Speed comparisons (apply() family)
Generate a 500×500 matrix of random numbers and try to find the sums of each column, timing each method

1. Two nested loops, one over columns, one over rows within a column
2. One loop, using sum() for each column
3. apply()
4. matrix multiplication by a vector of 5001 s .

Look at the source code for apply(). Why isn't it faster than a for() loop?
Speed comparisons (general optimisation) You want to estimate the distribution of linear regression estimates when the error distribution is Cauchy rather than Normal. A dumb method is

```
beta<-NULL
for(i in 1:5000){
    x<-1:50
    y<-NULL
    for(j in 1:50){
        y<-c(y,rcauchy(1)+x)
    }
    model<-lm(y~x)
    coefs<-coef(model)
    beta<-c(beta,coefs[2])
}
```

Investigate the improvements from vectorising the random number generation, using lsfit() instead of lm(), allocating space outside the loop, using solve(cbind ($1, \mathrm{x}$) , y) instead of lsfit() and anything else that occurs to you.

Graph labelling (substitute)

Suppose you want to plot the Gamma density function (dgamma) for a vector of shape parameters, and label eg the graph for shape $=1$ as $\Gamma(1)$.

```
par(mfrow=c(2,2))
for (i in 1:4)
    curve(dgamma(x,shape=i),ylab=expression(Gamma(i)))
```

labels each curve with $\Gamma(i)$. Use substitute() to get the right label.

Simulation for power calculations (loops, objects)

An easy way to perform power calculations is simulation. Suppose you are testing a drug that reduces blood pressure. You have 50 people in each of treatment and control groups, and expect the systolic blood pressure to have a mean of 150 mmHg and standard devation of 15 mmHg in the control group, and to have a mean of 140 mmHg in the treatment group.

1. Assuming the distributions to be approximately Normal, simulate one set of data and perform a t-test using the t.test function.
2. Using the names function, look at the components of the object returned by t .test. The p-value is t .test $(\mathrm{x}, \mathrm{y}) \$ \mathrm{p}$.value
3. Write a loop to generate data and perform a t-test 1000 times, storing the values in a vector a. What is the power of the study (the proportion of times the p-value is below 0.05)? Compare the results with those given by power.t.test.
4. Suppose in the treated group the standard deviation were increased to 20 mmHg . The power.t.test function can't handle this, so rewrite your simulation to compute the power.
5. Suppose that instead of having a 10 mmHg difference and wanting to find the power you want to find what difference gives 80% power. This involves trying multiple simulations to find one that gives the right answer. Decisions involve whether to simulate new random numbers each time or just to add or subtract a constant from each one, and whether to program your own search routine or use uniroot.

Receiver Operating Characteristic curves (graphics, indexing, efficiency).

Given a continuous test variable T and a binary status variable D the receiver operating characteristic (ROC) curve summarises how well T predicts D. They first arose in radio engineering, but now are most used in
medical diagnostics research. The ROC curve plots the true positive rate $P(T>c \mid D=1)$ against the false positive rate $P(T>c \mid D=0)$ for every possible threshold c. A perfect test has true positive rate 1 and false positive rate 0 ; a perfectly useless test has equal true and false positive rates.

1. For any given cutpoint the true and false positive rates can be computed
```
ptrue<-mean(T[D==1]>c)
pfalse<-mean(T[D==0]>c])
```

2. It is only necessary to compute this for observed values of c (and -Inf). Write a for() loop to do it.
3. Rewrite the for() loop to use sapply(). Is it faster? Easier to understand?
4. Write a function to draw the ROC curve from vectors D and T.
5. A way to speed up the calculation is to find a different algorithm. You can rewrite $P(T>c \mid D==1)$ as $P(T>c \& D==1) / P(D==1)$. The denominator doesn't depend on c. The numerator can be computed by ordering the data appropriately and using the cumsum() command, which produces cumulative sums of a vector.
6. The area under the ROC curve is a useful summary of the discrimatory power of T. How would you compute it?
7. What if you only wanted the area under the portion of the curve with $P(D=0 \mid T>c)$ less than, say, 0.05 , because the test would never be operated at a higher false positive rate. Update your function to compute this partial area under the curve.
8. Make your function return a ROC object that has sensible plot and print methods and a summary method that computes partial area under the curve.
9. Use package.skeleton() to start producing an R package with these functions.

Data to test your code can be found in the "survival" package, data(pbc). Use bilirubin levels ($\mathrm{T}<-\mathrm{pbc}$ bili) as the test value, and define the status as two-year survival: $\mathrm{D}<-\mathrm{pbc}$ status==1 \& pbc\$time<730.

Clustered data regression (model frames/formula, language) In linear regression with clustered data the usual estimate for $\hat{\beta}$ works but the standard errors are wrong. A valid estimate of $\operatorname{var}[\hat{\beta}]$ is

$$
\left(X^{T} X\right)^{-1}\left(U^{T} U\right)\left(X^{T} X\right)^{-1}
$$

where $U_{i}=\sum_{t} x_{i t}\left(y_{i t}-\mu_{i t}\right)$.

1. Suppose we have a function mylm(formula, data) The idiom for creating model matrices is
```
m<-match.call()
m[[1]]<-as.name(''model.frame'')
m<-eval(m,parent.frame()) ## the model frame
X<-model.,matrix(terms(formula),m)
Y<-model.response(m)
```

Write a function to compute $\hat{\beta}$ and $\left(X^{T} X\right)^{-1}$.
2. Now we can add a cluster= argument to the function. When constructing the model frame the cluster argument will automatically be added. We can extract it with

```
group<-model.extract(m,''cluster'')
```

and use the rowsum () function to compute the collapsed sums U. It is then easy to produce the correct model-robust variance matrix
3. (tricky) Suppose we wanted to put the cluster specification in the model formula, as, say, $\mathrm{y}^{\sim} \mathrm{x}+\mathrm{id}$ (group).
It would be necessary to break this into two formulas $\mathrm{y}^{\sim} \mathrm{x}$ and ${ }^{\sim} \mathrm{id}$ (group). Look at what terms(y x+id(group), specials=''id'') does. The "specials" attribute identifies which part of the "variables" attribute is id(group). So we can identify the real variables and the clustering variable. One approach to constructing the formulas is seen in the code for aov in handling the Error () term: use paste to produce character strings and then as.formula to convert them back to formulas. Try doing this.

