Uneven-aged Management II.

Lecture 10 (5/4/2017)

Review: Sustainable Regeneration

Diameter disribution intercept, stem density, and basal area necessary for adequate regeneration vs Q-factor

Selecting the optimal cutting cycle and residual basal area

- Longer cutting cycles require lower residual BAs after the harvest (thus, the cutting cycle and BA decisions cannot be separated);
- Identical harvests at the end of each cutting cycles;

<u>Forest Value</u> = Present Value of all costs and revenues from the uneven-aged management regime

The Forest Value of Uneven-aged Management Regimes

$$For Val = Net \operatorname{Re} v_1 + \frac{Net \operatorname{Re} v_{cc}}{(1+r)^t - 1} + \frac{A}{r}$$

where : NetRev₁ = *the net* revenue of the initial harvest,

NetRev = *the* net harvest revenue at the end of each cutting cycle,

A = annual net revenue (negative for costs),

- t = the cutting cycle, and
- r = real interest rate.

Example 1: A 200-ac Uneven-aged Stand

Determine best cutting cycle and residual basal area. Consider three residual basal areas (50,60 and 70 ft²) and three cutting cycles: 5, 10 and 15 years. Stumpage Price is \$220/mbf and there is a fixed harvesting cost of \$2,000 for the entire stand. The property taxes are \$5/ac/yr. Use a 4% real alternate rate of return.

Residual Basal Area	Volume Harvested (mbf/ac) in Initial Harvest	Volume Harvested (mbf/ac) in Future Harvests		
		5-year Cycle	10-year Cycle	15-year Cycle
50	1.98	0.88	2.42	3.00
60	1.76	1.10	2.53	3.10
70	1.21	1.30	2.64	3.63

Solution: $NetRev_1 = $220 / mbf \cdot 1.98 mbf / ac - $10 / ac = $425.60 / ac$ $NetRev_{cc} = $220 / mbf \cdot 0.88 mbf / ac - $10 / ac = $183.60 / ac$

$$ForVal_{BA=50,cc=5} = \$425.60 + \frac{\$183.60}{(1.04)^5 - 1} - \frac{5}{0.04} = \frac{\$1,148.04}{ac}$$

Pasidual	Forest Value (per acre)			
Basal Area	5-year Cycle	10-year Cycle	15-year Cycle	
50	\$1,148.00	\$1,388.40	\$1,112.10	
60	\$1,323.00	\$1,390.40	\$1,091.20	
70	\$1,405.10	\$1,319.80	\$1,115.80	

What if the stand is 80 instead of 200 ac?

 $NetRev_{1} = $220 / mbf \cdot 1.98 mbf / ac - $25 / ac = $410.60 / ac$ $NetRev_{cc} = $220 / mbf \cdot 0.88 mbf / ac - $25 / ac = $168.60 / ac$

 $ForVal_{BA=50,cc=5} = \$410.60 + \frac{\$168.60}{(1.04)^5 - 1} - \frac{5}{0.04} = \frac{\$1,063.80 / ac}{1.063.80 / ac}$

Pasidual	Forest Value (per acre)			
Basal Area	5-year Cycle	10-year Cycle	15-year Cycle	
50	\$1,063.80	\$1,342.10	\$1,078.40	
60	\$1,238.80	\$1,344.10	\$1,057.50	
70	\$1,320.90	\$1,273.50	\$1,082.10	

Individual Tree Selection

- <u>General rule of thumb:</u> "Keep the trees with the most potential to increase in value";
- <u>The Financial Maturity Principle</u> (W. Duerr): The rate of value increase in a tree must exceed the alternative rate of return;
- <u>d_{max}</u>: the diameter at which the increase in value becomes less than the opportunity cost of not cutting the tree.

The financial maturity of a single tree

Applying the financial maturity principle to an individual tree:

- 1. Determine the ARR;
- 2. Calculate the current stumpage value of the tree;
- 3. Estimate the stumpage value of the tree at the next point in time when the tree could be cut;
- 4. Compare the projected rate of value increase with the ARR. If that rate is less than the ARR then cut the tree now, otherwise keep it.

Example 1: An individual tree decision

Consider a tree with a current stumpage value of \$221.7. The projected stumpage value of this tree after 8 years is \$323.1. If ARR=4%, is the tree financially mature?

<u>Answer:</u> We know that: $SV_0 = 221.7 , $SV_8 = 323.1 . Calculate the annual rate of value increase:

$$r_{SV} = \sqrt[8]{\frac{SV_8}{SV_0}} - 1 = \sqrt[8]{\frac{323.1}{221.7}} - 1 = 0.0482 = \underline{4.82\% > 4\%}$$

Answer: Keep the tree.

The (growing) stock holding cost

 <u>Stock holding cost</u> = the opportunity cost of not reinvesting the value of the tree (analogue to the inventory cost in even-aged stands):

$$SHC = SV_0(1+r)^n - SV_0 = SV_0[(1+r)^n - 1]$$

Tree Value Growth = $SV_n - SV_0$

 <u>The Financial Maturity Rule reinstated</u>: If the Tree Value Growth > the Stock Holding Cost, then keep the tree, otherwise cut it.

Example: An individual tree decision

Consider a tree with a current stumpage value of \$221.7. The projected stumpage value of this tree after 8 years is \$323.1. If ARR=4%, is the tree financially mature?

$SHC = $221.7[(1.04)^8 - 1] = \underline{$81.71}$ Tree Value Growth = \$323.1 - \$221.7 = \$101.4

Since the Tree Value Growth is greater than the Stock Holding Cost The answer is to keep the tree.

The land holding cost

- <u>Land holding cost</u> = the opportunity cost of allowing a tree to continue to use the growing space that it occupies;
- A new tree could be started earlier if the mature tree is cut;
- Calculate the LEV for the space occupied by the tree:

Land Holding Cost = $LEV(1 + r)^n - LEV = LEV[(1 + r)^n - 1]$

Land Holding Cost = $LEV[(1+r)^n - 1] = \frac{(r \cdot LEV)[(1+r)^n - 1]}{r}$

 <u>The Financial Maturity Rule Redefined</u>: If the Tree Value Growth > the Stock + Land Holding Cost, then keep the tree, otherwise cut it.

Example: An individual tree decision

Consider a tree with a current stumpage value of \$221.7. The projected stumpage value of this tree after 8 years is \$323.1. If ARR=4%, is the tree financially mature? Once the current tree is cut, a new crop tree will start to grow and will reach an expected value of \$451.3 at age 30, \$785.9 at age 40 and \$1,128.5 at age 50. There are no management costs. Should the tree be kept?

$$LEV_{30} = \frac{\$451.3}{(1.04)^{30} - 1} = \$201.17$$
$$LEV_{40} = \frac{\$785.9}{(1.04)^{40} - 1} = \frac{\$206.76}{(1.04)^{40} - 1}$$
$$LEV_{50} = \frac{\$1,128.5}{(1.04)^{50} - 1} = \$184.80$$

Example (cont.)

Land Holding Cost = $LEV[(1 + r)^n - 1] =$ = \$206.76{[(1.04)⁸ - 1] = <u>\$76.21</u>

Since we know that the Tree Value Growth is \$101.4 and the Stock Holding Cost is \$81.71, the net gain from keeping the tree is:

Net Holding Gain = \$101.4 - \$81.71 - \$76.21 = -\$56.52

Since the Net Holding Gain is negative, the optimal decision is to **<u>cut the tree now</u>**.