Optimization Techniques for Natural Resources

SEFS 540 / ESRM 490 B

Lecture 1 (3/27/2017)

About the Instructor

- <u>Teaching</u>: inspire students to be curious but critical learners who can think for themselves and nurture creative ideas
- <u>Research</u>: quantify resource tradeoffs and production possibilities to aid natural resource management decision
- <u>Training:</u> forest engineering, operations research and forest management science

The decision making process in natural resources management

Management Alternatives and Consensus Building

Models to Solve Natural Resource Problems

Descriptive models

- What's there? patterns
- What's happening? processes
- Spatial and temporal interactions
- Measurements, monitoring
- Statistical models

Models to Solve Natural Resource Problems (cont.)

Predictive models

- What happens if we do this vs. that?
- Simulation, stochastic model, scenario analyses, etc.
- Prescriptive models
 - What is the best course of action?
 - Optimization

How do descriptive, predictive and prescriptive models work together?

Image source: Mark McGregor, USDA Forest Service, Bugwood.org

The role of decision models

Models and Model Building Fundamentals

Models

- Abstract representations of the real world
- Lack insignificant details
- Can help better understand the key relations in the system/problem
- Useful for forecasting and decision making

Model types

- Scale models (e.g., model airplane)
- Pictorial models (photographs, maps)
- Flow charts: illustrate the interrelationships among components
- Mathematical models

2. *Objetive* :

Objective: Maximize financial return

from cutting the stands

1. Decision variables :

Let x_i (where i = a, b, c, d or e)

denote the decision whether stand i should be cut or not.

Let $x_i = 1$ if stand i is to be cut, and $x_i = 0$ otherwise; $x_i \in \{0, 1\}$.

Let c_i denote the financial return from cutting stand i. $Max \ Z = c_a x_a + c_b x_b + c_c x_c + c_d x_d + c_e x_e + c_f x_f =$ $= \sum_{i \in N} c_i x_i$, where N={a,b,c,d,e,f}

A mathematical program:

$$Max \ Z = \sum_{i \in N} c_i x_i \\ subject \ to: \\ x_a + x_e \le 1 \\ x_a + x_d \le 1 \\ x_a + x_c \le 1 \\ x_b + x_c + x_d \le 1 \\ x_b + x_c + x_e \le 1 \\ x_d + x_f \le 1 \\ x_i \in \{0, 1\} \end{pmatrix}$$
Constraints

Mathematical models

- The most abstract
- Concise
- Can be solved by efficient algorithms using electronic computers,
- Thus, very powerful.

Good Modeling Practices

- The quality of input data determines the quality of output data
- The nature of the management problem determines the choice of the model (not the other way around)

<u>Ask:</u>

 Is the model to be used to simulate, evaluate, optimize, or describe the system or phenomenon?

Good Modeling Practices (cont.)

- What is the scale, resolution and extent of the problem?
- What are the outputs (results) of the model?
- What are these results used for?
- Who will use them?

Optimization Models

- Deterministic vs. probabilistic optimization
- Convex vs. non-convex problems
- Constrained vs. unconstrained optimization
- Exact vs. ad-hoc (heuristic) optimization
- Static vs. sequential (dynamic) decisions
- Single vs. multi-objective optimization
- Single vs. multiple decision makers
- Single vs. multiple players (games)