662 0.75 669 0.92 656 0.74
40.00 382 0.12 328 0.13 366 0.11

El Dorado, California 1,363 48.56 564 1.04 1,231 3.36 601 1.11
60.70 467 0.28 402 0.92 561 0.34
72.84 824 0.16 709 0.13 931 0.18

Shulkell, Nova Scotia 1,019 40.00 42 0.08 47 0.09 63 0.12
60.00 8 0.00 8 0.00 7 0.00

Kittaning 4, Pennsylvania 32 40.00 35 23.81 29 19.73 29 19.73
50.00 8 4.85 12 7.27 10 6.06
60.00 3 1.56 12 6.25 10 5.21
80.00 0 0.00 6 1.95 4 1.30

Five Points, Pennsylvania 90 40.00 17 3.78 45 10.00 54 12.00
50.00 19 2.91 23 3.52 31 4.75
60.00 27 2.87 16 1.70 37 3.93
80.00 5 0.27 7 0.38 128 6.93

Phyllis Leeper, Pennsylvania 89 40.00 41 7.11 134 23.22 134 23.22
50.00 60 6.31 126 13.25 122 12.83
60.00 33 2.93 91 8.08 94 8.35
80.00 38 1.57 74 3.06 98 4.05

Bear Town, Pennsylvania 71 40.00 76 15.61 101 20.74 101 20.74
50.00 26 3.93 78 11.80 78 11.80
60.00 39 4.42 73 8.27 73 8.27
80.00 33 1.80 39 2.13 39 2.13

Hypothetical problems (means) 300, 500 40.00 44.45 0.20 71.45 0.33 116.80 0.54
50.00 26.07 0.04 45.07 0.08 74.28 0.13
60.00 14.80 0.01 25.20 0.02 45.77 0.03

Table 7. Solution characteristics: The number of “wins” for each model/method.

Target optimality gap Test problems Cluster Bucket

Path/Cover/Cell

TotalConventional Lazy

1% Real 0 (0) 0 (0) 10 (35.7) 18 (64.3) 28 (100)
Hypothetical 0 (0) 0 (0) 2 (1.1) 178 (98.9) 180 (100)

0.05% Real 0 (0) 0 (0) 11 (39.3) 17 (60.7) 28 (100)
Hypothetical 0 (0) 2 (1.1) 4 (2.2) 174 (96.7) 180 (100)

0.01% Real 2 (7.1) 0 (0) 7 (25.0) 19 (67.9) 28 (100)
Hypothetical 20 (11.1) 40 (22.2) 21 (11.7) 99 (55.0) 180 (100)

Data are n (%).
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Clique GMU model did solve fastest in two cases (7.1%) of
the 0.01% runs (Table 7).

A worst-case performance analysis, applied to all the
experimental data we have, provides further evidence that
the proposed lazy approach had a distinct advantage in both
the hypothetical and the real problems despite differences in

the percentage of wins. The bottom chart in Figure 1 shows
the proportion of times when each model/method performed
the worst by different maximum harvest opening size cate-
gories: small, medium, large, and extra-large. It is clear that
the lazy approach has the fewest “worst” performances, and
the proportion of worst performances decreases as the

Figure 1. Best- and worst-case performance analysis: 0.01% target gap runs. *(S, M, L) � (40, 50, 60 ha)
for the hypothetical forests, (21, 30, 40 ha) for NBCL5, and (48.56, 60.70, 72.84 ha) for El Dorado; (S, L) �
(40, 60 ha) for Shulkell; and (S, M, L, XL) � (40, 50, 60, 80 ha) for Kittaning 4, Five Points, Phyllis Leeper
and Bear Town and (24.28, 32.37, 40.47, 48.56 ha) for Pack Forest. S, small; M, medium; L, large; XL,
extra large.
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relative maximum opening size increases. The Bucket
model has the highest number of worst performances of all
the approaches, regardless of the opening size. Surprisingly,
this result gets stronger as the relative opening size
increases.

Overall, the results suggest that the Lazy Path approach
can improve solution times for area-based harvest schedul-
ing problems, sometimes dramatically. This result appears
to be robust regardless of the number and size of the units,
the presence or absence of various forest types and site
classes, the length of the planning horizon, the maximum
harvest opening size, the vertex degree (Table 2), or the
cardinality distribution of covers (Table 3). It also appears,
especially in the hypothetical problem set, that the lazy
approach is particularly efficient in solving problems with
greater maximum harvest opening sizes (Table 1). This is
not surprising because the larger the maximum opening size
is, the less likely that a given path constraint becomes active
during optimization. It is also clear that in the instances in
which the lazy approach was outperformed by the other
models (e.g., in Kittaning 4, Five Points, Phyllis Leeper, and
Bear Town; see Table 5), it was the low number of path
constraints that was the common denominator (Table 4).
Our conjecture, supported by empirical data, that the pro-
posed lazy approach performs the best when there are a high
number of path constraints in the formulation is consistent
with the pattern that the advantage of the method increases
with greater opening sizes. Greater opening sizes and a
greater number of management units both contribute to a
higher number of adjacency constraints, which in turn
makes it more likely that an individual constraint is lazy in
the formulation.

Finally, we draw the reader’s attention to the apparent
lack of correlation between the number of units in a given
problem and solution times. The instances that appear to be
the most difficult to solve are very small (e.g., Phyllis
Leeper or Bear Town), whereas the largest models such as
NBCL5 solve to the target optimality gaps in seconds. In a
sense, this should not come as a surprise because McDill
and Braze (2000) have already shown that the initial age-
class distribution of a forest also has a role in determining
problem difficulty. Further, Vielma et al. (2007) have
shown that side constraints, such as volume flow con-
straints, can also have a significant effect. The idea that
problem size (the number of stands is one of the primary
determinants of problem size in harvest scheduling models)
is only weakly related to problem difficulty is not new. Van
Roy and Wolsey (1987, p. 45) made this point about mixed-
integer programs a long time ago: “in contrast with linear
programming, size is a poor indication of difficulty. We
believe that size is perhaps an even less reliable measure for
mixed integer programs than it is for pure integer pro-
grams.” We speculate that the reason some of the smallest
problems were the hardest to solve is a combination of
factors. These factors probably include these forests’ over-
mature initial age-class distribution, which has been identi-
fied by McDill and Braze (2002) as a critical determinant of
problem difficulty and the fact that harvest flow require-
ments are harder to meet in an optimal fashion if the
“volume blocks,” i.e., the timber volumes associated with

individual stands, are few in number and are large relative
to the optimal levels of flow. We believe that the more
volume blocks are available and the smaller they are relative
to the sustainable periodic harvest flows, the easier it will be
to find good solutions that satisfy the flow constraints.
Because confirming these speculations on an empirical ba-
sis would require very large samples, probably thousands of
test forests, we leave the question of problem difficulty to
future research.

Formulation Plus Solution Times

In this subsection, we provide an analysis of “total
times,” the sum of formulation and solution times, to illus-
trate the role of the proposed lazy approach in the context of
formulating and solving ARMs. We only discuss the results
in detail for the compromise 0.05% runs. At 1%, total times
are dominated by formulation times because most problems
solve very fast to this level of optimality. The lazy approach
does not have an impact on formulation times because it
requires that all Path constraints are identified upfront. At
0.01%, the results with respect to total times are very similar
to those of the 0.05% runs.

At 0.05%, the lazy approach still comes out ahead of the
other models on average in terms of total times for the
hypothetical problems at each of the three maximum harvest
size levels that were considered. The results with respect to
the real problems are mixed (Tables 4 and 5). For Five
Points, Phyllis Leeper, and Bear Town, the Path and Lazy
Path approaches allowed the shortest formulation times.
The four Kittaning 4 instances, on the other hand, formu-
lated 4–6 times faster with the Bucket model than with the
Path model. Because Kittaning 4, Five Points, Phyllis
Leeper, and Bear Town are all very small in size, and they
can be formulated in a matter of seconds regardless of
which method is used, it is really the solution times that set
the alternative formulations apart. Although both the Path
and the Lazy Path approach solved Kittaning 4 and Five
Points in seconds, the Bucket and the Cluster methods took
several minutes, or in some cases, several hours of computer
time before a solution with the target 0.05% optimality gap
was found. Moreover, in one case (Kittaning 4 at 80 ha
Amax), the Bucket model was unable to find a solution
within the desired optimality gap in 6 hours of runtime.
Regarding Phyllis Leeper, neither the Cluster nor the
Bucket approach was able to find a solution within the
0.05% gap at any of the four maximum harvest size levels.
Although the Lazy Path method solved all four of the
Phyllis Leeper models to the desired optimality, the original
Path model did so only at the 60- and 80-ha maximum
opening size levels. Finally, none of the models were able to
solve the 71-unit Bear Town to the 0.05% gap. The tightest
gaps were achieved by the Lazy Path approach in three of
the four instances, and it was the original Path approach that
found the best solution for the fourth instance within the 6
hours prespecified runtime.

Formulation times ranged from a few minutes to several
days for NBCL5, depending on the maximum harvest open-
ing size and the modeling approach (Table 4). The Maximal
Clique GMU/Cluster model allowed shorter formulation
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times (3–11% shorter) than the Path model for all three
maximum opening sizes for this particular problem. Formu-
lation times were excessive for the 5,224-unit NBCL5 with
the Bucket model even though the Floyd-Warshall Algo-
rithm and other preprocessing techniques, suggested by
Constantino et al. (2008), were used. Whereas the Path or
the Lazy Path approaches both solved the NBCL5 problem
instances faster than the Maximal Clique GMU model, this
advantage was offset by the slightly longer formulation
times at the 21- and 30-ha maximum opening size levels.
The sum of formulation and solution times were roughly the
same for these instances. At 40 ha, both the Path and the
Lazy Path methods outperformed the Maximal Clique GMU
model when the sum of formulation and solution times was
used as the basis of comparison. The sum of formulation
and solution times was excessive for the NBCL5 instances
because of the very long formulation times.

For the 186-unit Pack Forest, formulation times in-
creased exponentially with increasing maximum opening
sizes when the Path or the Cluster model was used (Table
4). Compare the 36.53–36.65 formulation times at the
24.28-ha (60-acre) level with the 61.38–61.37 days at 48.56
ha (120 acre). The 24.28-ha (60-acre) maximum harvest
opening size restriction corresponds to the Forest Steward-
ship Council’s standard in the Pacific Northwest United
States, whereas the 48.56 ha (120 acres) coincides with the
Sustainable Forest Initiative’s and the State of Washing-
ton’s Forest Practices rules (Washington State Department
of Natural Resources 2010). With the Bucket model, for-
mulation times were stable (i.e., not exponentially increas-
ing) and much shorter, except at 24.28 ha, than with the
other models. This stability was expected owing to the way
the Bucket is formulated. Because none of the models could
solve the Pack Forest problems to the target 0.05% gap, we
were not able to compare the sums of formulation and
solution times. In three of the four problems that were
created based on four different maximum harvest opening
sizes, it was the Lazy Path approach that reached the tightest
optimality gaps within the prespecified 6-hour runtimes
(Table 5).

For the 1,363-unit El Dorado and the 1,019-unit Shulkell,
formulation times were essentially the same regardless of
whether the GMU/Cluster or the Path/Cover model was
used. Formulation times ranged from approximately 25
minutes (at 48.56-ha maximum opening size) to 65 hours
(72.84 ha) for El Dorado and from about 9 minutes (40 ha)
to 20 hours (60 ha) for Shulkell (Table 4). Formulation
times were longer for the Bucket model at the 48.56- and
60.70-ha levels in El Dorado and at the 40-ha level in
Shulkell, probably because of the large number of manage-
ment units involved. On the other hand, the Bucket model
formulated much faster for both problems at the highest
(72.84 and 60 ha) maximum opening size levels.

In sum, our empirical results indicate that using lazy
constraint pools for the Path inequalities of McDill et al.
(2002) can lead to significant, sometimes dramatic, cuts in
solution times. Because the use of lazy constraint pools does
not eliminate the need for an a priori enumeration of path
constraints, the proposed technique can only influence so-
lution but not formulation times. As a result, the Bucket

model, which does not rely on costly enumerations, can
outperform the Lazy Path approach in terms of solution plus
formulation times in cases (e.g., Shulkell) in which the
maximum harvest opening size is large relative to the av-
erage size of the units and the number of units is not too
high (as in NBCL5). Hence, we do not recommend the use
of the Lazy Path approach for every single problem in-
stance. We suggest instead that the forest planner try to
formulate the Path and Cluster models as a first step (using
Algorithm 1 of Goycoolea et al. 2009) but abandon the
process if it appears to be more time-consuming than his or
her time frame allows. This scenario can occur when the
maximum harvest opening size restriction is very large
relative to the average size of the management units (see
Pack Forest at 48.58-ha maximum opening size). If that is
the case but the number of management units is not too
large, then the Bucket model is likely to be the most
efficient choice in terms of formulation plus solution times.
If the number of units is also very high (as in NBCL5), the
Bucket model might also become very large and cumber-
some to formulate even if efficient preprocessing algorithms
such as the Floyd-Warshall Algorithm are employed. In this
particular case, a cutting plane or delayed constraint gener-
ation method might be the best approach, for which the path
constraints are generated only during optimization and only
if one or more ARM violations occur in a solution candi-
date. If the formulation of the Path/Cover/Cell and Cluster
models is not too time-consuming, then it is safe to say,
based on the results of this study, that the Lazy Path ap-
proach is the best choice to minimize solution times.

Finally, it must be noted that the formulation times
reported in the present study should not be considered
ironclad. Our goal was to give the reader a feel for the
expected computational expense that is associated with for-
mulating these models using the resources of an average
analyst. We acknowledge that other programmers could
improve these formulation times, perhaps significantly. The
question is whether shorter formulation times would have
an impact on our conclusions with respect to the perfor-
mance of the Lazy Path approach. We argue that such an
impact is very unlikely for the following reasons. First,
because three of the four models that were considered in this
study, the Path/Cover, the Lazy Path, and the Cluster mod-
els all use the same formulation algorithm (Algorithm 1 of
Goycoolea et al. 2009), a better computational implemen-
tation would have the same impact on all three formulation
times. Second, whereas formulation times for the Bucket
model could potentially be improved to a greater extent than
those for the other models, they would have to be improved
by several orders of magnitude to outperform the Lazy Path
approach because the solution times afforded by the Lazy
Path method are at least 1 order of magnitude shorter than
those of the Bucket model (Table 5).

Caveats

In this subsection, we discuss a number of additional
factors that might have an impact on how useful the pro-
posed Lazy Path approach can be in solving harvest sched-
uling problems with area restrictions. As mentioned earlier,
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the efficacy of the method appears to depend on how lazy
the path constraints are in a given formulation. If forestwide
constraints such as even-flow or minimum average ending
age constraints are present and these constraints are set
tight, it is more likely that a given path constraint is going
to be lazy because the model is already very constrained. In
practice, it is possible that harvest flow constraints are
needed only at a scale broader than the one at which a
spatially explicit harvest scheduling problem is to be opti-
mized. With that in mind, we removed the flow constraints
from the 60 hypothetical problems and resolved them using
the tightest allowable clearcut size limit (40 ha) to see if this
had any impact on laziness and on solution times. We found
that the average number of lazy constraints per problem that
were active during optimization went up from 71.45 to
719.60 (0.33% of total to 2.85%), which is almost a 10-fold
reduction in laziness. Nonetheless, 60% (36) of these prob-
lems still solved faster using the lazy constraints. This is a
significant finding considering that the 40-ha maximum
opening size was the tightest of the three settings that were
used in the experiments and means that even with the
least lazy maximum opening size setting, the lazy con-
straint approach still maintained an edge even without
even-flow constraints. Regarding the impact of the min-
imum average ending age constraints, one could argue
that these restrictions might force the models to leave old
stands uncut during the planning horizon to make sure
that the minimum average age is met. This in turn could
have an impact on how active the path constraints are in
problems that are severely constrained already. Our re-
sults for the hypothetical problems suggest, however, that
this scenario never materialized. In our models, it was
always optimal to cut the stands in the oldest age classes
during the planning horizon.

To illustrate how important (or unimportant) the maxi-
mum harvest opening size constraints were in restricting the
forest managers’ ability to maximize discounted timber
revenues, we resolved the test problems at the 0.05% gap
without path constraints. The percent reductions in NPV
due to maximum clearcut sizes are reported in the rightmost
column of Table 5. The average cost of adjacency was a
fraction of a percentage for the hypothetical problems, and
it was less than 1% for most of the real problems. In a few
real problems, however, as in Five Points or Kittaning 4
with 40-ha maximum opening sizes, the cost was much
higher at 11.89 and 7.78%, respectively. The cost of adja-
cency dropped rapidly as the maximum opening size was
raised. The fact that the Lazy Path approach solved Five
Points the fastest at 40 ha, but the original Path method was
the best for Kittaning 4 suggests that there might not be a
strong correlation between the cost of adjacency and the
efficacy of the Lazy Path method.

Conclusions

In this article, we showed empirically that the Path/Cover
inequalities of the McDill et al. (2002) Path formulation of
the ARM (Murray 1999) are often lazy. We exploited this
property by removing these inequalities from the harvest
scheduling model and placing them in a lazy constraint

pool. Each time the solver finds a potential solution it
checks whether any of the constraints in the pool is violated.
If a lazy constraint is violated, we add it to the model. The
process is repeated until the desired optimality gap is
reached, and no more violations occur. We tested the tech-
nique on 60 hypothetical and 8 real problem instances with
varying maximum harvest opening sizes and found that in
most cases it outperformed the other three existing models
in terms of solution times, often by a dramatic margin. An
additional finding was that if the sum of formulation and
solution times was used as a measure of efficiency, the Lazy
Path approach still came out ahead of the other models on
average.

In conclusion, we emphasize that although the Lazy Path
approach offers significant improvements in solution times,
it does not allow reductions in formulation times. The
proposed technique still requires the complete enumeration
of Path/Cover constraints before optimization, and, as we
have seen, this process can be extremely time-consuming.
For future research, we plan to develop a cutting plane or
delayed constraint generation technique that will enumerate
a Path/Cover constraint only if a maximum harvest size
violation is detected during optimization.
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