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We consider a spatial problem arising in forest harvesting. For regulatory reasons, blocks harvested should not exceed a
certain total area, typically 49 hectares. Traditionally, this problem, called the adjacency problem, has been approached
by forming a priori blocks from basic cells of 5 to 25 hectares and solving the resulting mixed-integer program. Superior
solutions can be obtained by including the construction of blocks in the decision process. The resulting problem is far
more complex combinatorially. We present an exact algorithmic approach that has yielded good results in computational
tests. This solution approach is based on determining a strong formulation of the linear programming problem through a
clique representation of a projected problem.
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1. Introduction
Optimization in forest planning has been widely and suc-
cessfully used for several decades. Linear programming
(LP) and integer programming (IP) models have been
developed to deal with management policies, indicating
which timber units to harvest each period to meet projected
demands and satisfy silvicultural, environmental, sustain-
ability, and other planning constraints. The spatial location
of activities has long been included explicitly in decision
models because it affects wildlife habitat, scenic beauty,
and other environmental concerns.
Regulating spatial disturbance is now standard practice

in public and private forest management (Jones et al. 1991,
Barrett et al. 1998, American Forest and Paper Associa-
tion 2001). A prominent approach is prohibiting the har-
vesting of contiguous areas larger than a specified value,
similar to what was originally proposed by Thompson et al.
(1973). Typically, this limit is 49 hectares (ha) but may vary
depending on the region being studied. Such regulations are
stipulated at the state and federal level in the United States
(see Thompson et al. 1973, Jones et al. 1991, McDill et al.
2002). In particular, Boston and Bettinger (2001) detail
that spatial restrictions are explicitly regulated in Oregon
(49 ha) and California (17 ha) as well as internationally in

Sweden (20 ha). Other states and countries limiting spa-
tial impacts are detailed in Barrett and Gilless (2000). On
a voluntary basis the Sustainable Forestry Initiative insists
that participating private forests in the United States be
managed so that “� � � average size of clear-cut harvest areas
shall not exceed 120 acres � � �” (American Forest and Paper
Association 2001, p. 4).
A particular approach to this planning problem is

referred to as the adjacency problem. If we assume that
management units are less than 49 hectares and greater
than 25 hectares, then if a unit is harvested in period t,
none of its neighboring units can be harvested in that
period or in a number of succeeding periods until regen-
eration occurs (called green up requirements). This condi-
tion can be formulated as an IP model with 0–1 variables
and constraints for imposing adjacency restrictions. Solv-
ing this problem, however, is not trivial due to its NP-hard
complexity. Proposed approaches for this problem include
heuristics such as Tabu search (Murray and Church 1995),
simulated annealing (Murray and Church 1995), Monte
Carlo simulation (O’Hare et al. 1989, Nelson and Brodie
1990), and exact techniques such as dynamic programming
(Hoganson and Borges 1998), column generation (Bara-
hona et al. 1992), and formulation strengthening (Murray
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and Church 1996, 1997). These approaches have been rel-
atively successful.
A new approach to this basic problem was proposed

when it was noted that harvest planning units are typically
composed of smaller management cells (Hokans 1983,
Lockwood and Moore 1993, Murray 1999). These smaller
cells constitute the basic units that can be harvested. In tra-
ditional adjacency models, referred to as the unit restriction
model (URM) in Murray (1999), the management units are
formed a priori by the forest planner. That is, using for-
est characteristics, often supported by geographical infor-
mation systems (GIS), the planner forms cutting units by
blocking basic cells (Barrett 1997). These basic cells typ-
ically range between 5 and 25 hectares, so a cutting unit
will have from 3 to 8 basic cells. Thus, using basic cells
one is left with a different harvesting problem, where area
restrictions cannot be imposed using adjacency constraints
as is done in the URM. This approach is referred to as the
area restriction model (ARM) in Murray (1999).
The ARM is an important and difficult forest schedul-

ing problem. Thus far, approaches proposed to solve
this problem have mostly been heuristic (Hokans 1983,
Lockwood and Moore 1993, Barrett et al. 1998, Clark
et al. 2000, Richards and Gunn 2000, Boston and Bettinger
2002). There also have been two lines of exact solution
approaches. The first of these was proposed by McDill
et al. (2002), and further pursued by Crowe et al. (2003) for
medium to large size, multiperiod problems. The second
line of exact solution approaches is introduced in Martins
et al. (1999, 2000), though in a different context. We further
pursue this approach.
This paper develops an exact algorithmic approach for

the area restriction problem. This paper makes two con-
tributions: (1) it introduces a tight (with regard to the
LP-relaxation), compact, and easy to formulate model for
effectively solving medium to large size problems; and
(2) it introduces a new methodology, which we call con-
straint projection, for generating valid inequalities. In §2,
area restrictions are described. This is followed in §3 by
several model formulations for imposing area restrictions.
In §4, model formulation enhancements are studied and
a new model formulation is proposed. In §5, application
results are presented and discussed, and in §6 conclusions
are given.

2. Area Restrictions
Consider a forest partitioned into basic cells for which area,
timber volume, and net benefit from harvesting are known.
The partitioned region may be represented by means of
a graph G�V � E�, where the set V of nodes corresponds
to the basic cells (or units), and �u� v� ∈ E if and only if
cells u and v are adjacent.
We consider two ways of defining adjacency. Two cells

are weakly adjacent if they share a finite set of points.
Alternatively, two cells are strongly adjacent if they share

Figure 1. Graph representation of a forest.
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a common border or an infinite number of points. Given
this definition, if two cells are strongly adjacent, then they
are also weakly adjacent. In the literature (see Daust and
Nelson 1993, among others) it is recognized that alternative
definitions of adjacency exist. However, the above distinc-
tion is unique and has implications for problem structure,
as will be discussed.
In Figure 1, we illustrate how a forest region is repre-

sented using a graph. The set of nodes corresponds to cells
and arcs link weakly adjacent cells. In this example, arcs
�2�9� and �3�10� are weakly adjacent pairs of cells. Note
that an arc would not join these nodes in a strong adjacency
graph.
Weak adjacency is commonly relied upon in forest man-

agement. However, the concept of strong adjacency can
lead to significantly different spatial patterns of solutions
in some cases. Further, adjacency type will influence our
developed solution approach.
Using basic cells, we must characterize all potential

groupings of cells that could be harvested. A feasible clus-
ter is a set of strongly contiguous cells whose total area
does not exceed the established maximum area restriction,
49 hectares in this case. Feasible clusters represent valid
cutting zones or blocks. Two feasible clusters are noncom-
patible if they share a common cell or are weakly adjacent.
Consider the forest partition shown in Figure 2a, where

basic cells range in size from 10 to 13 hectares. For this
example, feasible clusters may be formed only by up to
three or four cells if there is a 49 hectares maximum. As a
result, each shaded region corresponds to a feasible cluster,
and all are mutually compatible.

Figure 2. (a) Feasible solution. (b) An infeasible clus-
ter. (c) A noncompatible pair of clusters.
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In general, the problem consists of determining a har-
vest schedule with the greatest economic return such that
no more than 49 contiguous ha of forest are harvested in
any time period. In terms of our notation, this is equivalent
to harvesting for each time period only compatible sets of
feasible clusters. By describing the problem in this way,
we introduce an important distinction between strong and
weak adjacency in that the former definition is used to con-
struct feasible clusters and the latter to separate clusters.
Traditional ARM approaches do not make this distinction
and generally use weak adjacency for both purposes. This
distinction is important in that it may result in variations in
the spatial structure of solutions. In Figure 2b we present a
cluster which is weakly, but not strongly, connected; and in
Figure 2c we present a pair of clusters that are individually
feasible but noncompatible.
The choice of weak versus strong adjacency can impact

the associated IP in many ways. Strong adjacency results in
fewer feasible clusters and fewer noncompatibilities in con-
trast to weak adjacency. Even so, the approach developed
in this paper is not dependent on these definitions. In fact,
they may be adapted so as to address different concerns.
For example, two cells may be alternatively defined as
being weakly adjacent if they are within a certain distance.
In the same way, two cells may be defined as strongly
adjacent if the common border exceeds a certain length.
As will be discussed later, our proposed approach may
even be used without this distinction. As such, our devel-
oped approach may be used to solve the classic ARM.
The new modeling approach developed in this paper will
henceforth be referred to as the extended area restriction
model (EARM) and is based on the notion of being able
to distinguish between weak and strong adjacency, unlike
the ARM.

3. Modeling Approach
To solve the area-based harvesting scheduling problem, we
propose using a set-packing type IP formulation, similar to
that used by Martins et al. (2000). We begin by presenting
a simple formulation that defines one constraint for each
pair of noncompatible clusters. Afterward, we show several
ways to strengthen and extend this formulation.

3.1. Pairwise Adjacency Formulation

Consider a planning problem with T periods. The time
horizon is sufficiently short that harvested units will not
have enough time to mature for multiple harvests.
Let � = S1� S2� � � � � Sn� be the set of all feasible clusters

in G�V � E�. Further, let cv� t and av represent the net harvest
benefit in period t and area associated with each cell v
in V .
For each cluster S ∈ �, we define its benefit and area

as the sum of the benefits and areas of the cells that it is
composed of

cS� t =
∑
v∈S

cv� t� aS =
∑
v∈S

av�

If there are fixed costs for harvesting a cluster, in addition
to the costs associated with harvesting each cell, these can
be incorporated in the above definition by deducting the
costs from the net benefit.
We may now formulate our problem in a straightforward

way as an IP using the following variables:

xS� t =
{
1 if cluster S is harvested in time period t�

0 if not�

Extended Area Restriction Model-1 (EARM-1)

Maximize
∑
�S� t�

cS� txS� t�

subject to∑
�S� t��v∈S

xS� t � 1 for each cell v� (1)

xS� t ∈ 0�1� for each cluster S ∈ ��

for each time period t� (2)

xS� t + xS′� t � 1 for each time period t�

for each pair S, S ′ of noncompatible clusters� (3)

The objective maximizes the net benefit over time hori-
zon T . Constraints (1) state that each basic cell may be
harvested at most once during the time horizon. Con-
straints (2) indicate the integer definition of the variables.
Constraints (3) state that for any pair of noncompatible
clusters, only one may be harvested in the same period.
A small modification will allow this to be extended to
more than one period to account for green up requirements.
Green up is the time lapse needed for a harvested area
to grow to a minimal height, allowing neighboring cells
to be harvested. For instance, if g is the green up time
requirement, Constraints (3) may be replaced for each t by
a constraint of the form

∑
l∈t���t+g−1

�xS� l + xS′� l� � 1 for t = 1� � � � � T − g� (4)

This generalization may be applied to all the adjacency
restrictions presented in this paper.
This model, while intuitively simple, has drawbacks. The

number of Constraints (3) equals the number of pairwise
noncompatible clusters, which grows very fast with the
number of basic cells. In addition, this is a very weak formu-
lation because the continuous LP relaxation leads to mostly
fractional solutions (Nemhauser and Sigismondi 1992). As a
result, branch and bound is not particularly successful when
using this formulation for the EARM (or ARM).

3.2. Arc Adjacency Formulation

As discussed in the previous section, EARM-1 has inher-
ent drawbacks that make it very difficult to solve by use
of branch-and-bound algorithms. This suggests the need to
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find a more compact and tighter formulation. Martins et al.
(2000) present an alternative for a variation of the classic
ARM that can be easily adapted to solve the EARM.
Consider two noncompatible clusters Si and Sj in �.

Because they are noncompatible, they must either be
(weakly) adjacent or overlapping (share common cells).
Thus, there must exist some weak adjacency arc �u� v� in G

such that u ∈ Si and v ∈ Sj . Thus, noncompatibility may be
prohibited by defining one constraint for each weak adja-
cency arc in E (i.e., imposing that in any solution only one
feasible cluster may intersect each weakly adjacent arc).
Define ��u� v� as the set of all clusters S in � such

that u ∈ S, v ∈ S, or both u and v ∈ S. The EARM may
be formulated in an alternative way by focusing on arcs in
constraint set (3).

Extended Area Restriction Model-2 (EARM-2)

Maximize
∑
�S� t�

cS� txS� t�

subject to (1), (2), and∑
S∈��u� v�

xS� t � 1 for each time period t�

for each weak adjacency arc �u� v� in G� (3a)

Constraints (3a) prohibit noncompatible clusters from
being harvested in the same time period. Note that in
EARM-2 all feasible clusters appear in Constraints (3a).
Suppose we have three mutually adjacent cells, any two

of which could be harvested feasibly but which are of a
size so that all three cannot be harvested at the same time
(assume a one-time-period model for simplicity).
Then, the three units form six feasible clusters �1�� 2��

3�� 1�2�� 2�3�� 1�3��. Because there are three adja-
cency arcs, in the EARM-2 model we have

��1�2� = �1�� 2�� 1�2�� 2�3�� 1�3���

��1�3� = �1�� 3�� 1�2�� 2�3�� 1�3���

��2�3� = �2�� 3�� 1�2�� 2�3�� 1�3���

Note that in the first constraint, from ��1�2� we have that
X�1� and X�2� cannot be both 1, even though they are com-
patible. However, the cluster 1�2� with its variable X�1�2�

can be set to 1, which allows cells 1 and 2 to be harvested.
This model formulation has the advantage that the num-

ber of constraints is relatively small, particularly in compar-
ison to EARM-1. The reason for this is that EARM-2 relies
on the number of nodes and weak adjacency arcs in G. It
also has the added advantage that it dominates EARM-1 in
that all Constraints (3) are dominated by Constraints (3a).
However, this formulation, based on the work of Martins
et al. (2000), may be further strengthened.

3.3. A Strengthened Formulation

Define graph G��� �� in which each node in � corresponds
to a feasible cluster, and in which �S� T � ∈ � if and only
if S and T are noncompatible clusters in �. We henceforth
call this graph the compatibility graph.
The EARM may be interpreted as an instance of node

packing (or the independent set problem) in graph G��� ��

and hence suggests that the use of many well-known facet
defining constraints (Nemhauser and Sigismondi 1992)
might be helpful. One approach is to use maximal cliques
in graph G��� ��. Cliques are sets of nodes in which all
nodes are connected by arcs to each other. A clique is max-
imal if it is not contained in any other clique. This suggests
yet another problem formulation.

Extended Area Restriction Model-3 (EARM-3)

Maximize
∑
�S� t�

cS� txS� t�

subject to (1), (2) and∑
S∈K

xS� t � 1 for each time period t�

for each maximal clique K in G��� ��� (3b)

The maximal clique Constraints (3b) are known to be
very strong for node-packing problems (Fulkerson 1971,
Padberg 1973). Furthermore, it is easy to see that these con-
straints dominate Constraints (3a) in that each set ��u� v�

in (3a) corresponds to a set of mutually noncompatible
clusters that define a clique that may or may not be max-
imal. Therefore, this formulation dominates EARM-2 as
Constraints (3a) define cliques that are not necessarily max-
imal in G��� ��.
From node-packing research we know that this formula-

tion may in turn be strengthened by odd cycle constraints
(Padberg 1973), web-antiweb constraints (Barahona and
Mahjoub 1994), K4 reduction constraints (Giles and Trotter
1979, Barahona and Mahjoub 1989), and others typically
used for node packing.
Although we have substantially enhanced the formula-

tion of the EARM, there remain several problems with
attempting to solve EARM-3. First, due to the large number
of nodes and arcs in graph G��� ��, the number of cliques
(and other similar constraints) is extremely large, leading
to unmanageable problems. Also, cutting plane approaches
are difficult to implement in that solving the separation for
this problem would be very difficult considering its size.
We could reduce the size of the problem because it is not
necessary to add all constraints to ensure a strengthened
formulation. However, a problem would arise in determin-
ing which constraints to use. So, while EARM-3 represents
a very tight formulation of this problem in terms of cliques,
it is not realistic to think that we can actually structure it
in practice.
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4. Constraint Projection
So far the most manageable formulation presented for
the EARM is EARM-2. However, this formulation needs
further strengthening if it is to be successful in solv-
ing medium-sized problem instances. In this section, we
present a method for generating strong valid inequalities
that are stronger than those in EARM-2 and move toward
the tight formulation of EARM-3.

4.1. Cluster Packing

For the sake of simplicity, assume that only one time period
exists in our planning problem. This reduces EARM-1 to
the following cluster-packing problem.

Cluster Packing Problem (CPP)

Maximize
∑

S

cSxS�

subject to

xS + xS′ � 1 for each pair S, S ′ of noncompatible clusters�

xS ∈ 0�1� for each cluster S ∈ ��

The objective function and constraints of CPP are identi-
cal to those of EARM-1, except that we are not considering
multiple time periods. Using the CPP, we can derive pro-
jected constraints that will ultimately be applicable for the
EARM.

4.2. Projected Constraints

Constraint projection is a method for generating strong
inequalities that are valid for CPP. This methodology
for generating constraints can in turn be complemented
with additional constraints derived for classic node-packing
problems, such as clique or odd cycle inequalities, derived
from the node-packing problem in G��� ��.
Let CP�G� be the convex hull of all vectors x ∈ 0�1����

that satisfy

xS + xT � 1 for all �S� T � in ��

These 0–1 vectors correspond to all feasible solutions of
cluster packing over G�V � E� (in G��� ��). Let NP�G� be
the convex hull of all vectors y ∈ 0�1��V � that satisfy

yu + yv � 1 for all �u� v� in E�

These 0–1 vectors correspond to all feasible solutions of
node packing in G�V � E�.
For a polyhedron P , the inequality ax � � is valid if it is

satisfied by every element of P . To use LP techniques, we
need valid inequalities. The inequalities that define facets
are the “strongest” valid inequalities that one can use (see
Nemhauser and Wolsey 1988 for a more complete discus-
sion on this subject).
A valid inequality for NP�G� can be transformed into a

valid inequality for CP�G� as follows. For I ⊆ V , define
��I� = S ∈ � S ∩ I 	= 
�.

Constraint Projection Lemma. If∑
i∈I

aiyi � � (5)

is valid for NP�G�, then∑
S∈��I�

bSxS � � (6)

is valid for CP�G�, where

bS =maximum
yi

∑
i∈S∩I

aiyi� (7)

subject to

yi+yj �1 for each pair of adjacent cells i�j in S∩I� (8)

yi ∈0�1� for each i∈S∩I � (9)

Proof. Consider an instance of CPP and a valid inequal-
ity (5). For each feasible cluster S, define yS as any vector
that solves (7)–(9).
Let x be a 0–1 vector in CP�G�. Define w ∈ 0�1�V such

that

wi =
{

yS
i if i ∈ S ∩ I and xS = 1�

0 otherwise�

Note that w is well defined. In fact, if S1 and S2 are such
that xS1

= xS2
= 1, then they are compatible clusters, and as

such they are disjoint.
Note also that w ∈NP�G�. Because of (8), no two adja-

cent cells i� j in a cluster will be such that yi = yj = 1, and
because x is in CP�G�, we know that if S1 and S2 are such
that xS1 = xS2 = 1, then for i ∈ S1 and j ∈ S2, they cannot
be adjacent due to the compatibility of S1 and S2. Thus, for
x we have that∑
S∈��I�

bSxS =
∑
i∈I

aiwi � ��

with which we conclude that Constraint (6) is valid.

4.3. Some Important Projected Constraints

4.3.1. Projected Clique Constraints. Consider the
highlighted cells K = 1�2�3�4� in graph G�V � E� corre-
sponding to the forest partition shown in Figure 3. These
cells are all mutually adjacent to each other and thus form
a clique.
If we were solving the node-packing problem in graph

G�V � E�, we could add the valid clique constraint

y1 + y2 + y3 + y4 � 1�

This can be projected into a valid constraint for CPP. Con-
sider the set of all clusters that intersect cells 1�2�3�4�.
For the purpose of illustration, we will suppose that there
are only five such clusters (the set S� T � U � W � Z�), though
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Figure 3. A clique in a forest region.
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generally there may be hundreds of these clusters even for
a relatively small problem application. These clusters are
depicted in Figure 4.
These clusters are all mutually noncompatible with each

other. That is, it is impossible to choose two clusters in set
S� T � U � W � Z� that are not adjacent or overlapping. Thus,
they form a clique in G��� �� and define the following
valid projected constraint:

XS +XT +XU +XW +XZ � 1�

Note that by the constraint projection lemma, the coeffi-
cients of all variables in a projected clique constraint will
always be one. This follows from the fact that for any
cluster C intersecting clique K, the maximum size node
packing in C ∩K is of value one.
Although the clique 1�2�3�4� in G�V � E� may be

maximal, this is not necessarily the case for the pro-
jected clique. For instance, we have that the cluster
defined by nodes 5�6�7�8�9�10� does not intersect clique
1�2�3�4�, but is noncompatible with S� T � U � W � and
Z (as well as with any other cluster that intersects
1�2�3�4�). If we define cluster 5�6�7�8�9�10� as R, the
above constraint can be strengthened as

XR +XS +XT +XU +XW +XZ � 1�

In general, to obtain facets from a projected clique con-
straint associated with clique K in G�V � E�, it is a matter
of following a simple procedure:

Step 1. Define set exterior��� K� = S ∈ �\��K� S is
adjacent to all nodes in K�.

Figure 4. Graph representation of a clique and its inter-
secting clusters.
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Step 2. Choose S1 ∈ exterior��� K�; define n = 1; �1 =
��K�.

Step 3. Let exterior��� K� = exterior��� K�\Sn�.
Step 4. Define �n+1�K� = �n�K�∪ Sn�.
Step 5. Choose Sn+1 in exterior��� K� such that Sn+1 is

noncompatible with all clusters in �n+1�K�.
Step 6. If no such cluster exists, STOP. Else, n = n+ 1.

Goto 3.
This simple algorithm is easy and fast to implement and

always identifies a maximal clique. Given that clusters may
be selected in many different ways in Steps 2 and 4, this
algorithm defines a tree of possible iterations for which
each terminal branch defines a maximal clique dominat-
ing ��K�. We found that in the examples we have solved,
projected cliques from ��K� were only sometimes maxi-
mal. However, when not maximal, they generally became
so after only two or three iterations of the lifting algo-
rithm. In our case, lifting these projected cliques did not
prove much of an advantage in strengthening the formula-
tion. This, however, might not be the case for all graphs
G�V � E�.
This clique family of constraints is also derived by

Martins et al. (2000) in a similar, but more complex adja-
cency problem. In addition to adjacency, the authors impose
constraints for preserving blocks of mature (old growth)
stands.

4.4. Constraint Projection for the EARM

As we have argued, formulation EARM-2 is not strong
enough for solving medium-size instances of the EARM in
an acceptable time, and formulation EARM-3 is unrealis-
tic in that it has too many constraints. From our previous
discussion, a very tight formulation can be structured for
moderate-size problems as a compromise of the two.
To apply the constraint projection method (§4.2) to the

EARM, it is important to note that it is possible to interpret
EARM as series of cluster-packing problems—one for each
period. Thus, to use constraint projection one must decide
which constraints to project and which period of time to
project them in.
How one should formulate the problem depends on the

structure of the weak adjacency graph G�V � E�, because
that will give a clue to which constraints are worth pro-
jecting. We found in most of our test cases that formulat-
ing the EARM by projecting all the clique inequalities for
each time period proved best because the number of clique
inequalities was manageable. By doing this, we obtain the
following problem formulation.

Extended Area Restriction Model (EARM-4)

Maximize
∑
S� t

cS� txS� t�

subject to �1�, �2�, and∑
�S� t� S∈��K�

xS� t � 1 for each maximal clique K

in G�V � E�, for each t� (3c)
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Table 1. LP relaxation results for single period applications.

EARM-2::LP EARM-2::LP EARM-4::LP EARM-4::LP
Instance Obj. value Sol. time Obj. value Sol. time

Butter Creek 10�362�73 7�89 10�114�15 1�03
El Dorado 1�702�266�69 5�03 1�692�205�00 1�19

Recall that the objective maximizes the net benefit over
the time horizon T . Constraint (1) states that each basic cell
may be harvested at most once during the time horizon.
Constraint (2) imposes integrality. Constraint (3c) states
that from any maximal clique composed of noncompatible
clusters, only one cluster can be harvested in each given
period. These inequalities guarantee that no pair of com-
patible clusters will be simultaneously harvested because
for every pair of noncompatible clusters there exists some
weak arc in E that joins them, which in turn is dominated
by some clique K in G�V � E� intersecting both clusters.
Figure 1 will be used to show the differences between

the various models discussed thus far. Assume that all cells
are 10 hectares in size and that a 49 hectares maximum
is imposed. Using EARM-1, cells �3�9�5�7� make up one
of the many feasible clusters. We would need to define
all feasible clusters and then write one constraint for each
pair of noncompatible clusters. As an example, consider the
following for one time period:

X�3�9�5�7� +X�10�9�8�11� � 1�

Using EARM-2, we would consider all arcs �u� v� in G.
For example, for arc �2�9�, all clusters that contain cells 2,
9, or both would appear in Constraint (8):

X�3�9�5�7� +X�10�9�8�11� +X�2�3�9�10� +X�1�2�10� + · · ·� 1�

In contrast, only maximal cliques in G��� �� would be
considered in EARM-3. This case cannot be represented
using only Figure 1; we would also need to represent each
feasible cluster with a node in the compatibility graph.
These nodes are joined by arcs if the clusters are non-
compatible. For example, let cluster 3�9�5�7� be node a,
cluster 1�3�4�5� be node b, cluster 2�10�11� be node c,
and cluster 1�3�9� be node d. Because all these clusters
are noncompatible, the nodes are all connected and thus
form a clique. However, there are other clusters that can be
added, so this clique is not maximal.
The associated graphic representation for EARM-4 for

this case has already been detailed in Figure 4.

5. Forest Scheduling Application

5.1. Implementation

A maximum area restriction of 49 hectares was imposed
in all modeling applications. Two forest planning problems
are first examined. These instances correspond to the Butter

Creek Forest and a region in the El Dorado National For-
est, both in northern California. Butter Creek is a 351-unit
problem (each unit averaging 10 hectares in size) defined
for one period, and El Dorado is a 1�351-unit problem
(each unit averaging 15.5 hectares in size) with seven time
periods (note that we examined runs for the El Dorado
application with fewer periods as well). To complement
the analysis we also carried out a study using randomly
generated problem applications. The randomly generated
instances were constructed as square regions subdivided
into equally-sized cells of 9.7 hectares or 16.2 hectares.
The variation in sizes for the random-generated problem
instances enables resulting graph structure to be examined.
Each cell was randomly assigned a timber volume between
300 and 600 cubic meters per hectares. A 5% growth rate
was assumed between periods. Each cubic meter of timber
was priced at $10 US for the first period, and subsequently
a 7% interest rate per period was applied.
CPLEX version 7.1 was used to solve the reported plan-

ning applications. The test problems were solved on a
Pentium III 700 mhz processor PC with 1 GB of RAM.
Solution times are reported in CPU seconds.
For multiple time period problem instances, volume con-

servation constraints were introduced to assure minimum
yields and regular production. Let vS� t correspond to the
volume of timber obtained if cluster S is harvested in time
period t. The following constraints on producing an approx-
imate even flow of timber in each period impose that for
each period the volume of timber harvested is within 15%
of that harvested in the previous period:

0�85
∑
S∈�

vS� t−1xS� t−1 �
∑
S∈�

vS� txS� t

� 1�15
∑
S∈�

vS� t−1xS� t−1 ∀ t � 2� (10)

5.2. Results

5.2.1. EARM. In Tables 1–6, results are presented for
applications involving both random and real problems.
Tables 1 and 2 contrast the single time period EARM-2 and

Table 2. Single period application results.

EARM-2 EARM-2 EARM-4 EARM-4
Instance Obj. value Sol. time Obj. value Sol. time

Butter Creek 10,072.50 14�400�00 10,104.19 1�44
(0.98% gap)

El Dorado 1,692,055.00 230�59 1,692,100 4�57
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Table 3. Multiple period instances of the El Dorado problem.

Time EARM-4::LP EARM-4::LP EARM-4 EARM-4
Instance periods Obj. value Sol. time Obj. value Sol. time

El Dorado 3 3�154�887�40 332�77 3,082,505 14�400�00
(2.26% gap)

El Dorado 5 4�041�891�39 201�93 4,006,110 14�400�00
(0.08% gap)

El Dorado 7 4�920�589�16 394�32 4,837,950 28�800�00
(1.67% gap)

Table 4. LP relaxation results for the single period random applications with 9.7
hectares per cell.

EARM-2::LP EARM-2::LP EARM-4::LP EARM-4::LP
Instance Obj. value Sol. time Obj. value Sol. time

8× 8 grid 38�906�477�28 4�41 34�242�116�40 0�47
12× 12 grid 82�256�166�96 32�45 69�741�865�44 2�63
16× 16 grid 142�743�792�00 329�33 118�331�663�76 14�92
23× 23 grid 291�096�000�00 1�060�25 238�113�522�72 116�40

Table 5. Single period results for the random applications with 9.7 hectares per cell.

EARM-2 EARM-2 EARM-4 EARM-4
Instance Obj. value Sol. time Obj. value Sol. time

8× 8 grid 34,242,116.40 14�400�00 34,242,116.40 0�47
(1.19% gap)

12× 12 grid 66,830,259.36 14�400�00 69,094,914.24 35�88
(16.39% gap)

16× 16 grid 108,207,570.24 14�400�00 117,306,168.72 711�97
(24.03% gap)

23× 23 grid 202,427,829.36 14�400�00 236,486,352.00 14�400�00
(30.26% gap) (0.17% gap)

EARM-4 formulations of the Butter Creek and El Dorado
applications. In both cases, the EARM-4 formulation pro-
duces a tighter bound and a faster solution time in the LP
relaxation. The difference in the time it takes to obtain an
optimal integer solution is substantial. For Butter Creek,
EARM-2 needed four hours to obtain a 0.98% gap, while
the proposed EARM-4 obtained an optimal solution in
1.44 seconds and is illustrated in Figure 5. For El Dorado,
the time to reach an optimal solution is reduced from
230.59 to 4.57 seconds. Table 3 shows results for the
El Dorado forest application with three, five, and seven
periods. Once multiple periods are introduced, solving the
problems becomes far more difficult. For EARM-4, a stop-
ping rule of four hours solution time was used if the gap
was below 3%. Otherwise, solution time was extended to
eight hours. Given the poor performance of the EARM-2
formulation, we did not attempt to solve any of the multiple
period applications.
The results show that EARM-4 can be solved for a

relatively large forest, 1�351 spatial units (cells) and up
to seven periods, although this approached the capabili-
ties of the utilized computing equipment. To further con-
firm the advantage of the proposed approach, applications
were carried out using the described randomly generated
problems.

Table 4 shows LP relaxation results for single-period
instances of the 8 × 8, 12 × 12, 16 × 16, and 23 × 23
grids. The EARM-4 produces significantly tighter bounds
and shorter solution times. Table 5 contrasts the time taken
to obtain integer solutions. In four hours of computing time

Figure 5. Optimal EARM-4 solution for the Butter
Creek application.

Not harvested
Harvest

N
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Table 6a. Multiple period results for random applications with 9.7 hectares per cell.

Time EARM-4::LP EARM-4::LP EARM-4 EARM-4
Instance periods Sol. time Obj. value Sol. time Obj. value

8× 8 grid 3 11�08 66,140,370.04 14,400 66,130,291.90
1st 1%: 159.13 (0.02% gap)

8× 8 grid 5 14�61 76,025,038.08 14,400 75,577,172.42
1st 1%: 3,979.87 (0.59% gap)

8× 8 grid 7 760�46 88,340,830.55 28,800 84,004,225.36
(4.91% gap)

12× 12 grid 3 150�33 143,370,968.87 14,400 143,299,974.97
1st 1%: 2,268.10 (0.05% gap)

12× 12 grid 5 77�37 164,797,737.92 14,400 164,593,468.66
1st 1%: 10,606.71 (0.12% gap)

12× 12 grid 7 428�51 191,494,399.85 14,400 186,723,087.41
(2.49% gap)

16× 16 grid 3 997�46 2.51E+ 08 28,800 2.50E+ 08
1st 1%: 22,377.81 (0.43% gap)

16× 16 grid 5 166�52 2.89E+ 08 14,400 2.88E+ 08
1st 1%: 9,907.44 (0.22% gap)

16× 16 grid 7 18�007�58 335,640,000 28,800 ∗∗
23× 23 grid 3 2�989�6 5.18E+ 08 28,800 502,328,293.3

(3.09% gap)
23× 23 grid 5 601�26 595,776,000.00 14,400 594,942,346.32

1st 1%: 12,849.75 (0.14% gap)
23× 23 grid 7 ∗ ∗ ∗ ∗

Note. The time at which the first solution at 1% of the optimum is obtained is indicated by 1st 1% when
applicable.

∗ Problem too large, not enough RAM memory to formulate.
∗∗ Problem too large, no feasible solutions found.

large optimality gaps remain for the EARM-2 approach.
The proposed EARM-4 formulation readily solves the
8× 8, 12 × 12, and 16 × 16 problem instances. For the
23 × 23 instance, with 529 cells, a small gap of 0.17%
remains after four hours.

Table 6b. Multiple period results for random applications with 16.2 hectares per cell.

Time EARM-4::LP EARM-4::LP EARM-4 EARM-4
Instance periods Sol. time Obj. value Sol. time Obj. value

8× 8 grid 3 0�69 110,233,950.07 14,400 110,226,933.78
1st 1%: 114.61 (0.01% gap)

8× 8 grid 5 0�71 126,708,396.80 14,400 126,595,316.97
1st 1%: 1,190.29 (0.09% gap)

8× 8 grid 7 2�96 147,234,717.59 14,400 142,124,737.78
(3.47% gap)

12× 12 grid 3 7�12 238,951,614.78 14,400 238,890,814.41
1st 1%: 1,734.55 (0.03% gap)

12× 12 grid 5 3�14 274,662,896.54 14,400 274,417,236.16
1st 1%: 865.60 (0.09% gap)

12× 12 grid 7 2�95 319,157,333.08 14,400 315,069,200.21
(1.28% gap)

16× 16 grid 3 28�82 4.19E+ 08 14,400 412,335,756.24
(1.55% gap)

16× 16 grid 5 9�05 4.81E+ 08 14,400 480,212,290.6
1st 1%: 399.40 (0.25% gap)

16× 16 grid 7 6�32 5.59E+ 08 14,400 554,982,507.2
1st 1%: 2,424.71 (0.49% gap)

23× 23 grid 3 192�63 8.64E+ 08 28,800 806,503,666.03
(6.64% gap)

23× 23 grid 5 20�09 2.48E+ 07 14,400 24,670,778.05
1st 1%: 3,542.51 (0.61% gap)

23× 23 grid 7 857�65 2.88E+ 07 14,400 28,249,058.36
(2.07% gap)

The application results illustrate how much more con-
strained EARM-4 is than EARM-2 and how much faster
it may be solved by use of branch and bound. EARM-4
is a tighter formulation capable of solving larger and more
complex problem instances than EARM-2.
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Multiple time period extensions are reported in Tables 6a
and 6b. In addition to the solution time, the time at which
the first feasible solution within 1% of the optimum is
found is also provided. One observation that can be made
from these results is that the random problem instances
required greater computing effort than the actual forest
planning applications. The regularity of the grid undoubt-
edly contributes to the existence of more alternatives in the
feasible grouping of harvested cells. A second observation
is that there are two cases in which a feasible solution was
not able to be identified in Table 6a (16×16 grid with seven
time periods and 23 × 23 grid with seven time periods).
A final observation is that feasible solutions were found for
the larger celled problems reported in Table 6b. Thus, in
comparison with Table 6a the increased cell sizes reduce
the number of potential alternative solutions (feasible clus-
ters) and can now be solved, at least for feasible solutions
with reasonable optimality gaps.

6. Conclusions
In this paper, we have presented a new way to model har-
vest scheduling subject to maximum area constraints by
introducing the extended area restriction model (EARM).
This new way to describe the problem incorporates the
notions of strong and weak adjacency to provide solutions
with better spatial structure than the traditional area restric-
tion model (ARM). We have presented a way to formu-
late the EARM that is also applicable to the classic ARM.
We discuss several ways to strengthen this formulation and
show that there is an ideal formulation for this problem that
is unrealistic because its size is unmanageable.
By further studying the formulations presented, it is

seen that underlying the EARM is a very difficult com-
binatorial problem we call the cluster-packing problem
(CPP). We see that this problem is strongly related to
the classic node-packing problem (NPP) and show how
to take advantage of this relationship by proving one can
project strong valid inequalities from the NPP to the CPP.
By use of this projection theorem, we are able to use
these new projected valid inequalities in the EARM and
obtain a very strong formulation that is similar to the ideal
formulation.
Application results confirm that this formulation is very

tight in that the optimum linear relaxation solutions are
very close to the optimum integer solutions for the prob-
lems tested. This tightness enables branch and bound to
solve medium-sized EARM instances reasonably fast to
within 1% of the optimal solution. These findings suggest
that the EARM may be utilized for solving medium-sized,
multiperiod problem instances with volume constraints.
The basic problem consists of one in which we start with

a large number of cells and proceed to form them into con-
tiguous blocks in such a way that there is some separa-
tion between these blocks. Other problems in forestry that
might have this type of characterization so that this algorith-
mic approach (with modifications) might be useful include

(1) need to preserve blocks of mature trees of minimal size,
as in Martins et al. (1999, 2000); (2) cases where there is
a need to have corridors of mature trees between clearings
resulting from harvesting, where wildlife feeds and the role
of the corridors is to provide animals with protection to
move from one clearing to another (Sessions and Sessions
1991); and (3) cases where the perimeter between clearings
and blocks of mature trees play a role in supporting cer-
tain animal species (Martins et al. 1999). Looking at another
application area, radio transmission studies might consider
a problem of forming blocks of cells (where each cell might
be a city block) associated with service zones and separation
of blocks/zones is needed to avoid interference.
Projected clique constraints were implemented in this

paper to solve a forest scheduling problem. For this prob-
lem or others described in this section, additional valid
inequalities, such as odd cycles, properly implemented,
might be of algorithmic value. Further research is needed
to determine efficient algorithms to implemented additional
valid inequalities. As the number of periods in the problems
increases, our approach encountered difficulties. Another
line of future research lies in solving problems with signif-
icantly larger number of cells and more planning periods.
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