Forest Regulation Concepts

Lecture 11 (5/4/2017)

Planning periods and the planning horizon

Area in each age class

The annual harvest from a regulated forest

$$H_{Reg}^{Annual} = A_R \times v_R = \frac{A}{R} \times v_R = A \times \frac{v_R}{R} = A \times MAI_R$$

- The rotation age that maximizes MAI will also maximize the annual harvest
- Therefore, the age at which the MAI is maximized is sometimes considered the best age for regulating a forest

Selecting the regulation rotation

- The present value of the forest is maximized if it is converted to a forest regulated on the rotation that maximizes LEV;
- If a forest is regulated on the rotation that maximizes MAI, too much inventory will result;
- The inventory cost must be accounted for

Selecting the regulation rotation – an example

Age	Volume (cd/ac)	MAI (cd/ac/yr)	LEV (\$/ac)
10	5		
20	16	0.8	
30	32	1.067	
40	55	1.375	
50	75	1.5	
60	90	1.5	
70	100	1.429	

Economic data:

- Stumpage price: \$25/cd
- Stand establishment cost: \$200/ac
- The real interest rate: 4%
- All prices and costs are assumed to increase at the rate of inflation

$$LEV_{30} = \frac{Y_{30} \cdot P - E(1+r)^{R}}{(1+r)^{R} - 1} = \frac{32 \cdot 25 - 200(1.04)^{30}}{(1.04)^{30} - 1} = \frac{\$67.45}{\$67.45}$$

The conversion period

- For a <u>regulated forest</u>: all stand-level management decisions must be selected by a prescription that maximizes the LEV
- During a conversion period: at least some prescription must be used that do not maximize the LEV for that stand

The Long Term Sustained Yield (LTSY)

- LTSY = The harvest from a regulated forest
- The LTSY indicates the amount of wood that can be harvested from a forest on a sustainable basis

Calculation the LTSY for a forest w/ one forest type and multiple site classes

- **<u>Step1</u>**: Determine the rotation age for each site class
- **<u>Step2</u>**: Calculate the MAI for each site class

• **Step3**:
$$LTSY = \sum_{s=1}^{S} [MAI_{R^*} \times A_S]$$

Example:

Site Class	Area (ac)	Optimal Rotation (R*)	Yield at R* (cd/ac)
Ι	4,200	35	41
II	5,600	45	46
III	3,500	50	48

$$LTSY = \frac{41}{35} \cdot 4,200 + \frac{46}{45} \cdot 5,600 + \frac{48}{50} \cdot 3,500 = \underline{14,004cds / yr}$$

Methods of Forest Regulation

- How to get from an existing forest with an unbalanced age-class distribution to a regulated forest?
- The area and volume control focus on cutting a target area (or volume) in each planning period

Area Control

- Cut and regenerate the same number of acres each year (or each period) as would be harvested if you had a regulated forest
- The regulated forest will be achieved
 within at least one rotation

Steps in Area Control

- 1. Calculate the desired rotation age for the regulated forest
 - The rotation that maximizes the LEV should be selected if the landowner's primary objective is profit maximization
- 2. Calculate the number of acres to cut in each period
 - Divide the area of the forest by the number of age-classes in the target regulated forest

Steps in Area Control cont.

- 3. Project the age-class distribution
 - Move the harvested acres to the youngest age class and move the unharvested acres up to the next age class
- 4. Calculate the harvested volume
 - Multiply the per-acre yield by the area harvested
- 5. Repeat Steps 3,4 until the forest is regulated

Example of Area Control

A 750-acre forest

Yield	table	and	LEV
-------	-------	-----	-----

Age	Volume (cd/ac)	LEV (\$/ac)
10	5	
20	16	-32.09
30	32	67.45
40	55	109.13
50	75	74.29
60	90	15.34
70	100	-42.16

Initial age-class distribution

Age Class	Acres
0-10	250
11-20	250
21-30	0
31-40	250

Target age-class distribution

Age Class	Acres
0-10	187.5
11-20	187.5
21-30	187.5
31-40	187.5

$$A_1 = A_2 = A_3 = A_4 = 750ac/4 = 187.5ac$$

Projecting the age-class distribution using area control

• What is the harvest target area? 187.5ac

Initial age-class distribution

Acres

250

250

0

250

Age

Class

0-10

11-20

21-30

31-40

Age-class distribution after 10 yrs

Age Class	Acres
0-10	187.5
11-20	250
21-30	250
31-40	0
41-50	62.5

Age-class distribution after 20 yrs

Age Class	Acres
0-10	187.5
11-20	187.5
21-30	250
31-40	125
41-50	0

Age-class distribution after 30 yrs

Age Class	Acres
0-10	187.5
11-20	187.5
21-30	187.5
31-40	187.5
41-50	0

Projecting the harvest volume

Age Class	Acres in each age-class at the beginning of each decade					
	0	10	20	30		
0-10	250	187.5	187.5	187.5		
11-20	250	250	187.5	187.5		
21-30	0	250	250	187.5		
31-40	250	0	125	187.5		
41-50	0	62.5	0	0		
Total Acres	750	750	750	750		
Average Annual Cut (cords)						
Average Annual Net Revenue (\$)						

Yield table

Age	Volume (cd/ac)
10	5
20	16
30	32
40	55
50	75
60	90
70	100

•Stumpage price: \$25/cd •Stand establishment cost: \$200/ac

Volume Control

- With Area Control, the harvest volume fluctuates during the conversion interval
- With Volume Control, the volume to be harvested is determined first
- The number of acres to be harvested fluctuates during the conversion interval
- Regulated forest is might not be achieved within one rotation length

Steps in Volume Control

- 1. Calculate the desired rotation age for the regulated forest;
- Calculate the volume to be harvested in each year using one of the volume control formulas;
- Starting with the oldest age class, calculate the number of acres that need to be cut from each age class to produce the target harvest volume;

Steps in Volume Control cont.

- Project the age-class distribution forward one period by moving harvested acres to the youngest age class in the next period and unharvested acres up to the next age class;
- Repeat steps 2 through 4 until the forest's projected age-class distribution is regulated.

The Hundeshagen Formula

$$H_{t} = \frac{H_{Reg}}{I_{Reg}} \times I_{t} = \frac{I_{t}}{I_{Reg}} \times H_{Reg}$$

where H_t = the volume harvested in the current period, H_{Reg} = the volume harvested from a regulated forest, I_{Reg} = the inventory volume in a regulated forest, and I_t = the inventory volume in the current forest.

Calculating the Current Inventory Volume (I_t)

Age	Volume (cd/ac)	Age	Volume (cd/ac)	Age Class	Acres	Inventory (vol/ac)	Inventory volume	
10	5	5	2.5	0-10	250	2.5	625	
		15	10.5	11-20	250	10.5	2,625	
20	16	25	21	21-30	0	24	0	
30	32	25	27	31-40	250	43	10,875	
40	55	35	43.5	TOTAL	750	N/A	14,125	
		45	65					
50 75		55	82 5					
60	90	- 55	02.5		$I_t = 14,125 \ cords$			
			65	95				
70 100		75	100					

Calculating the Target Inventory (I_{Reg}) and Harvest Volume (H_{Reg})

Age Class	Acres	Inventory (vol/ac)	Inventory volume	
0-10	187.5	2.5	468.75	
11-20	187.5	10.5	1,968.75	
21-30	187.5	24	4,500.00	
31-40	187.5	43	8,156.25	
TOTAL	750	N/A	<u>15,093.75</u>	

$$I_{Reg} = 15,093.75 \ cords$$

$$H_{Reg} = \underline{1,031.25 \ cords}$$

Calculating the Harvest Target for the First Planning Period

$$H_{t} = \frac{I_{t}}{I_{Reg}} \times H_{Reg} = \frac{14,125}{15.093.75} \times 1,031.25 = \frac{965.06 \ cd \ / \ yr}{15.093.75}$$

Harvest target for the first planning period: <u>9,650.6 cords</u>

Projecting the Age-class Distribution to Period 1

Age Class	Initial Acres	Acres after 10 years
0-10	250	
11-20	250	
21-30	0	
31-40	250	
41-50	0	

9,650.6/55=175.5 acres will need to be harvested from age class 31-40 to meet the target of 9,650.6 cords.

The Inventory Volume in the Beginning of the Second Period

Age Class	Acres	Inventory (vol/ac)	Inventory volume	
0-10	175.5	2.5	438.75	
11-20	250	10.5	2,625.0	
21-30	250	24	6,000.0	
31-40	0	43	0	
41-50	74.5	65	4,842.5	
TOTAL	750	N/A	<u>13,906.25</u>	

$$H_{t} = \frac{I_{t}}{I_{Reg}} \times H_{Reg} = \frac{13,906.25}{15.093.75} \times 1,031.25 = \frac{950.12 \ cd \ / \ yr}{15.093.75}$$

Projecting the Age-class Distribution to Period 2

Age Class	Initial Acres	Acres after 10 years	Acres after 20 years
0-10	250	175.5	
11-20	250	250	
21-30	0	250	
31-40	250	0	
41-50	0	74.5	

The 41-50 age class will provide 75*74.5= 5,587.5 cords. We still need to cut 3,913.7 cords from the 21-30 age class. This translates to 3,913.7/32=122.3 acres.

Projected age-class distribution, inventory, annual cut and net revenues under Volume Control

Age Class	Acres in each age-class at the beginning of each decade							
-	0	10	20	30	40			
0-10	250	175.5	196.8	204.8	181.3			
11-20	250	250	175.5	196.8	204.8			
21-30	0	250	250	175.5	196.8			
31-40	250	0	127.7	173.0	167.2			
41-50	0	74.5	0	0	0			
Total Acres	750	750	750	750	750			
Inventory	14,125	13,906	13,890	14,316	14,600	Yield table		
	,	, , , , , , , , , , , , , , , , , , ,	,	,	,	Age	Volume (cd/ac)	
Average Annual Cut						10	5	
(cords)						20	16	
Average						30	32	
Annual Net						40	55	
Revenue (\$)						50	75	
						60	90	

100

70

•Stumpage price: \$25/cd •Stand establishment cost: \$200/ac