Integer Programming and Spatial Landscape Planning (an example from reserve design)

Lecture 15 (6/1/2017)

Spatial Optimization to Aid Reserve Design

- Constructing reserve networks with spatial structures that are conducive to the health and integrity of the ecosystem that we wish to preserve

Spatial Attributes

- Size
- Connectivity
- Perimeter-area ratio
- Proximity
- Contiguity

Protecting Grassland Birds in Illinois

The Henslow's Sparrow Photo by Merilee Janusz

Upland Sandpiper
Photo by Dave Spleha

Eastern Meadowlark
Photo by Gene Oleynik

Protecting Grassland Birds in Illinois

$>$ Which parcels should be selected for purchase to maximize the total area protected without exceeding the budget?
$>$ Budget $=B$;
$>$ Purchase price of parcel i is c_{i}; $>$ Area of parcel i is a_{i}

$>$ Budget $=B$;
$>$ Purchase price of parcel i is c_{i}; $>$ Area of parcel i is a_{i}

Mathematical model formulation:

>Define the decision variables:

- x_{i} is one if parcel i is to be purchased, and 0 otherwise
$>$ Define objective function (what do we want?):
- $\operatorname{Max} \sum_{i} a_{i} x_{i}$

$>$ Define constraints:
- $\sum_{i} c_{i} x_{i} \leq B$
- $x_{i} \in\{0,1\} \quad$

Species Representation

$>$ Suppose you want to represent each species at least once in your reserve network:

- Preserve species 'a' in at least one location:

$$
x_{1}+x_{7}+x_{9} \geq 1
$$

- Preserve species 'b' in at least one location:

$$
x_{1}+x_{5}+x_{7}+x_{11} \geq 1
$$

- Preserve species 'c', 'd’, 'e’ in at least one location:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{4}+x_{8}+x_{9} \geq 1 \\
& x_{3}+x_{6}+x_{10} \geq 1 \\
& x_{4}+x_{5}+x_{11}+x_{12} \geq 1
\end{aligned}
$$

Species Representation cont.

- ... and of course we still
/ have a budget and want to maximize the total protected area:
s.t.

$$
\begin{aligned}
& \sum_{i=1}^{12} c_{i} x_{i} \leq B \\
& x_{1}+x_{7}+x_{9} \geq 1 \\
& x_{1}+x_{5}+x_{7}+x_{11} \geq 1 \\
& x_{1}+x_{2}+x_{4}+x_{8}+x_{9} \geq 1 \\
& x_{3}+x_{6}+x_{10} \geq 1 \\
& x_{4}+x_{5}+x_{11}+x_{12} \geq 1 \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

Soecies pepresentation cont.

- In a general form:

$$
\begin{aligned}
& \operatorname{Max} \sum_{i \in I} a_{i} x_{i} \\
& \text { s.t. } \\
& \sum_{i \in I} c_{i} x_{i} \leq B \\
& \sum_{i \in S_{j}} x_{i} \geq 1 \quad \forall j \in J \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

where: i indexes the sites, j the species. I is the complete set of sites available for conservation purchase, J is the set of species to preserve and S_{j} is the set of sites that contain a population of species j.

Maximal Species Representation

- Let's introduce a binary indicator variable y_{j} that turns on (takes the value of one) if species j is protected in at least one viable population.
- We need a trigger mechanism that drives the value of y_{j}.
- Let's add a constraint:

$$
\sum_{i \in S_{j}} x_{i} \geq y_{j} \quad \forall j \in J
$$

- Our objective function will become:

$$
\operatorname{Max} \sum_{j \in J} y_{j}
$$

Maximal Species Representation cont.

- Our mathematical program becomes:

$$
\begin{aligned}
& \operatorname{Max} \sum_{j \in J} y_{j} \\
& \text { s.t.: } \\
& \sum_{i \in I} c_{i} x_{i} \leq B \\
& \sum_{i \in S_{j}} x_{i} \geq y_{j} \quad \forall j \in J \\
& x_{i}, y_{j} \in\{0,1\}
\end{aligned}
$$

Spatially Explicit Reserve Selection Subject to Minimum Contiguous Habitat Size Requirements

$>$ Threatened grassland birds in the analysis area require at least 100 ha of habitat in contiguous patches

Minimum Contiguous Habitat Size Requirements

- Step 1: Enumerate all feasible contiguous clusters of parcels. Let C denote this potentially enormous set.
- Step 2: Enforce the logical condition that a parcel can only be protected if it is part of at least one feasible cluster that is protected. To enforce this condition, introduce indicator variable y_{j} that turns on if cluster j is protected.

$$
\sum_{j \in P_{i}} y_{j} \geq x_{i} \quad \forall i \in I
$$

where P_{i} is the set of feasible clusters that contain parcel i.

Minimum Contiguous Habitat Size Requirements cont.

- Step 3: We also need to ensure that a cluster is declared to be protected only if each parcel that comprise the cluster is protected:

$$
\sum_{i \in C_{j}} x_{i} \geq\left|C_{j}\right| y_{j} \quad \forall C_{j} \in C
$$

Here y_{j} may turn on if all x_{i} s in C_{j} are on. Is that enough?
We also need to make sure that: y_{j} must turn on if all $x_{i} s$ in C_{j} are on. Why and how can we do that?

$$
\sum_{i \in C_{j}} x_{i}-y_{j} \leq\left|C_{j}\right|-1 \quad \forall C_{j} \in C
$$

Minimum Contiguous Habitat Size Requirements cont.

A parcel can only be protected if it is part of at least one feasible cluster that is protected

A cluster may be protected if each parcel that makes up the cluster is protected

$$
\operatorname{Max} \sum_{i} a_{i} x_{i}
$$

Protected area
subject to:

$$
\sum_{\mathrm{i}} c_{i} x_{i} \leq B
$$

Budget

$$
\sum_{j \in P_{i}} y_{j} \geq x_{i}
$$

$$
\forall \mathrm{i} \in \mathrm{I}
$$

$$
\forall \mathrm{C}_{\mathrm{j}} \in \mathrm{C}
$$

A cluster must be protected if each parcel that makes up the cluster is protected

$$
\longrightarrow \sum_{i \in C_{j}} x_{i} \geq\left|C_{j}\right| y_{j}
$$

$$
\begin{aligned}
& \sum_{i \in C_{j}} x_{i}-y_{j} \leq\left|C_{j}\right|-1 \quad \forall \mathrm{C}_{\mathrm{j}} \in \mathrm{C} \\
& x_{i}, y_{j} \in\{0,1\}
\end{aligned}
$$

Programming Disjoint Habitat Patches

Option 1:
$x_{n}=x_{m}, x_{n}=x_{o}, x_{n}=x_{p}, x_{n}=x_{q}, x_{n}=x_{r}$,
$x_{m}=x_{o}, x_{m}=x_{p}, x_{m}=x_{q}, x_{m}=x_{r}$,
$x_{o}=x_{p}, x_{o}=x_{q}, x_{o}=x_{r}$,
$x_{p}=x_{q}, x_{p}=x_{r}$, and
$x_{q}=x_{r}$

Option 2:
$x_{n}+x_{m}+x_{o}+x_{p}+x_{q}+x_{r}=6 z_{1}$
(the credit goes to Liam Stacey, CFR grad student for conceiving this construct)

A Stronger Formulation for the Minimum Contiguous Habitat Size Problem

$$
\begin{array}{ll}
\operatorname{Min} \sum_{i} c_{i} x_{i} & \\
\text { subject to: } & x_{i} \geq y_{j} \quad \forall i \in C_{j} \text { and } \forall C_{j} \in C \\
\sum_{i} a_{i} x_{i} \geq A & \\
\sum_{j \in P_{i}} y_{j} \geq x_{i} & \forall i \in I \\
\sum_{i \in C_{j}} x_{i} \geq\left|C_{j}\right| y_{j} & \forall C_{j} \in C \\
\sum_{i \in C_{j}} x_{i}-y_{j} \leq\left|C_{j}\right|-1 & \forall C_{j} \in C \\
x_{i}, y_{j} \in\{0,1\} &
\end{array}
$$

Efficient Site Selections Near the Dick Young Forest Preserve, IL at Different Contiguity Thresholds

Contiguity Threshold: 250-300-350 ha Acquisition Cost: \$49.91M Acquisition Area: 460.6 ha

Contiguity Threshold: 200 ha Acquisition Cost: \$50.00M
Acquisition Area: 460.84 ha

Contiguity Threshold: 150 ha Acquisition Cost: \$49.99M
Acquisition Area: 468.52 ha

Contiguity Threshold: 120 ha Acquisition Cost: \$49.95M
Acquisition Area: 469.88 ha

Contiguity Threshold: 100 ha Acquisition Cost: $\$ 49.97 \mathrm{M}$ Acquisition Area: 471.13 ha

Shape

- Edge-to-Interior Area Ratio -

$$
\begin{aligned}
& \text { Perimeter } \\
& K_{p+q}=k_{p}+k_{q}-2 C B_{p q} \\
& K_{\text {total }}=\sum_{i \in I} k_{i} x_{i}-2 \sum_{p q \in E} \overbrace{x_{p q} x_{q}}^{\omega_{p q}} C B_{p q} \\
& \\
& x_{p}+x_{q}-\omega_{p q} \leq 1 \\
& \\
& x_{p}+x_{q}-2 \omega_{p q} \geq 0
\end{aligned}
$$

$-K_{p+q}=$ combined perimeter of parcels p and q ;

- $K_{\text {total }}=$ the total combined perimeter of all protected parcels;
- $C B_{p q}=$ length of common boundary between stands P and Q ;
- $\mathrm{E}=$ the set of adjacent pairs of parcels
$\cdot \chi_{p}=1$ if parcel p is to be selected for conservation,
$=0$ otherwise.
- $\omega_{p q}=1$ if both stand P and Q are part of mature patch.

