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Harvest Scheduling with Area-Based
Adjacency Constraints

Marc E. McDill, Stephanie A. Rebain, and Janis Braze

ABSTRACT.  Adjacency constraints in harvest scheduling models prevent the harvest of adjacent
management units within a given time period. Two mixed integer linear programming (MILP) harvest
scheduling formulations are presented that include adjacency constraints, yet allow the simultaneous
harvest of groups of contiguous management units whose combined areas are less than some
predefined limit. These models are termed Area Restriction Models, or ARMs, following Murray (1999).
The first approach, the Path Algorithm, generates a set of constraints that prevent concurrent
harvesting of groups of contiguous stands only when the combined area of a group exceeds the harvest
area restriction. The second approach defines the set of Generalized Management Units (GMUs) that
consist of groups of contiguous management units whose combined areas do not exceed the maximum
harvest area limit. This formulation of the model can recognize direct cost savings—such as sale
administration costs or harvest costs—or higher stumpage prices that may be realized by jointly
managing stands. Example problems are formulated and solved using both ARM approaches and
compared with models that restrict concurrent harvests on all adjacent units, regardless of area
[termed Unit Restriction Models, or URMs, again following Murray (1999)]. The ARM formulations
usually result in larger models and take longer to solve, but allow for higher objective function values
than otherwise similar URM formulations. While the proposed ARM approaches should be applicable
to more general problems, the examples are constructed so that the largest number of contiguous
stands that can be harvested jointly is three. Strategies for reducing the size of the ARM formulations
are discussed and tested. FOR. SCI. 48(4):631–642.
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ADJACENCY CONSTRAINTS in harvest scheduling models
prevent adjacent management units from being
scheduled for harvest within a given time period.

Many articles have been written about formulating and solv-
ing forest management planning problems with adjacency
constraints (e.g., Boston and Bettinger 1999, Hoganson and
Borges 1998, Borges et al. 1999, Lockwood and Moore 1992,
McDill and Braze 2000, Meneghin et al. 1988, Murray 1999,
Murray and Church 1995a, 1996a, 1996b, Nelson and Brodie
1990, Snyder and ReVelle 1996a, 1996b, 1997, Torres-Rojo
and Brodie 1990, Weintraub et al. 1994, Yoshimoto and

Brodie 1994). Adjacency constraints are of practical impor-
tance largely because of legal and voluntary restrictions on
the maximum size of harvest openings. For example, the
National Forest Management Act (U.S. Congress 1976) [Sec
6(g)(3)(F)(iv)] and Washington and Oregon’s state forest
practices acts place legal limits on clearcut sizes; and the
Sustainable Forestry InitiativeTM of the American Forest and
Paper Association (AF&PA 2000) places voluntary limits on
clearcut sizes.

When adjacency constraints are included in a model in
order to comply with a maximum harvest area policy, it
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should be possible to harvest adjacent stands together as
long as their combined areas are less than the maximum
harvest area. Concurrent harvests should be prohibited
only on combinations of contiguous stands whose aggre-
gate areas exceed the maximum harvest area. Constraining
the model unnecessarily by prohibiting the concurrent
harvest of any pair of adjacent stands will generally lead to
suboptimal solutions. In spite of this, nearly all of the
forest management optimization formulations presented
in the literature that include adjacency constraints have
prohibited harvests on all adjacent stands. Sometimes
problems are preconditioned so that there are no adjacent
stands whose combined areas would be less than the
maximum allowable harvest area. For example, Snyder
and ReVelle (1996b, p. 1,082) state “It is assumed that
each planning unit is large enough such that harvesting in
neighboring areas would violate maximum desired har-
vest opening size.” Of course, this assumption often will
not hold in practice. Other formulations simply disallow
concurrent harvesting of any adjacent stands, without refer-
ence to a particular maximum harvest area (e.g., Borges et al.
1999, McDill and Braze 2000). In these cases, however, it
often happens that individual stands in the problem—that
must be harvested all at once—are larger than the combined
areas of groups of adjacent stands that the adjacency con-
straints prevent from being harvested concurrently. An ideal
approach would allow neighboring stands to be harvested
together as long as their collective area is less than the
maximum harvest area. Whether or not neighboring stands
should be harvested together should not be predetermined,
however. As long as the combined area of a group of contigu-
ous stands does not exceed the maximum harvest area, the
decision whether or not to harvest the group in the same
period should be determined by the model solution.

Lockwood and Moore (1992) present a model that allows
concurrent harvesting of contiguous groups of stands based
on their combined areas. Their model penalizes harvest
blocks that are too small as well as too large. Their penalty
approach encourages the merging of small stands to create
larger, more efficient harvest blocks. Furthermore, the ap-
proach allows violations of the maximum harvest area re-
striction when the costs of complying exceed the penalty for
being too large. Lockwood and Moore’s model is large and
nonlinear, however, and would be very difficult to solve with
an exact solution method. Lockwood and Moore used simu-
lated annealing to find near-optimal solutions to their model.

Murray (1999) discusses the problem of imposing area-
dependent adjacency constraints. He terms models “where
harvesting any two adjacent units would violate the maxi-
mum area limitation” (p. 47) Unit Restriction Models (URMs).
He proposes the label “Area Restriction Models” (ARMs) for
models that impose maximum harvest area restrictions, but
allow adjacent units to be harvested together as long as their
combined area does not exceed the maximum harvest area.
This article uses Murray’s terminology, except that any
model that precludes concurrent harvesting of all adjacent
management units—regardless of their area—is considered a
URM. Murray (1999) concludes that:

To date, no attempts to solve the ARM by exact solution
approaches have been published. Because of the non-linear
characteristics of the ARM, it is unlikely that exact methods
for identifying optimal solutions will ever be developed.
This is due to the inherent difficulty of defining contiguous
treated areas in advance. (p. 49)

This article presents two ways to formulate harvest sched-
uling problems that preclude harvests that would exceed a
maximum allowable harvest area while allowing the concur-
rent harvest of contiguous groups of stands whose combined
areas are smaller than this predefined limit—i.e., ARMs.
Both of the proposed approaches produce mixed-integer
linear programming (MILP) formulations. They do not re-
quire nonlinear models and are therefore not fundamentally
more difficult to solve than other MILP harvest scheduling
problems with adjacency constraints. The first method, which
we call the Path Algorithm, produces a set of adjacency
constraints that imposes only the adjacency restrictions that
are needed to preclude harvest openings that would exceed a
maximum harvest area limit. The second MILP ARM formu-
lation adds variables that represent combinations of contigu-
ous management units whose aggregate areas do not exceed
the maximum allowable harvest area. We call these combina-
tions of management units Generalized Management Units
(GMUs). Both approaches will generally produce larger
problem formulations than otherwise equivalent URMs. The
Path Algorithm tends to require more constraints than an
equivalent URM with Type 1 (Meneghin et al. 1988) adja-
cency constraints. The GMU formulation requires more
variables and more constraints. The GMU formulation has
the advantage, however, of being able to recognize direct cost
savings (e.g., timber sale administration or harvesting costs)
and/or higher stumpage prices that may result from combin-
ing groups of management units into a single, larger timber
sale.

The next two sections describe the logic behind the two
approaches to formulating MILP ARMs. Following that, a
general model and results from various formulations of
two example problems are presented. The concluding
section discusses the significance of the proposed model
formulations.

The Path Algorithm

An intuitive way to allow qualifying adjacent manage-
ment units (i.e., adjacent[1] management units whose com-
bined area is less than the maximum harvest area) to be
harvested concurrently is to begin with a complete set of
Pairwise adjacency constraints (i.e., a set of adjacency con-
straints that would preclude the concurrent harvest of any
adjacent management units) and simply delete the constraints
corresponding to pairs of adjacent management units whose
combined areas do not exceed the maximum harvest area
restriction. Of course, the problem is not that simple, as
illustrated by the following example.

Consider a forest with three stands—A, B, and C—as
depicted in Figure 1. The following sets of Pairwise con-
straints would prevent the concurrent harvest of any adjacent
stands in the forest:



Forest Science 48(4) 2002 633

X X

X X
At Bt

Bt Ct

+ ≤
+ ≤

1

1
(1)

where XUt is a binary variable where a value of 1 indicates that
management unit U should be harvested in period t.

Now, if the combined area of units A and B is less than the
maximum harvest area and if the combined area of units B
and C is greater than the maximum harvest area, then simply
deleting the first of these Pairwise adjacency constraint sets
would result in a correct ARM. However, if the combined
area of units B and C was also less than the maximum harvest
area and if the second set of Pairwise constraints was also
deleted, it would then be possible to harvest all three units
together. Therefore, if the combined area of units A, B, and
C exceed the maximum harvest area, a new constraint of the
following form is needed:

X X XAt Bt Ct+ + ≤ 2 (2)

For reasons that will be clear shortly, we refer to con-
straints of this type as path constraints. The left-hand-side
coefficients of these path constraints are always 1, and the
right-hand-side coefficient is always one less than the num-
ber of variables included in the constraint. Note that, except
in the case of path constraints involving only two stands—
which are equivalent to Pairwise constraints—these con-
straints are not Type 1 constraints (Meneghin et al. 1988).
First, in the above example, units A and C are not adjacent to
each other, and, second, the right-hand-side coefficient is 2,
not 1. This second difference is particularly important be-
cause it means that these constraints are not clique constraints
[i.e., constraints where all of the nonzero coefficients on both
sides of the inequality are one (Murray and Church 1996b)].
Clique constraints tend to increase the efficiency of the
branch and bound algorithm that is often used to solve MILP
problems.

The proposed Path Algorithm is as follows[2]:

1. Start with any pair of two adjacent polygons (stands). If
the combined area of the two polygons exceeds the maxi-
mum harvest area, then write a Pairwise adjacency con-
straint for those two polygons. This pair of polygons forms
the initial cluster of processed polygons (i.e., the set of
polygons for which path constraints have been identified).

2. Select any polygon that is adjacent to the current cluster of
processed polygons and add it to the cluster.

3. Define a network, based on the current cluster, with a node
corresponding to each polygon and an arc connecting each
pair of nodes corresponding to a pair of adjacent polygons.
Identify each possible path originating at the node corre-

sponding to the new polygon in the cluster.[3] Terminate
a path when the accumulated area of the polygons along
the path just exceeds the maximum harvest area or when
there are no more polygons in the current cluster that are
adjacent to the path but not already part of the path. Note
that paths can follow multiple branches, but paths cannot
return to a node already on the path. When a path whose
area exceeds the maximum harvest area terminates, deter-
mine whether the path is redundant. A newly identified
path is redundant if the set of stands in a previously
identified path is a subset of the stands in the new path. If
the new path is not redundant, add a set of path constraints
(one for each period, for example, if the exclusion period
equals one planning period) corresponding to the set of
polygons defined by the path.

4. Stop when the cluster contains all of the management units
in the forest. Otherwise, return to step 2.

Implementing this procedure is relatively straightforward
as long as the maximum number of management units in a
path does not exceed 3 or 4. We have written a program
implementing the algorithm for path numbers up to 4. We
expect that the algorithm would work with path numbers of
5 or more, but implementation would be considerably more
complex. The maximum path size can be limited by not
defining stands whose areas are less than or equal to, say, one
fourth of the maximum harvest area. In this case, the maxi-
mum path length would be four. This is, of course, an overly
restrictive requirement. Even if a forest includes stands
whose areas are less than one fourth of the maximum harvest
area, if these stands are not clustered together there will not
be any groups of four contiguous stands with a combined area
less than the maximum harvest area. Finally, even if clusters
of four or more contiguous stands with a combined area less
than the maximum harvest area do exist, one can simply
ignore the possibility of harvesting more than three contigu-
ous stands concurrently. This would still represent an im-
provement on the URM approach, which does not allow
concurrent harvests of any adjacent stands.

The Path Algorithm can be illustrated by expanding the
example in Figure 1. The forest in Figure 2 contains the three
original stands in Figure 1, plus three additional stands, labeled
D, E, and F. Figure 2 also shows the areas of the stands. Assume

Figure 1.  Example forest with three management units.
Figure 2.  Example forest with six management units (numbers
indicate management unit areas).
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that the maximum harvest area is 20. Since we have already
discussed stands A, B, and C, we continue the example with
these stands as our current cluster. Constraint (2) above imposes
all of the adjacency restrictions that are needed for this cluster.

Stand D is added next to the cluster. The first path
generated from stand D is DA. This path is not redundant,
since the only path that has been created so far is ABC, and
it is not a subset of DA. Thus, a pairwise path constraint is
added for these stands:

X XAt Dt+ ≤ 1 (3)

The next path that is generated is DBA. Since the stands on
path DA are a subset of the stands on this path, it is redun-
dant.[4]  The next path is DBC. Since neither ABC nor AD are
subsets of DBC, this path is not redundant. The following
path constraint is therefore added:

X X XBt Ct Dt+ + ≤ 2 (4)

The next path is a forked path consisting of two subpaths,
DB and DC.[5] We denote this type of path with a hyphen
between the subpaths, DB-DC in this case. This path is
redundant, since it passes through the same set of stands as
DBC. The final path that can be generated starting from
stand D is DCB. This path also contains the same set of
stands as DBC, so this path is redundant. This completes
the set of ARM constraints for the current cluster.

Stand E is added next to the cluster. The first path gener-
ated from stand E is EA. This path is not redundant, so a
pairwise path constraint is added for these management units:

X XAt Et+ ≤ 1 (5)

The next path that is generated is EBA. The management
units on this path are a superset of the management units on
path EA, so this path is redundant. The next path is EBC. This
path is not redundant, so the following path constraint is
added:

X X XBt Ct Et+ + ≤ 2 (6)

The path EBDA is a superset of the path DA, and the path
EBDC is a superset of the paths BCD and EBC, so they are
redundant and no path constraints are written for those paths.
This completes the set of ARM constraints for the current
cluster.

Management unit F is added next to the cluster. The first
path generated is FDA. This path is redundant because it is a
superset of the path DA. The next path that is generated is
FDBA. This path is also a superset of the path DA. The next
path, FDBC, is redundant, as it is a superset of path BCD. The
next path is FDBE. This path is not redundant, so the follow-
ing path constraint is added:

X X X XBt Dt Et Ft+ + + ≤ 3 (7)

The next path is another forked path, FDB-DC. This path
is redundant, as it, too, is a superset of path BCD. However,
the next path, FDC, is not redundant, so a final constraint is
written for this path:

X X XCt Dt Ft+ + ≤ 2 (8)

Because all of the stands in the forest have now been added
to the cluster, this completes the set of path constraints for the
forest shown in Figure 2.

This simple example illustrates how the Path Algorithm can
be used to construct a set of linear ARM constraints for the forest
depicted in Figure 2. For a one-period model, seven constraints
would be required. Clearly, enumerating all possible paths from
each management unit through the current cluster can be com-
plex. Identifying redundancies can also be nontrivial. Neverthe-
less, the algorithm can be used to formulate an MILP ARM. One
disadvantage of the approach, however, is that it cannot be used
to model situations where significant direct cost savings may be
realized by harvesting adjacent management units jointly. The
approach described in the next section allows this.

The Generalized Management Units
Approach

If one knew in advance that two adjacent management
units should be harvested together, the two units could simply
be combined before formulating the problem. However,
whether or not a set of adjacent management units should be
combined can also be viewed as a decision that can be made
by the model. These decisions can be modeled by adding
variables corresponding to allowable combinations of man-
agement units (i.e., combinations of contiguous management
units whose combined areas do not exceed the maximum
allowable harvest area).

In the example forest depicted in Figure 2, there are eight
allowable combinations of management units—AB, BC,
BD, BDE, BDF, BE, CD, and DF—in addition to the original
set of six management units. These combinations can be
thought of as alternative, or generalized, management units
(GMUs) into which the forest can also be divided, and
variables can be defined for these GMUs just as for the
original set of individual management units.[6] For example,
XBDF,t would be a binary variable where a value of 1 indicates
that management units B, D, and F should be harvested
concurrently in period t.

Under the approach described here, the logical constraints
dictating that a unit can only be assigned to one prescrip-
tion—such as those that would be found in a multiperiod,
Model I URM (Johnson and Scheurman 1977)—would need
to be expanded to require that a unit must be managed as one
and only one of the GMUs to which it belongs. For example,
in a multiperiod, Model I URM the logical constraint for
management unit B in Figure 2 would be:

t

T

BtX
=
∑ ≤

0

1 (9)

With the addition of variables corresponding to GMUs,
the logical constraint for management unit B would become:

u G t

T

Ut

B

X
∈ =
∑ ∑ ≤

0

1 (10)
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where GB is the set of GMUs containing management unit B,
including the original unit itself. In the example in Figure 2,
this set would be {B, AB, BC, BD, BDE, BDF, and BE}.

Adjacency constraints for GMUs can be written using any
standard adjacency constraint formulation, such as Pairwise,
Type 1, New Ordinary Adjacency Matrix (NOAM), etc. (Murray
and Church 1995, 1996b, McDill and Braze 2000). For example,
the GMU AB in Figure 2 is adjacent to management units D, C,
E, CD and DF. Note that it is not necessary to treat AB as adjacent
to BE, since the logical constraint for stand B [Equation (10)]
already makes it impossible to assign prescriptions to both of
these GMUs. With the GMUs, there are 38 pairs of adjacent
management units in Figure 2. These are listed in Figure 3. A
Pairwise adjacency constraint would be required for each of
these pairs for each period of the model. The number of adja-
cency constraints can be reduced to 28 times the number of
periods if Type 1 ND constraints are used.[7] The groups of
management units corresponding to Type 1 ND constraints for
the example forest in Figure 2 are listed in Figure 4.

The GMU approach will generally produce an ARM formu-
lation of a given problem that is considerably larger than a URM
formulation of the same problem. In the example in Figure 2, the
number of management units (and, hence, variables) more than
doubled, from 6 to 14, and the number of Pairwise adjacency
constraints needed per period increased from 8 to 38. The ARM
could become so large that the resultant model would take
prohibitively long to solve. This is a significant drawback of the
approach. Nevertheless, several factors moderate these con-
cerns. First, the logical constraints (10) in the GMU ARM are
clique constraints. That is, these constraints include long lists of
variables from which only one can take a nonzero value. This
structure tends to reduce the difficulty of solving these models.
Furthermore, with the GMU approach, Type 1 adjacency con-
straints can be used. McDill and Braze (2000) have shown that
this adjacency constraint type is generally more efficient than the
most promising alternatives, Pairwise and NOAM constraints.
Finally, the optimal solution to the ARM will always be at least
as good as the optimal solution to the URM. Thus a suboptimal
solution to the ARM—such as one obtained with a heuristic
procedure or by terminating the branch-and-bound algorithm
prematurely might take less time to obtain and yet have a better
objective function value than the optimal solution to the URM.
McDill and Braze (2001) have shown that it often takes substan-
tially less time to find slightly suboptimal solutions than to find
optimal solutions.

While it is apparently inefficient, relative to the Path
formulation of the ARM, the GMU approach is important
simply because it provides an alternative way to formulate
ARM problems. This formulation may prove to be useful for
applications that have not been considered previously—for

example, in modeling forest patch sizes or the area of interior
forest habitat—or for formulating the ARM for heuristic
solution approaches. An important advantage of the GMU
approach is that the direct cost savings from jointly managing
groups of management units can be modeled easily because
the joint management of these units is represented by specific
variables. The objective function coefficients corresponding
to management alternatives for a GMU do not have to equal
the sum of the objective function coefficients for the equiva-
lent management alternatives on the individual management
units included in the GMU. Thus, these coefficients can
include direct cost savings such as reduced timber sale
administration or logging costs that can be realized by joint
management of the units. In addition, the GMU approach
could potentially be useful for recognizing the cost savings
that can be realized through the joint management of any
group of stands, whether or not they are adjacent.

Model Formulation

The general structure of our ARM MILP based on the Path
Algorithm is as follows:

Max Z c A X
m

M

mt
t

T

m mt = ⋅ ⋅
= =

∑ ∑
1 1

(11)

Subject to

t

T

mtX m M
=
∑ ≤ =

0

1 1 2                         , ,...,for (12)

m

M

mt m mt tv A X H t T
=

∑ ⋅ ⋅ − = =
1

0 1 2    , ,...,for (13)

B H H t Tlt t t− ≤ = −+1 0 1 2 1                      , ,...,for (14)

− + ≤ = −+b H H t Th t t t,                   , ,...,1 0 1 2 1for (15)

U P
Ut P i

i

i
X n P t T

∈
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m

M
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T

t

T
T

m mtAge Age A X
= =

∑ ∑ − ⋅ ≥
1 1

0(  ) (17)

X m M t Tmt ∈ = ={ , }     , ,...,   , , ,...0 1 1 2 0 1 2for and (18)

Figure 3.  Adjacency list for 38 pairwise constraints for the
example forest in Figure 2.

A, B A, D A, E A, BC A, BD
A, BDE A, BDF A, BE A, CD A, DF

B, C B, D B, E B, CD B, DF
C, D C, AB C, BD C, BDE C, BDF

C, BE C, DF D, F D, AB D, BC
D, BE E, AB E, BC E, BD E, BDF
F, BD F, BDE F, CD AB, CD AB, DF

BC, DF BE, CD BE, DF

Figure 4.  A list of groups of GMUs that form 28 Type 1 ND
constraints for the example forest in Figure 2.

A, B, D A, E, BC A, BD A, BDE A, BDF
A, BE, CD A, DF B, C, DF B, E B, CD
C, D, AB C, BD C, BDE C, BDF C, BE
D, F D, BC D, BE E, AB E, BD
E, BDF F, BD F, BDE F, CD AB, CD
AB, DF BC, DF BE, DF
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where

Xmt = a binary variable whose value is 1 if management
unit m is to be harvested in period t for t = 1, 2, ...
T; when t = 0, the value of the binary variable is 1
if management unit m is not harvested at all during
the planning horizon (i.e., Xm0 represents the “do-
nothing” alternative for management unit m),

M = the number of management units in the forest,

T = the number of periods in the planning horizon,

cmt = the net discounted revenue per hectare if manage-
ment unit m is harvested in period t,

Am = the area of management unit m in hectares,

vmt = the volume of sawtimber in m3/ha harvested from
management unit m if it is harvested in period t,

Ht = the total volume of sawtimber in m3 harvested in
period t,

bl t = a lower bound on decreases in the harvest level
between periods t and t + 1 (where, for example,
bl,t = 1 would require nondeclining harvests and
bl,t = 0.9 would allow a decrease of up to 10%),

bh, t = an upper bound on increases in the harvest level
between periods t and t + 1 (where bh,t = 1 would
allow no increase in the harvest level and bh,t = 1.1
would allow an increase of up to 10%),

Pi = the set of indexes corresponding to the manage-
ment units in path i,

nPi = the number of management units in path i,

Agemt
T = the age of management unit m at the end of the

planning horizon, if it is harvested in period t, and

Age
T = the target average age of the forest at the end of the

planning horizon.

Equation (11) specifies the objective function of the
problem, namely to maximize the discounted net revenue
from the forest during the planning horizon. The first set of
constraints (12) are logical constraints. They require a man-
agement unit to be assigned to at most one prescription,
including a do-nothing prescription. The second set of con-
straints (13) are harvest accounting constraints. They sum the
harvest volume for each period and assign the resulting value
to the harvest variables (Ht). Constraint sets (14) and (15) are
flow constraints. Constraint set (16) represents the adjacency
constraints generated with the Path Algorithm. These con-
straints assume that the exclusion period equals the length of
a planning period. The structure is easy to generalize to
alternative exclusion periods which are integer multiples of
a planning period (see, for example, Snyder and ReVelle
1997). Constraint (17) is an ending age constraint. It requires
the average age of the forest at the end of the planning horizon
to be at least  Age

T years, preventing the model from over-
harvesting the forest. Constraint (18) identifies the manage-
ment unit treatment alternative variables as binary.

Constraint sets (12) and (16) must be replaced in order to
formulate the ARM using the GMU approach. As discussed
above, constraint set (12) is replaced by the following:

u G t

T

ut o

m

X m M
∈ =
∑ ∑ ≤ =

0

1 1 2              , ,...,for (19)

where

MO= the set of original management units (note that in this
case M represents the complete set of management units,
including GMUs), and

Gm = the set of management units in M that include origi-
nal management unit m.

Constraint set (16) is replaced with the following:

m C
mt j

i

X C t T
∈
∑ ≤ =1 1 2         , ,...,for all  and (20)

where Cj = the set of indexes corresponding to the j th pair of
adjacent management units (for Pairwise adjacency con-
straints) or the jth nondominated set of mutually adjacent
management units (for Type 1 ND adjacency constraints).

Example Problems

To demonstrate the proposed methods of formulating
ARMs, we created two hypothetical example forests with 50
and 80 management units, respectively. Both example forests
were created with MAKELAND, a program which generates
hypothetical random forest maps (Braze 1999, McDill and
Braze 2000). The map for the 50 unit example problem is
shown in Figures 5, 6, and 7. In the figures, the pair of
numbers inside each management unit indicates the manage-
ment unit’s ID number and its initial age class. For example,
the management unit in the upper left-hand corner of the 50
unit forest is number 48, and it is in age class 1 (ages 0 to 20).
In both hypothetical forests, the average area of a manage-
ment unit is 20 ha. The largest management units are 32.6 ha
in the 50 unit forest and 39.1 ha in the 80 unit forest; the
smallest management units are 10.5 ha and 10.7 ha, respec-
tively. All management units are assumed to be stands of the
same forest type and site quality; management units differ
only in their ages.

MAKELAND assigns a forest age class to the polygons in the
maps according to a target age-class distribution. Actual age-
class distributions tend to vary slightly from the target be-
cause of the discrete nature of the age-class assignments. The
resulting age-class distributions of the two forests are shown
in Table 1. The optimal economic rotation for stands in both
forests is 80 years.[8] Thus, the forests could be described as
overmature, with approximately 29% of their areas past the
optimal rotation. If strict Faustmann rotations were followed
on each management unit, more than half of each forest
would be harvested over the next 20 yr.

Several problems were created for each of these two
forests to demonstrate and compare the proposed ARM
formulations with each other and with URM models. Solu-
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tions were obtained for each example problem with CPLEX®

V6.5 using a 500 MHz Pentium III computer with 384 Mb of
RAM. All problems were solved to a 0.0001 percent gap[9]
to minimize the likelihood of “false” solution differences
between problems due simply to stopping the branch and
bound algorithm too soon. In addition, the time it takes
CPLEX® to solve a given problem differs somewhat each
time the problem is solved. This source of variation was
essentially eliminated by solving each problem five times
and averaging the solution times. In all cases, the five solu-
tions obtained for a given problem were identical.

URM problems were formulated first for both forests,
using both Type 1 ND and Pairwise constraints. Spatially
unrestricted models—with no adjacency constraints—were
also formulated for each forest. The number of constraints,
number of variables, objective function values, solution
times, average harvest opening size, and coefficient of varia-
tion (CV) of harvest opening size are reported in Table 2 for
the URM and the unrestricted models. As one should expect,
for a given forest the solutions for the URM models were the
same regardless of the adjacency constraint formulation.
Consistent with results reported in McDill and Braze (2000),
the Pairwise formulations took longer to solve than the Type
1 ND formulations. Surprisingly, solution times for both
forests were greater for the spatially unconstrained problems
than for the URM models. In the 80 stand case, the difference
was quite large. Figure 5 shows the URM solution for the 50
stand forest.

ARM formulations were created using both the GMU
approach and the Path Algorithm. Three key parameters were
considered that can affect the efficiency of the ARM formu-
lations. The first of these parameters is the maximum harvest
area. Clearly, the number of combinations of contiguous
stands that can be harvested concurrently—and, hence, model
size—will be larger for larger maximum harvest areas (or,
conversely, for smaller management units). To assess the
impact of this parameter on the model size and solution time,
problems were created for both forests using maximum
harvest areas of 40 ha and 48.6 ha. The smaller area was
chosen because it is larger than the largest stand in either

forest. This area is also about four times the size of the
smallest stands in the maps. The larger area, 48.6 ha, is the
maximum harvest area specified by the AFPA’s Sustainable
Forestry Initiative (AF&PA 2000).

The second parameter that can affect the efficiency of the
ARM formulation is the maximum age difference among a
group of contiguous stands in order to consider harvesting
them concurrently. The size and complexity of the ARM
formulation for a forest tends to increase as the number of
stands that can be harvested concurrently increases. There-
fore, if a group of contiguous stands are unlikely to be
harvested concurrently—i.e., if they are sufficiently differ-
ent, especially in terms of their maturity—it seems reason-
able to ignore the possibility of harvesting them jointly. Thus,
for example, while the combined area of stands 42 and 15 in
Figure 5 is only 28.1 ha, we probably do not need to consider
harvesting these stands concurrently since their ages differ by
four age-classes—approximately 80 yr. To compare the
potential losses in objective function values with the poten-
tial time savings from limiting the range of age differences
within groups of contiguous stands allowed to be harvested
concurrently, we varied the maximum age-class difference
from zero to four. (Four age classes is the largest possible
difference.)

The third parameter we considered in our example prob-
lems is the maximum number of stands that can be harvested
concurrently. As noted earlier, the Path Algorithm becomes
increasingly complex as the number of stands that can be
included in a path constraint is increased. Similarly, the
number of GMUs also tends to increase, which increases the

Table 1. The age-class distributions of the example forests.

Age class 50 unit forest 80 unit forest
(yr) Area (ha) Percent Area (ha) Percent

0 to 20 114.9 11.5 152.4 9.5
21 to 40 137.9 13.8 250.7 15.7
41 to 60 226.7 22.7 331.6 20.7
61 to 80 228.9 22.9 399.6 25.0

>80 291.6 29.1 465.7 29.1

Total 1,000.0 100.0 1,600.0 100.0

Table 2. Problem formulation and solution information for URM (Type 1 ND and Pairwise) and spatially unrestricted (no

adjacency constraints) 50 and 80 stand problems.

50 stand 80 stand
Type 1 ND Pairwise None Type 1 ND Pairwise None

Number of variables 184 184 184 295 295 295
No. adjacency constraints 153 241 0 252 397 0
Average solution time (sec) 0.7 1.0 1.6 1.1 1.9 13.5
Objective function ($) 2,781,670 2,781,670 2,994,838 4,679,628 4,679,628 4,848,105
Average harvest area (ha) 20.1 20.1 41.7 20.4 20.4 35.6
Coef. of var. of harvest area 0.284 0.284 1.089 0.341 0.341 0.630

Figure 5.   Harvest schedule map for the 50 stand example—URM
solution.
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size of the GMU formulation of the problem. Allowing a
maximum path length of three stands is equivalent to allow-
ing a maximum of two stands in a GMU. Similarly, allowing
a maximum path length of four stands is equivalent to
allowing a maximum of three stands in a GMU. Path lengths
greater than four stands complicate the Path Algorithm con-
siderably, and, while these complexities are not insurmount-
able, path lengths greater than four were not considered here.

The results for the 50 stand forest problems and the 80
stand forest problems are presented in Tables 3 and 4,
respectively. There were no groups of three contiguous
stands with a combined area less than 40 ha in the 50 stand
forest, so only three cases were considered for that forest: (1)
a 40 ha maximum harvest area, with a maximum of two
adjacent stands harvested concurrently, (2) a 48.6 ha maxi-
mum harvest area, with a maximum of two adjacent stands
harvested concurrently, and (3) a 48.6 ha maximum harvest
area, with a maximum of three contiguous stands harvested
concurrently. The same three cases are considered in Table 4
for the 80 stand forest; also, there were a few groups of three
contiguous stands whose combined areas were less than 40 ha
in the 80 stand forest, so that case is also included in Table 4.
For each case, the maximum age class difference was varied
between zero and four age classes.

Figure 6 illustrates the solution to the ARM model for the
50 stand forest with a 48.6 ha maximum harvest area and a
maximum age difference between stands allowed to be har-
vested concurrently of at least two age classes. (Allowing a
larger maximum age difference resulted in the same solu-
tion.) In all cases, the solution to the GMU formulation was
the same as the solution to the Path formulation for a given
problem. To test for the possibility that the Path Algorithm
might yield different solutions depending on the order that
polygons are added to the cluster, three problems were
reformulated ten times using different initial polygons each
time.[10] In all cases, the resulting solutions were the same.

The results in Tables 3 and 4 indicate how model size is

affected by the type of formulation (Path or GMU) and the
three parameters considered: the maximum harvest area,
the maximum number of contiguous stands allowed to be
harvested concurrently, and the maximum age difference.
For the Path Algorithm, the number of variables is not
affected by the three formulation parameters, but the
number of constraints tends to increase with each of the
three parameters. The number of path constraints was
always larger than the number of Type 1 constraints for a
URM formulation of a given problem. For more restrictive
settings of the three formulation parameters, the number
of path constraints was less than the number of Pairwise
constraints for the URM formulation. As the three param-
eters were increased, however, the number of constraints
in the Path formulation became larger than the number of
Pairwise constraints. For the GMU formulations, both the
number of variables and the number of constraints in-
crease with all three parameters. Furthermore, both the
number of variables and the number of constraints is
substantially larger with GMU models than with the Path
Algorithm. Thus, model size is more of a concern with the
GMU approach than with the Path Algorithm.

The differences in model size are generally reflected in
solution times. Solution times tend to grow with the
number of constraints and variables. Solution times for the
GMU models were consistently longer than for the Path
models, and solution times for the Path models were
consistently longer than solution times for either URM
formulation (Type 1 or Pairwise). Interestingly, solution
times often decreased as the maximum age difference was
increased, even though this lead to a larger model. The
most significant example of this is the GMU formulation
for the 80 stand problem with a 48.6 ha maximum harvest
area and a maximum of two adjacent stands harvested
concurrently. Most likely this is simply a reflection of the
unpredictability of solution times for these types of prob-
lems, but it also underscores the fact that reducing the
number of variables and/or constraints in these problems
does not always result in reduced solution times.

While the ARM models are more difficult to formulate and
take longer to solve, this cost is compensated by better objective
function values. With a 40 ha maximum harvest area, the best
ARM solutions were 3.2 and 1.2% better than the corresponding
URM solutions for the 50 stand and 80 stand forests, respec-
tively. With a 48.6 ha maximum harvest area, the improvement
was 4.8 and 2.7%, respectively. These gains are not especially
large, but they are significant when viewed as a percentage
reduction in the cost of the adjacency constraints. For example,
in the case of the 50 stand forest, the cost of the URM adjacency
constraints—as measured by the difference between the URM
objective function value and the spatially unconstrained objec-
tive function value (Table 2)—is $213,168, or $213/ha. With a
40 ha maximum harvest area, using an ARM model reduces this
cost to $122,826—a 42.4% reduction. Using an ARM formula-
tion reduces the cost of adjacency for the 50 stand forest even
further, by 62.8%, when the maximum harvest area is 48.6 ha.
Similar figures for the 80 stand forest are 32.2% with a 40 ha
maximum harvest area and 74.7% with a 48.6 ha maximum.

Figure 6.   Harvest schedule map for the 50 stand example—ARM
solution with a maximum harvest area of 48.6 ha, an age difference
restriction of two age classes or larger, a maximum of two
adjacent stands harvested concurrently, and no fixed cost.
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The results clearly show that allowing the concurrent
harvest of contiguous stands with large age differences
tends to increase the model size with little or no corre-
sponding improvement in the solution. In our examples,
there was no benefit from considering the concurrent
harvest of contiguous stands with an age difference greater
than two age classes—about half of a rotation. Further-
more, the gains from considering age differences greater
than one age class (one-fourth of a rotation) were very
small. The largest improvement in the objective function
obtained by allowing age differences of up to two age
classes versus allowing a maximum age difference of one
age class was only 0.06% (in the case of the 80 stand forest
with a maximum harvest area of 40 ha).

The improvement in the objective function that can be
achieved by allowing up to three contiguous stands to be
harvested concurrently clearly depends on the parameters
of the problem, but for the examples presented here there
was little gain from considering the concurrent harvest of
more than two adjacent stands. As mentioned earlier, there
were no groups of three contiguous stands with a com-
bined area of less than 40 ha in the 50 stand forest. Even
in the 80 stand forest, however, where such groups did
exist, none were scheduled for harvest in the best solution
to the problem. When the maximum harvest area was 48.6
ha, allowing groups of three stands to be harvested to-
gether yielded a better solution for the 50 stand forest only
in the case that required contiguous groups of stands to be
in the same age class in order to be harvested together. The
best overall solution was obtained for the 80 stand forest
with a 48.6 ha maximum harvest area when three contigu-
ous stands were allowed to be harvested together. How-
ever, this solution was less than 0.015% better than the
best solution obtained with a maximum of two adjacent
stands harvested concurrently.

One of the potential drawbacks of the ARM approach is
that it could conceivably decrease the variability of stand

sizes, and, hence, the spatial diversity of the forest (Hunter
1990, Chap. 6). The danger is that small stands will be
eliminated as they are harvested together with adjacent stands.
Furthermore, very large stands will not be deliberately cre-
ated due to the maximum harvest area restriction. (Nature
may create a few, of course.) It seems inevitable that these
two effects would squeeze the stand size distribution from
both ends, reducing the diversity of stand sizes. We did not
necessarily observe this effect in our examples, however. If
future stand size is determined by harvest opening sizes,
ARM models will tend to create larger stands over time than
URM models. (See Tables 3 and 4, average harvest area.)
However, in nearly all cases, the coefficient of variation of
the size of the harvest areas was greater for the ARM models
than for the corresponding URM models. On the other hand,
the coefficient of variation of harvest opening size did in-
crease with larger maximum harvest areas, and the variability
of the harvest opening size was much larger for the spatially
unrestricted models.

Accounting for Fixed Timber Sale
Administration Costs

As discussed earlier, one advantage of the GMU formula-
tion is that it can recognize the direct cost savings that can be
often be realized by combining smaller timber sales. To
demonstrate this, we developed two more models that in-
cluded a fixed administrative cost of $1,500 associated with
a timber sale.[11] Groups of contiguous stands which are
harvested concurrently incur this fixed cost only once. These
models are based on the 50 stand example forest, and, other
than the fixed timber sale cost, they are the same as the Path
and GMU models presented in Table 3 with a 48.6 ha
maximum harvest area, a maximum age difference of two age
classes, and a maximum of two adjacent stands harvested
concurrently. The solution to this problem without fixed
costs is depicted in Figure 6.

Table 3. Problem formulation and solution information for 50 stand ARM problems.

Max
age No. variables No. adj. constr.

Solution
time (sec)

Objective
function

Number
of GMU

Average
harvest

C.V.* of
harvest % of adj.

diff. Path GMU Path GMU Path GMU value ($) Created Used † area (ha) area cost saved
40 ha maximum harvest area/maximum of two adjacent stands harvested concurrently

0 184 206 224 263 3.0 3.6 2,839,895 8 5 23.0 0.344 27.3
1 184 259 225 524 5.2 28.7 2,872,012 28 7 23.9 0.348 42.4
2 184 276 240 618 7.2 29.0 2,872,012 36 7 23.9 0.348 42.4
3 184 284 245 668 8.2 16.2 2,872,012 41 7 23.9 0.348 42.4
4 184 287 249 694 9.5 41.2 2,872,012 44 7 23.9 0.348 42.4

48.6 ha maximum harvest area/maximum of two adjacent stands harvested concurrently
0 184 235 220 396 5.0 10.8 2,876,037 18 7 23.7 0.452 44.3
1 184 322 300 982 13.0 111.4 2,915,466 50 8 25.1 0.438 62.8
2 184 360 378 1,377 13.8 203.7 2,915,466 68 8 25.1 0.438 62.8
3 184 374 397 1,591 19.2 139.0 2,915,466 77 8 25.1 0.438 62.8
4 184 382 416 1,787 16.9 243.6 2,915,466 85 8 25.1 0.438 62.8

48.6 ha maximum harvest area/maximum of three contiguous stands harvested concurrently
0 184 241 217 438 3.9 7.4 2,881,220 20 5 23.6 0.446 46.7
1 184 328 296 1,030 13.8 90.1 2,915,466 52 8 25.1 0.438 62.8
2 184 377 371 1,610 15.8 140.9 2,915,466 75 8 25.1 0.438 62.8
3 184 400 386 1,998 13.3 794.5 2,915,466 91 8 25.1 0.438 62.8
4 184 419 404 2,485 21.7 760.9 2,915,466 110 8 25.1 0.438 62.8

* Coefficient of variation.
† Used by the optimal solution.
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The Path formulation cannot recognize the direct cost
savings due to combining the administrative costs of concur-
rent contiguous timber sales, and, other than the value of the
objective function, the solution to the Path formulation was
the same with the fixed cost as without it (see Figure 6). This
Path model solution selected eight pairs of adjacent stands to
be harvested in the same period. The solution to the GMU
model that recognized the cost savings from combining
adjacent timber sales is shown in Figure 7. When these cost
savings were recognized, 11 pairs of adjacent stands were
scheduled to be harvested concurrently. After adjusting the
Path objective function value for the fixed cost savings that
would have been realized on the 8 pairs of adjacent stands
scheduled to be harvested together, the GMU objective
function value was only 0.04% better than the Path objective
function value. The present value of the expected cost sav-
ings was $1,140 over the 60 yr planning horizon. While the
improvement in the objective function was small in this case,
it is likely that more significant savings would be possible in
many applied situations.

Summary and Conclusions

We have demonstrated two ways to formulate ARM
models as MILPs. The first approach, the Path Algorithm,
generates a set of constraints that prevent concurrent harvest-
ing of groups of contiguous stands only when their combined
area exceeds the harvest area restriction. Implementing the
algorithm is straightforward as long as the Path constraints do
not involve more than four management units. Larger groups
could be accommodated, but the algorithm would become
increasingly complex. Path formulations typically require
more constraints than an equivalent URM formulation with

Type 1 adjacency constraints, and in our examples Path
formulations took five or more times longer to solve than the
corresponding URM formulations. On the other hand, the
Path approach was able to reduce the cost of imposing
adjacency constraints by between 30 and 75% over the URM
solutions in our example problems. Theoretically, of course,
the savings could be anything between 0 and 100%.

Generalized management units (GMUs), consisting of
groups of individual management units whose collective
areas do not exceed the maximum harvest area limit, are used

Table 4. Problem formulation and solution information for 80 stand problems.

Max age No. variables No. adj. constr.
Solution

time (sec)
Objective
function

Number
of GMU

Average
harvest

C.V.* of
harvest

% of adj.
cost

diff. Path GMU Path GMU Path GMU value ($) Created Used† area (ha) area saved
40 ha maximum harvest area/maximum of two adjacent stands harvested concurrently

0 295 334 382 461 8.4 14.9 4,699,035 14 5 22.6 0.346 11.5
1 295 412 383 784 18.0 46.0 4,730,829 45 10 23.9 0.365 30.4
2 295 458 436 1,046 52.3 343.2 4,733,804 66 9 23.7 0.367 32.2
3 295 466 447 1,124 67.5 254.7 4,733,804 71 9 23.7 0.367 32.2
4 295 469 453 1,151 43.1 236.9 4,733,804 74 9 23.7 0.367 32.2

40 ha maximum harvest area/maximum of three contiguous stands harvested concurrently
0 295 334 382 461 10.6 14.9 4,699,035 14 5 22.6 0.346 11.5
1 295 418 380 836 20.3 90.8 4,730,829 49 10 23.9 0.364 30.4
2 295 478 429 1,174 43.6 443.3 4,733,804 76 9 23.7 0.367 32.2
3 295 486 440 1,252 44.5 289.8 4,733,804 81 9 23.7 0.367 32.2
4 295 491 446 1,295 42.2 253.9 4,733,804 86 9 23.7 0.367 32.2

48.6 ha maximum harvest area/maximum of two adjacent stands harvested concurrently
0 295 361 370 573 48.7 100.8 4,778,588 23 8 23.1 0.452 58.7
1 295 490 447 1,323 106.3 1,063.1 4,804,717 72 16 26.9 0.433 74.2
2 295 586 631 2,317 140.1 10,956.3 4,804,717 113 16 26.9 0.433 74.2
3 295 601 681 2,707 75.9 9,029.5 4,804,717 123 16 26.9 0.433 74.2
4 295 609 710 2,904 99.6 3,971.9 4,804,717 131 16 26.9 0.433 74.2

48.6 ha maximum harvest area/maximum of three contiguous stands harvested concurrently
0 295 373 364 651 69.9 115.5 4,778,588 27 8 23.1 0.452 58.7
1 295 526 432 1,655 116.9 761.9 4,804,717 88 16 26.9 0.433 74.2
2 295 711 592 3,907 154.7 12,792.3 4,805,425 167 18 28.6 0.433 74.7
3 295 745 646 5,160 125.4 52,435.2 4,805,425 192 18 28.6 0.433 74.7
4 295 762 676 5,649 74.5 58,076.2 4,805,425 209 18 28.6 0.433 74.7

* Coefficient of variation.
† Used by the optimal solution.

Figure 7.   Harvest schedule map for the 50 stand example—GMU
solution with a fixed cost of $1,500 per timber sale and a
maximum harvest area of 48.6 ha, a maximum age difference of
two age classes for jointly managed stands, and a maximum of
two adjacent stands harvested concurrently.
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in the second proposed MILP ARM formulation. GMU
models require more variables and constraints than equiva-
lent models formulated with the Path Algorithm, and solution
times tend to be considerably longer. One advantage of the
GMU approach, however, is that it allows the model to
recognize certain cost savings that can be realized by jointly
managing adjacent units, such as sharing fixed sale adminis-
tration or harvesting costs. Such cost savings can be signifi-
cant in forestry. It is important to note that such cost savings
can also be achieved through the joint management of stands
which are not necessarily adjacent. This aspect of the ap-
proach will have utility to managers whether or not they are
concerned with maximum harvest area restrictions. As long
as two or more management units are within close enough
proximity so that cost savings can be achieved through their
joint management, it may be useful to model these groups
collectively as GMUs. Such groups could be larger than the
maximum harvest area, as long as the component stands of
the GMU are not adjacent. GMU models have the potential,
therefore, to more accurately account for management costs
in harvest scheduling, thus providing better on-the-ground
solutions than those provided by other models. Since “pretty
good” suboptimal solutions can often be obtained with sig-
nificantly less effort than optimal solutions (McDill and
Braze 2001), an important question is whether it is better to
have a suboptimal solution to a model which more closely
reflects real-world costs and constraints or whether it is better
to have an optimal solution to a model which approximates
the real world problem less well. The answer to this question
will, of course, vary from one situation to another.

The GMU approach is also useful simply because it
provides an alternative way to formulate ARMs. This formu-
lation may prove useful for setting up ARM formulations for
heuristic solution algorithms or for modeling spatial condi-
tions such as interior space or forest patch size distributions.
In addition, having two ways to formulate complex problems
provides a useful check on the procedures used to formulate
the models. In this case, the fact that both ARM formulations
of the example problems resulted in the same solutions
provides confidence that both formulations have been cor-
rectly specified.

Both of the ARM formulations presented here will be-
come increasingly complex and difficult to formulate and
solve if the original management units are significantly
smaller than the maximum harvest area. In our examples,
three was the largest number of contiguous management
units that could be harvested concurrently. In principle, the
methods presented here can be applied to problems with
stand sizes that are smaller relative to the maximum harvest
area—i.e., with groups of four or more contiguous stands that
can be harvested concurrently. However, problem formula-
tion and solution will become increasingly complex. In any
case, our examples suggest that even when there are many
groups of four or more stands that can be harvested concur-
rently, there may be diminishing gains from considering
these possibilities. In our examples, the gains from consider-
ing the possibility of harvesting groups of three contiguous
stands rather than only allowing pairs of adjacent stands to be

harvested concurrently were very small. Furthermore, we
have also shown how the size and complexity of the models
presented here can be reduced by placing some a priori limits
on which adjacent stands will be considered for joint manage-
ment. For example, our results suggest that the benefit of
considering the concurrent harvest of adjacent stands whose
ages differ by half of a rotation or more will generally be
negligible.

The methods presented here clearly have their limitations
for solving problems with many combinations of four or
more adjacent stands that can be harvested simultaneously
without violating the maximum harvest area restriction. For
those cases where combinations of four or more stands that
can and should be harvested concurrently are rare, the meth-
ods proposed here provide a practical way to comply with
harvest area restrictions. Even for the more difficult cases
where such combinations are common, however, these meth-
ods will be useful because they can provide exact solutions
(or at least upper or lower bounds in cases where problems
take a very long time to solve to optimality) against which the
solutions provided by alternative algorithms can be com-
pared.

A possible problem with ARMs is that they tend to reduce
the frequency of smaller harvest areas, moving the average
size of harvest areas in the direction of the maximum harvest
area. This could reduce the spatial diversity of the forest.
Somewhat unexpectedly, however, in our examples the coef-
ficients of variation of the harvest areas were larger for ARMs
than for URMs. Nevertheless, combining stands into larger
management areas may not always be desirable. One possible
solution to this problem, if it is a problem, might be to add
constraints requiring minimum numbers of harvests in differ-
ent ranges of sizes. It is more obvious how this can be
accomplished with a GMU formulation than with a Path
formulation.

A promising aspect of ARMs is that they are a step towards
models which are not bound by a priori management bound-
aries. The models presented here allow management units to
be recombined by the model into more efficient configura-
tions which may be difficult to recognize without models
such as these. Unfortunately, however, spatially explicit
forest management problems are difficult to solve even when
the management units are predefined in sizes and shapes that
correspond roughly to the areas that will be treated on the
ground. As forest management researchers move further in
the direction of building treatment areas up from smaller and
smaller management units, the resulting problems undoubt-
edly will be considerably more difficult to solve. As in any
modeling exercise, we must be careful to ensure that the gains
from such increased complexity outweigh the costs.

Endnotes
[1] There are many ways to define adjacency. Adjacency is defined in this

paper as two management units sharing a common boundary arc. The
methods described in this article would not be affected if an alternative
definition of adjacency were used.

[2] To simplify the discussion, we assume here that the forest consists of a
set of contiguous management units. The algorithm can easily be
generalized to relax this assumption.

[3] The algorithm for identifying paths can be streamlined so that some
redundant paths are not generated. For example, if the arcs in the
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adjacency network are ordered, once all paths originating with a given
arc have been identified, that arc does not need to be included in paths
originating from arcs lower on the list. Even though a unique path may
be created by starting with a lower arc and branching on the original arc,
that path will always be redundant. (Proof of this is available from the
authors.)

[4] Note that if constraint (3) holds, then the constraint X X XAt Bt Dt+ + ≤ 2

must also hold.
[5] At this point, we could have generated a forked path DB-DA, but we do

not need to. This is an example of how the efficiency of the algorithm
can be increased by not returning to an arc—DA in this case—that is
higher on the arc list—than DB in this case—and has already been fully
expanded within the current cluster. It is only necessary to consider
branches off of DB (such as DC) that are lower on the arc list.

[6] GMUs can be identified by calculating the combined areas of all pairs
of adjacent stands, identified from the adjacency list. GMUs are then
created for each adjacent pair whose combined area is less than the
maximum harvest area. Next, records are added to the adjacency list
describing the adjacency relationships of the new GMUs. Combined
areas are calculated for these new adjacency records. Again, GMUs are
created for any corresponding groups of stands whose combined areas
are less than the maximum harvest area, and the adjacency list is again
updated. This process is continued until none of the newly created
adjacency records identify additional groups of contiguous stands with
a combined area less than the maximum harvest area.

[7] ND stands for “nondominated” (Murray and Church 1996b, McDill and
Braze 2000).

[8] The yield and economic data used in this example are the same as those
described in McDill and Braze (2000), which loosely represent oak
stands in Pennsylvania.

[9] The “percent gap” is the percent difference between the current best
integer solution and the value of the relaxed LP objective function for
the best unexplored node in the branch and bound tree (see McDill and
Braze 2001). The true optimal objective function value must be within
these bounds. The default gap in CPLEX® is 0.01%.

[10] The three problems were (1) the 50 stand forest problem with a 48.6 ha
maximum harvest area, a maximum age difference of two age classes,
and a maximum of two adjacent stands harvested concurrently, (2) the
same problem with up to three contiguous stands harvested concur-
rently, and (3) the same problem as (1) for the 80 stand forest.

[11] Nelson et al. (1991) also discuss fixed costs associated with manage-
ment activities.
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