Introduction to Discounting

Lecture 2 (03/30/2017)

Outline

- What is financial analysis?
- Why is it important in forestry?
- Basic discounting concepts
- Present and future values
-The interest rate
- The single value formula
- Examples

Financial Analysis

- Evaluates forest management alternatives based on profitability;
- Evaluates the opportunity costs of alternatives;
- Cash flows of costs and revenues;
- The timing of payments is important. Why?

Why is financial analysis important in forestry?

- Forests are valuable financial assets: if foresters do not understand financial analysis, forests will be managed by those who do;
- Financial analyses allow foresters to make financially sound forest management decisions;
- Remember, however: the financial criterion is only one of the many decision factors in forestry!

What is discounting?

- A process that accounts for time preferences
- Converts future values to present values

Definition of Discounting

- The process of converting values expressed in dollars received at one point in time to an equivalent value expressed in dollars received at an earlier point in time
- Compounding is the reverse process)

FUTURE

The interest rate

- Time preference: = human nature + potential investments
- Money can make money over time
- Corollary: using money costs money
- The interest rate determines the relationship between present and future values

Interest rate as a trade-off

(the economy of Robinson Crusoe, Buongiorno \& Gilles 2003)

Source: Buongiorno and Gilles 2003, p. 374

The interest rate

- Also: the interest rate is the percentage of the amount invested or borrowed that is paid in interest after one unit of time

$$
\begin{aligned}
& V_{1}=V_{0}+i V_{0}=\text { principal }+ \text { interest } \\
& V_{1}=V_{0}(1+i)
\end{aligned}
$$

The future value at a compound interest:

$$
\begin{aligned}
& V_{2}=\left(V_{0}(1+i)\right) i+V_{0}(1+i)=V_{0}(1+i)(1+i)=V_{0}(1+i)^{2} \\
& V_{3}=\left(V_{0}(1+i)^{2}\right) i+V_{0}(1+i)^{2}=V_{0}(1+i)^{2}(1+i)=V_{0}(1+i)^{3}
\end{aligned}
$$

The Single Value Formula

Future Value: $V_{n}=V_{0}(1+i)^{n}$

Example:

- If you put $\$ 100$ into a bank account today at a 6.5% interest, how much will you have after 12 years?
- Solution:

$$
V_{n}=V_{0}(1+i)^{n} \rightarrow V_{12}=\$ 100 \cdot(1+0.065)^{12}=\$ 212.91
$$

$$
\text { Present Value: } V_{0}=V_{n}(1+i)^{-n}=\frac{V_{n}}{(1+i)^{n}}
$$

Example: How much money do you need to invest today at an interest rate of 5\% to get $\$ 5,000$ in future dollars 10 years from now?

Solution:

$$
V_{0}=\$ 5,000 *(1+0.05)^{-10}=\underline{\underline{\$ 3,069.57}}
$$

Solving for the interest rate:

Example: If a farmer converts his land to a pine plantation next year, costing him $\$ 5,000$, and expects to make $\$ 23,000$ from harvesting it 26 years later, what would his rate of return be on this forestry investment?

Solution: $i=(27-1) \sqrt{\frac{\$ 23,000}{\$ 5,000}}-1=\underline{\underline{6.045 \%}}$

Solving financial analysis problems

1. What do I know?
2. What do I need to know?
3. How do I get to what I need to know from what I know? (select or derive the appropriate formula or formulas)
4. Plug the known values into the formula and calculate the solution
5. Interpret the solution

Notes

- Forest is a capital, planting trees is an investment for the future
- Forestry is a capital-intensive enterprise
- The reason for investments (a sacrifice of current consumption) is their productivity

Discounting when multiple payments/costs are involved

Overview

- The Net Present Value
- Cash flows of costs and revenues
- Formulas:
- Infinite annual payments
- Infinite periodic payment
- Finite annual payments
- Finite periodic payments

The Net Present Value (NPV)

- The NPV is the present value of revenues minus the present value of costs:

$$
\begin{aligned}
N P V= & \frac{R_{1}}{(1+i)^{1}}+\frac{R_{2}}{(1+i)^{2}}+\ldots+\frac{R_{n}}{(1+i)^{n}} \\
& -\frac{C_{1}}{(1+i)^{1}}-\frac{C_{2}}{(1+i)^{2}}-\ldots-\frac{R_{n}}{(1+i)^{n}}
\end{aligned}
$$

Cash flows

Infinite annual payments

Derivation of the infinite annual series formula

$V_{0}=\frac{R}{1+i}+\frac{R}{(1+i)^{2}}+\frac{R}{(1+i)^{3}}+\ldots$.

1. Leave $\$ 100$ in a bank account forever at an interest rate of 5%. How much can you withdraw each year?
2. Answer: $\$ 100^{*} 0.05=\$ 5 / \mathrm{yr}$
3. In other words: $V_{0} i=R \quad \rightarrow V_{0}=R / i$

Infinite annual series

- Present value: $V_{0}=\frac{R}{i}$
- The payment: $R=i V_{0}$
- The interest: $i=\frac{R}{V_{0}}$

NOW

Infinite series of periodic payments

An aspendstand

Let's use the infinite annual payment formula, but substitute the annual interest rate with a 40 year compound interest rate:

$$
V_{0}=\frac{R}{i_{40}}=\frac{R}{\frac{R(1+i)^{40}-R}{R}}=\frac{R}{\frac{(1+i)^{40}-1}{}}
$$

Infinite periodic series

- Present value:

$$
V_{0}=\frac{R}{(1+i)^{t}-1}
$$

- The payment:

$$
R=V_{0}\left[(1+i)^{t}-1\right]
$$

- The interest:

$$
i=\sqrt[t]{R / V_{0}+1}-1
$$

Infinite series of periodic payments (the aspen example)

- So, how much is the present value of the revenues generated by the aspen stand at a 6\% interest rate?
- Solution:

$$
V_{0}=\frac{R}{(1+i)^{t}-1}=\frac{\$ 180}{(1+0.06)^{40}-1}=\underline{\underline{\$ 19.38}}
$$

Finite series of annual payments

- Examples:
- Calculating regular, annual payments on a loan for a fix period of time;
- Calculating annual rent/tax payments or management costs for a fix period of time;
- Or, calculating monthly payments.
- Calculating monthly interest rates:

$$
i_{m}=[\sqrt[12]{i+1}]-1=(i+1)^{1 / 12}-1 \approx \underline{i / 12}
$$

Finite series of annual payments

- Derivation of the formula:

$$
V_{0}=\frac{R}{i}-\frac{R}{i(1+i)^{n}}=\frac{R\left[(1+i)^{n}-1\right]}{i(1+i)^{n}}
$$

Finite series of annual payments

Present Value: $V_{0}=\frac{R\left[(1+i)^{n}-1\right]}{i(1+i)^{n}}$
Future Value (in year n): $V_{n}=\frac{R\left[(1+i)^{n}-1\right]}{i}$
Payment to achieve a given
Present and Future Value:

$$
R=\frac{V_{0} i(1+i)^{n}}{(1+i)^{n}-1}=\frac{V_{n} i}{(1+i)^{n}-1}
$$

Example

- You want to buy a house in Seattle for $\$ 450,000$. You don't have any money to put down, so you get a loan with a 3.5% interest. How much would you have to pay each month to pay the loan off within 15 years?

Solution procedure

1. What do we know?
$>V_{0}=\$ 450,000$
$>\mathrm{i}=0.035$
> $\mathrm{n}=15 \mathrm{yrs}$
2. What do we want to know?

$$
>R_{m}=\text { ? }
$$

3. What formula(s) to use?

$$
R=\frac{V_{0} i(1+i)^{n}}{(1+i)^{n}-1} \quad \rightarrow R_{m}=\frac{V_{0} i_{m}\left(1+i_{m}\right)^{n}}{\left(1+i_{m}\right)^{n}-1}
$$

Solution procedure cont.

3. Convert the annual interest rate of 3.5% to a monthly interest rate

$$
\begin{aligned}
& i_{m}=[\sqrt[12]{i+1}]-1=[\sqrt[12]{0.035+1}]-1= \\
& =0.002871=\underline{0.2871 \%}
\end{aligned}
$$

4. Plug the monthly interest rate into the payment formula:

$$
\begin{aligned}
& R_{m}=\frac{V_{0} i_{m}\left(1+i_{m}\right)^{n}}{\left(1+i_{m}\right)^{n}-1}=\frac{\$ 450,000 \cdot 0.002871 \cdot(1+0.002871)^{180}}{(1+0.002871)^{180}-1}= \\
& =\frac{\$ 2,164.391}{0.675349}=\underline{\underline{\$ 3,204.85}}
\end{aligned}
$$

Finite series of periodic payments

- There is a fixed amount (R) that you receive or pay every t years for n years (where n is an integer multiple of t);
- Example: An intensively managed black locust stand (Robinia pseudoacacia) is coppiced three times at 20-year intervals. After the third coppice (at age 60), the stand has to be replanted. At ages 20, 40 and 60 yrs the stand produces $\$ 1,000$ per acre. Using a 5\% discount rate, what would the present value of these harvests be?

Solution procedure

- What do we know?

1. $R_{20}=\$ 1,000$
2. $n=60 \mathrm{yrs}, \mathrm{t}=20 \mathrm{yrs}$
3. $\mathrm{i}=5 \%=0.05$

- What do we need to know?
- Present Value $\left(\mathrm{V}_{0}\right)$
- What formula to use?
- Use the finite annual payment formula with a 20-year compound interest rate.

Solution procedure cont.

- First let's calculate the 20 year compound interest rate:

$$
i_{20}=(1+0.05)^{20}-1=\underline{165.3298 \%}
$$

- Plug in the $20-y r$ interest rate into the finite annual series formula:

$$
\begin{aligned}
& V_{0}=\frac{R\left[(1+i)^{n}-1\right]}{i(1+i)^{n}}=\frac{\$ 1,000\left[(1+1.6533)^{3}-1\right]}{1.6533(1+1.6533)^{3}}= \\
& =\frac{\$ 17,679.23436}{30.88238}=\underline{\underline{\$ 572.47}}
\end{aligned}
$$

Finite periodic payments formula

- In general:

$$
V_{0}=\frac{R\left[(1+i)^{n}-1\right]}{\left[(1+i)^{t}-1\right](1+i)^{n}}
$$

- The payment to achieve a given present value:

$$
R=\frac{V_{0}\left[(1+i)^{t}-1\right](1+i)^{n}}{\left[(1+i)^{n}-1\right]}
$$

