Integer Programming and Spatial Landscape Planning (an example from reserve design)

Lecture 15 (6/1/2017)

Spatial Optimization to Aid Reserve Design

 Constructing reserve networks with spatial structures that are conducive to the health and integrity of the ecosystem that we wish to preserve

Spatial Attributes

- Size
- Connectivity
- Perimeter-area ratio
- Proximity
- Contiguity

Protecting Grassland Birds in Illinois

The **Henslow's Sparrow** Photo by Merilee Janusz

Upland Sandpiper Photo by Dave Spleha

Eastern Meadowlark Photo by Gene Oleynik

Protecting Grassland Birds in Illinois

Which parcels should be selected for purchase to maximize the total area protected without exceeding the budget?

Budget = B;
Purchase price of parcel *i* is c_i;
Area of parcel *i* is a_i

 \geq Budget = *B*; > Purchase price of parcel *i* is c_i ; \succ Area of parcel *i* is a_i

Mathematical model formulation:

 \succ Define the decision variables:

- x_i is one if parcel *i* is to be purchased, and 0 otherwise
- Define objective function (what do we want?):
 - Max $\sum a_i x_i$

 \succ Define constraints:

- $\sum_{i} c_{i} x_{i} \leq B$ $x_{i} \in \{0, 1\}$

0-1 mathematical program

Species Representation

Suppose you want to represent each species at least once in your reserve network:

 Preserve species 'a' in at least one location:

 $x_1 + x_7 + x_9 \ge 1$

 Preserve species 'b' in at least one location:

 $x_1 + x_5 + x_7 + x_{11} \ge 1$

 Preserve species 'c', 'd', 'e' in at least one location:

$$\begin{aligned} x_1 + x_2 + x_4 + x_8 + x_9 &\geq 1 \\ x_3 + x_6 + x_{10} &\geq 1 \\ x_4 + x_5 + x_{11} + x_{12} &\geq 1 \end{aligned}$$

Species Representation cont.

Species Representation cont.

• In a general form:

$$Max \sum_{i \in I} a_i x_i$$
s.t.
$$\sum_{i \in I} c_i x_i \leq B$$

$$\sum_{i \in S_j} x_i \geq 1 \quad \forall j \in J$$

$$x_i \in \{0, 1\}$$

where: *i* indexes the sites, *j* the species. *I* is the complete set of sites available for conservation purchase, *J* is the set of species to preserve and S_j is the set of sites that contain a population of species *j*.

Maximal Species Representation

- Let's introduce a binary indicator variable y_j that turns on (takes the value of one) if species *j* is protected in at least one viable population.
- We need a trigger mechanism that drives the value of y_j .
- Let's add a constraint:

$$\sum_{i \in S_j} x_i \ge y_j \qquad \forall j \in J$$

• Our objective function will become:

$$Max \sum_{j \in J} y_j$$

Maximal Species Representation cont.

• Our mathematical program becomes:

$$Max \sum_{j \in J} y_j$$

s.t.:
$$\sum_{i \in I} c_i x_i \le B$$

$$\sum_{i \in S_j} x_i \ge y_j \quad \forall j \in J$$

$$x_i, y_j \in \{0, 1\}$$

Spatially Explicit Reserve Selection Subject to Minimum Contiguous Habitat Size Requirements

Threatened grassland birds in the analysis area require at least 100 ha of habitat in contiguous patches

Minimum Contiguous Habitat Size Requirements

- <u>Step 1:</u> Enumerate all feasible contiguous clusters of parcels. Let *C* denote this potentially enormous set.
- <u>Step 2</u>: Enforce the logical condition that a parcel can only be protected if it is part of at least one feasible cluster that is protected. To enforce this condition, introduce indicator variable y_i that turns on

if cluster *j* is protected.

$$\sum_{j\in P_i} y_j \ge x_i \qquad \forall i \in I$$

where P_i is the set of feasible clusters that contain parcel *i*.

Minimum Contiguous Habitat Size Requirements cont.

 <u>Step 3</u>: We also need to ensure that a cluster is declared to be protected only if each parcel that comprise the cluster is protected:

$$\sum_{i \in C_j} x_i \ge |C_j| y_j \qquad \forall C_j \in C$$

Here y_i may turn on if all x_i s in C_i are on. Is that enough?

We also need to make sure that: y_j must turn on if all x_i s in C_i are on. Why and how can we do that?

$$\sum_{i \in C_j} x_i - y_j \le |C_j| - 1 \qquad \forall C_j \in C$$

Minimum Contiguous Habitat Size Requirements cont.

Programming Disjoint Habitat Patches

Option 1:

 $x_{n} = x_{m}, x_{n} = x_{o}, x_{n} = x_{p}, x_{n} = x_{q}, x_{n} = x_{r},$ $x_{m} = x_{o}, x_{m} = x_{p}, x_{m} = x_{q}, x_{m} = x_{r},$ $x_{o} = x_{p}, x_{o} = x_{q}, x_{o} = x_{r},$ $x_{p} = x_{q}, x_{p} = x_{r}, and$ $x_{q} = x_{r}$ Option 2: $x_n + x_m + x_o + x_p + x_q + x_r = 6z_1$

(the credit goes to Liam Stacey, CFR grad student for conceiving this construct)

A Stronger Formulation for the Minimum Contiguous Habitat Size Problem

Efficient Site Selections Near the Dick Young Forest Preserve, IL at Different Contiguity Thresholds

Contiguity Threshold: 250-300-350 ha Acquisition Cost: \$49.91M Acquisition Area: 460.6 ha

Contiguity Threshold: 200 ha Acquisition Cost: \$50.00M Acquisition Area: 460.84 ha

Contiguity Threshold: 150 ha Acquisition Cost: \$49.99M Acquisition Area: 468.52 ha

Contiguity Threshold: 120 ha Acquisition Cost: \$49.95M Acquisition Area: 469.88 ha

Contiguity Threshold: 100 ha Acquisition Cost: \$49.97M Acquisition Area: 471.13 ha

Shape – Edge-to-Interior Area Ratio –

- •K_{p+q} = combined perimeter of parcels p and q;
 •K_{total} = the total combined perimeter of all protected parcels;
 •CB_{pq} = length of common boundary between stands P and Q;
 •E = the set of adjacent pairs of parcels
- • $x_p = 1$ if parcel p is to be selected for conservation, = 0 otherwise.

• $\omega_{pq} = 1$ if both stand P and Q are part of mature patch.