
Data Manipulation

Thomas Lumley

Biostatistics

2004-10-14

Merging and matching

The data for an analysis often do not come in a single file.
Combining multiple files is necessary.

If two data sets have the same individuals in the same order,
they can simply be pasted together side by side.

CHS baseline data

baseline <- read.spss("I:/DISTRIB/BASEBOTH.SAV", to.data.frame=TRUE)

Events data (eg death, heart attack, ...)

events <- read.spss("I:/SAVEFILES/EVSUM04.SAV", to.data.frame=TRUE)

if (!all(baseline$IDNO==events$IDNO)) {

stop("PANIC: They don’t match!")

} else {

alldata <- cbind(baseline, events[,c("TTODTH","DEATH",

"TTOMI","INCMI")])

}

Merging: order

The data might need to be sorted first

index1 <- order(baseline$IDNO)

baseline <- baseline[index1,]

index2 <- order(events$IDNO)

events <- events[index2,]

if (!all(baseline$IDNO==events$IDNO)) {

stop("PANIC: They still don’t match!")

} else {

alldata <- cbind(baseline, events[,c("TTODTH","DEATH",

"TTOMI","INCMI")])

}

Note that order(baseline$IDNO) gives a subset of row numbers

containing all the rows but in a different (increasing) order.

Merging: merge

Or there might be different rows in the two data sets

• Some people are missing from one or other data set (eg

baseline and year 5 visits)

• Some people have multiple records in one data set (eg

baseline data and all hospitalisations

The merge function can do an database outer join, giving a data

set that has all the possible matches between a row in one and

a row in the other

Merging: merge

combined <- merge(baseline, hospvisits, by="IDNO", all=TRUE)

• by=IDNO says that the IDNO variable indicates individuals who

should be matched.

• all=TRUE says that even people with no records in the

hospvisits data set should be kept in the merged version.

How does it work: match

You could imagine a dumb algorithm for merging

for(row in firstdataset){

for(otherrow in seconddataset){

if (row$IDNO==otherrow$IDNO)

##add the row to the result

}

}

More efficiently, the match function gives indices to match one

variable to another

> match(c("B","I","O","S","T","A","T"),LETTERS)

[1] 2 9 15 19 20 1 20

> letters[match(c("B","I","O","S","T","A","T"),LETTERS)]

[1] "b" "i" "o" "s" "t" "a" "t"

Reshaping

Sometimes data sets are the wrong shape. Data with multiple

observations of similar quantities can be in long form (multiple

records per person) or wide form (multiple variables per person).

Example: The SeattleSNPs genetic variation discovery resource

supplies data in a format

SNP sample al1 al2

000095 D001 C T

000095 D002 T T

000095 D003 T T

so that data for a single person is broken across many lines. To

convert this to one line per person

> data<-read.table("http://pga.gs.washington.edu/data/il6

/ilkn6.prettybase.txt",

col.names=c("SNP","sample","allele1","allele2"))

> dim(data)

[1] 2303 4

> wideData<-reshape(data, direction="wide", idvar="sample",

timevar="SNP")

> dim(wideData)

[1] 47 99

> names(wideData)

[1] "sample" "allele1.95" "allele2.95" "allele1.205"

[5] "allele2.205" "allele1.276" "allele2.276" "allele1.321"

[9] "allele2.321" "allele1.657" "allele2.657" "allele1.1086"

...

• direction="wide" says we are going from long to wide format

• idvar="sample" says that sample identifies the rows in wide

format

• timevar="SNP" says that SNP identifies which rows go into

the same column in wide form (for repeated measurements

over time it would be the time variable)

There is a similar reshape command in Stata. S-PLUS does not

have reshape(); converting the R version would be an interesting

exercise.

Broken down by age and sex

A common request for Table 1 or Table 2 in a medical paper

is to compute means and standard deviations, percentages, or

frequency tables of many variables broken down by groups (eg

case/control status, age and sex, exposure,...).

That is, we need to apply a simple computation to subsets of

the data, and apply it to many variables. One useful function is

by(), another is tapply(), which is very similar.

> by(airquality$Ozone, list(month=airquality$Month),

mean, na.rm=TRUE)

month: 5

[1] 23.61538

--

month: 6

[1] 29.44444

--

month: 7

[1] 59.11538

--

month: 8

[1] 59.96154

--

month: 9

[1] 31.44828

Notes

• The first argument is the variable to be analyzed.

• The second argument is a list of variable defining sub-
sets. In this case, a single variable, but we could do
list(month=airquality$Month, toohot=airquality$Temp>85) to
get a breakdown by month and temperature

• The third argument is the analysis function to use on each
subset

• Any other arguments (na.rm=TRUE) are also given to the
analysis function

• The result is really a vector (with a single grouping variable)
or array (with multiple grouping variables). It prints differ-
ently.

Confusing digression: str()

How do I know it is an array? Because str() summarises the

internal structure of a variable.

> a<- by(airquality$Ozone, list(month=airquality$Month,

toohot=airquality$Temp>85),

mean, na.rm=TRUE)

> str(a)

by [1:5, 1:2] 23.6 22.1 49.3 40.9 22.0 ...

- attr(*, "dimnames")=List of 2

..$ month : chr [1:5] "5" "6" "7" "8" ...

..$ toohot: chr [1:2] "FALSE" "TRUE"

- attr(*, "call")= language by.data.frame(data =

as.data.frame(data), INDICES = INDICES,

FUN = FUN, na.rm = TRUE)

- attr(*, "class")= chr "by"

One function, many variables

Last week we saw colMeans for finding the mean of each column

of a matrix.

There is a general function, apply() for doing something to rows

or columns of a matrix (or slices of a higher-dimensional array).

> apply(psa[,1:8],2,mean,na.rm=TRUE)

id nadir pretx ps bss grade

25.500000 16.360000 670.751163 80.833333 2.520833 2.146341

grade age obstime

2.146341 67.440000 28.460000

This is just a slower version of colMeans, but the same can be

done with other functions such as sd, IQR, min,...

apply

• the first argument is an array or matrix or dataframe

• the third argument is the analysis function

• the second argument says which margins to keep (1=rows,

2=columns, ...), so 2 means that the result should keep the

columns: apply the function to each column.

• any other arguments are given to the analysis function

There is a widespread belief that apply() is faster than a for()

loop over the columns. This is a useful belief, since it encourages

people to use apply(), but it is completely untrue.

New functions

Suppose you want the mean and standard deviation for each

variable. One solution is to apply a new function. Watch

carefully,...

> apply(psa[,1:8], 2, function(x) c(mean=mean(x,na.rm=TRUE),

stddev=sd(x,na.rm=TRUE)))

id nadir pretx ps bss grade

mean 25.50000 16.3600 670.7512 80.83333 2.5208333 2.1463415

stddev 14.57738 39.2462 1287.6384 11.07678 0.6838434 0.7924953

age obstime

mean 67.440000 28.46000

stddev 5.771711 18.39056

New function

function(x) c(mean=mean(x,na.rm=TRUE),

stddev=sd(x,na.rm=TRUE))

translates as: “If you give me a vector, which I will call x, I will

mean it and sd it and give you the results”

We could give this function a name and then refer to it by name

mean.and.sd <- function(x) c(mean=mean(x,na.rm=TRUE),

stddev=sd(x,na.rm=TRUE))

apply(psa[,1:8], 2, mean.and.sd)

which would save typing if we used the function many times.

Note that giving the function a name is not necessary, any more

than giving 2 a name.

by() revisited

Now we know how to write simple functions we can use by()

more generally

> by(psa[,1:8], list(remission=psa$inrem),

function(subset) round(apply(subset, 2, mean.and.sd), 2))

remission: no

id nadir pretx ps bss grade age obstime

mean 31.03 22.52 725.99 79.71 2.71 2.11 67.17 21.75

stddev 11.34 44.91 1362.34 10.29 0.52 0.83 5.62 15.45

remission: yes

id nadir pretx ps bss grade age obstime

mean 11.29 0.53 488.45 83.57 2.07 2.23 68.14 45.71

stddev 12.36 0.74 1044.14 12.77 0.83 0.73 6.30 13.67

Notes

function(subset) round(apply(subset, 2, mean.and.sd), 2)

translates as “If you give me a data frame, which I will call subset,

I will apply the mean.and.sd function to each variable, round to

2 decimal places, and give you the results”

	Merging and matching
	Merging: order
	Merging: merge
	Merging: merge
	How does it work: match
	Reshaping
	
	
	Broken down by age and sex
	
	Notes
	Confusing digression: str()
	One function, many variables
	apply
	New functions
	New function
	by() revisited
	Notes

