
Examples

Thomas Lumley

Biostatistics

2006-11-16

Ratio of means

Suppose that X1, . . . , Xn and Y1, . . . , Yn are from Normal distri-

butions N(µX ,1) and N(µY ,1) and we are interested in µX/µY .

An example might be cost-effectiveness calculations where X

represents the cost of a treatment and Y the benefit.

An obvious estimator of r = µX/µY is R = X̄/Ȳ , but we don’t

have a simple formula for the sampling distribution.

There is a clever trick where we write the hypothesis r = r0 as

µX − r0µY = 0.

X̄ ∼ N (µX , 1/n)

Ȳ ∼ N (µY , 1/n)

X̄ − r0Ȳ ∼ N

(
µX − r0µY ,

1 + r20
n

)

We can now test r = r0 by comparing X̄ − r0Ȳ to N

(
0,

1+r20
n

)
:

we reject the hypothesis if

X̄ − r0Ȳ√
1+r20

n

is large (compared to its standard Normal sampling distribution).

For a 5% level test, ‘large’ means larger than 1.96.

We can solve

X̄ − r0Ȳ√
1+r20

n

= ±1.96

since it is just a quadratic equation.

The solutions to ax2 + bx + c = 0 are

x = −
−b±

√
b2 − 4ac

2a

quadsolve <- function(a,b,c){

discr <- b*b-4*a*c

if (discr<0)

return(NULL)

if (discr==0)

return(-b/(2*a))

(-b+c(-1,1)*sqrt(discr))/(2*a)

}

One weird possibility is obvious: what if b2 < 4ac so there are no

(real) solutions?

Another one is less obvious: do we know that the hypothesis is

rejected outside the interval, or might it be rejected inside the

interval?

We can pick a point in the middle of the interval and check

whether the test rejects or not.

fieller.interval <- function(xbar, ybar, n, alpha=0.05){

one.96 <- abs(qnorm(alpha/2))

endpoints <- quadsolve(ybar^2-one.96^2/n,

-2*xbar*ybar,

xbar^2-one.96^2/n)

if (length(endpoints)<2)

return(c(-Inf, Inf, NA,NA))

midpoint<-mean(endpoints)

if (abs(xbar-midpoint*ybar) < sqrt((1+midpoint^2)/n))

c(endpoints, NA, NA)

else

c(-Inf, sort(endpoints), Inf)

}

one.interval <- function(n,mu.x=1,mu.y=1){

x<-rnorm(n, mean=mu.x)

y<-rnorm(n, mean=mu.y)

fieller.interval(mean(x), mean(y), n)

}

lots <- replicate(100, one.interval(20))

plot(1, type="n",xlim=c(1,100), ylim=c(-10, 10),

xlab="",ylab="Ratio")

lots[lots == Inf] <- 20

lots[lots == -Inf] <- -20

segments(1:100,lots[1,],1:100,lots[2,])

segments(1:100,lots[3,],1:100,lots[4,])

segments(1:100,lots[2,],1:100,lots[3,],col="grey80")

abline(h=0.5,col="red")

0 20 40 60 80 100

−
10

−
5

0
5

10

R
at

io

Digression

We could get complex solutions to our quadratic equation: we
just need to tell R that the discriminant should be treated a a
complex number.

cquadsolve <- function(a,b,c){

discr <- as.complex(b*b-4*a*c)

(-b+c(-1,1)*sqrt(discr))/(2*a)

}

giving

> cquadsolve(1,0,1)

[1] 0-1i 0+1i

> quadsolve(1,0,1)

NULL

Complex numbers aren’t very useful in statistics, except for
Fourier analysis of time series.

Data analysis

BIOST 517 HW 5.

The first line of the file has an extra line break, so it’s easiest to

download and edit it rather than reading it directly

inflamm<-read.table("inflamm.txt")

a. Provide suitable statistics for the distribution of times to

censoring for observations of death. In particular, consider

whether you can estimate the minimum time of follow-up for

these patients

The ”survival” package has built-in censored data functions

library(survival)

> survfit(Surv(ttodth,1-death),data=inflamm)

Data analysis

Call: survfit(formula = Surv(ttodth, 1 - death), data = inflamm)

n events median 0.95LCL 0.95UCL

5000 3879 2733 2726 2747

> plot(survfit(Surv(ttodth,1-death),data=inflamm))

> with(inflamm, by(ttodth,death,summary))

INDICES: 0

Min. 1st Qu. Median Mean 3rd Qu. Max.

1480 2630 2726 2604 2834 2942

--

INDICES: 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

5 934 1609 1554 2236 2912

> 1480/365

[1] 4.054795

Data analysis

Histogram of ttodth[death == 0]/365

ttodth[death == 0]/365

F
re

qu
en

cy

4 5 6 7 8

0
50

0
10

00
15

00

Data analysis

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data analysis

Of course, we have survival analysis code that we wrote earlier

source("medsurv.R")

km<-with(subset(inflamm, crp<=2), kaplanmeier(ttodth,death))

plot(km$time,km$surv,ylim=c(0,1), type="s")

km<-with(subset(inflamm, crp>2), kaplanmeier(ttodth,death))

lines(km$time,km$surv,ylim=c(0,1), type="s",lty=2)

legend("bottomleft",lty=1:2, legend=c("CRP<=2","CRP>2"))

Data analysis

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

km$time

km
$s

ur
v

CRP<=2
CRP>2

Data analysis

2. We are interested in estimating the probability of a patient

dying from any cause in the years following accrual to the study.

a. Provide suitable descriptive statistics for the distribution of

times to death from any cause for all patients in the study.

b. Produce a plot of survival curves stratified by the groups

defined by whether the C-reactive protein (CRP) value was

higher than 2 mg/l or not. Produce a table of estimates of the

90th, 80th, and 75th percentiles of the survival distribution by

CRP strata. Also include in that table the estimated probabilities

of surviving for 3, 5, and 8 years for each stratum. Are the

estimates suggestive that CRP level is associated with mortality?

Give descriptive statistics supporting your answer.

c. Repeat part b using thresholds of 3 mg/l and 5 mg/l for CRP.

Data analysis

>with(subset(inflamm, crp<=2), mediansurv(ttodth,death,quantile=0.9))
[1] 1750
>with(subset(inflamm, crp<=2), mediansurv(ttodth,death,quantile=0.9))
[1] 1750
>with(subset(inflamm, crp<=2), mediansurv(ttodth,death,quantile=0.75))
[1] NA
Warning messages:
1: no non-missing arguments to min; returning Inf
2: no non-missing arguments to min; returning Inf
3: NAs introduced by coercion
>with(subset(inflamm, crp>2), mediansurv(ttodth,death,quantile=0.9))
[1] 1067
>with(subset(inflamm, crp>2), mediansurv(ttodth,death,quantile=0.9))
[1] 1067
>with(subset(inflamm, crp>2), mediansurv(ttodth,death,quantile=0.75))
[1] 2430
> survat<-function(time,event, at.time){
+ km<-kaplanmeier(time,event)
+ km$surv[min(which(km$time>at.time))]
+ }
> with(subset(inflamm, crp<=2), survat(ttodth,death, at.time=365*3))

1100
0.952895

Data analysis

> with(subset(inflamm, crp<=2), survat(ttodth,death, at.time=365*5))
1828

0.8909532
> with(subset(inflamm, crp<=2), survat(ttodth,death, at.time=365*8))

2922
0.776836
> with(subset(inflamm, crp>2), survat(ttodth,death, at.time=365*3))

1097
0.8971215
> with(subset(inflamm, crp>2), survat(ttodth,death, at.time=365*5))

1826
0.8190185
> with(subset(inflamm, crp>2), survat(ttodth,death, at.time=365*8))

2922
0.678866

Data analysis

Now he wants us to do this all over again. We might cut and

paste all that code twice, or put it in a function

analyse.crpstratum<-function(threshold){

km<-with(subset(inflamm, crp<=threshold), kaplanmeier(ttodth,death))

plot(km$time,km$surv,ylim=c(0,1), type="s")

km<-with(subset(inflamm, crp>threshold), kaplanmeier(ttodth,death))

lines(km$time,km$surv,ylim=c(0,1), type="s",lty=2)

legend("bottomleft",lty=1:2,

legend=(paste(c("CRP<=","CRP>"),threshold)))

below<-subset(inflamm, crp<=threshold)

qbelow <- with(below, sapply(c(0.9,0.8,0.75), mediansurv,

time=ttodth, event=death))

pbelow <-with(below, sapply(c(3,5,8)*365,survat,

time=ttodth,event=death))

above<-subset(inflamm, crp>threshold)

Data analysis

qabove <- with(above, sapply(c(0.9,0.8,0.75),

mediansurv,time=ttodth, event=death))

pabove <-with(above, sapply(c(3,5,8)*365,

survat, time=ttodth,event=death))

list(qbelow=qbelow, pbelow=round(pbelow,2),

qabove=qabove, pabove=round(pabove,2),

threshold=threshold)

}

> analyse.crpstratum(2) ##to check

> analyse.crpstratum(3)

$qbelow

[1] 1659 2647 NA

$pbelow

1097 1828 2922

Data analysis

0.95 0.88 0.77

$qabove

[1] 940 1813 2245

$pabove

1105 1826 2922

0.88 0.80 0.65

$threshold

[1] 3

Warning messages:

1: no non-missing arguments to min; returning Inf

2: no non-missing arguments to min; returning Inf

3: NAs introduced by coercion

Data analysis

> analyse.crpstratum(5)

$qbelow

[1] 1613 2590 NA

$pbelow

1097 1828 2922

0.94 0.88 0.76

$qabove

[1] 934 1769 2155

$pabove

1105 1826 2922

0.88 0.79 0.62

$threshold

Data analysis

[1] 5

Warning messages:

1: no non-missing arguments to min; returning Inf

2: no non-missing arguments to min; returning Inf

3: NAs introduced by coercion

Data analysis

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

km$time

km
$s

ur
v

CRP<= 3
CRP> 3

Data analysis

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

km$time

km
$s

ur
v

CRP<= 3
CRP> 3

Data analysis

Another interesting graph is a scatterplot of CRP by survival

time, colored by censoring

> plot(log(crp)~ttodth,col=ifelse(death==1,"red","gray"),

pch=19,data=inflamm)

Data analysis

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●●

●

●● ●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ● ● ●●

● ●●

●

● ●

● ●

●

●
●

●

●

●● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

● ●●

●

●

●

●

●●●

●
●

●

●●

●

● ●●

●

● ●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●● ●

●

●

●● ●●●

●●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●●

●

● ●● ●●

●

●

●

●

● ●
●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●● ●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

● ●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●
●

●

●

●● ●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●●●

● ●

●

●

●●

●

●

●

●
●

●

●

●

● ● ●

● ●● ●

●● ●

●

●

●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●●●

●● ●

●

●

●

●

●

● ●

● ●

●

● ●

●

●● ●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●

●

●

● ●

●
●

●

●

● ●

●

●

●●

●

●

●

●●● ●

●
●

●

●

●

●

●●

●

●
● ●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●● ●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●●●

● ●● ● ●● ● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

● ●

●

●●
●

●● ●

●

●

●

●●

● ●

●

●

●●

●

●

●●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●● ●

●

●●

● ●
●

●

●

●

●

●
●

●●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●● ●

●

●

●

● ●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●●

● ●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

● ●

●

●

●● ● ●

●

●

●

●●

●●

● ●

●●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●

● ●●

●●●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●● ●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●● ●●

●

●

●

●

● ●●

●

●
● ●

●

●

●

●

●●●

●

●

● ●●

●

●

● ●

●

●●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●● ●

● ●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●●

●●

●

●● ●

●●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
● ●

● ●

●

● ●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●●

● ●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●●● ●

●

●

● ●

●
●

●●

●

●

●

●●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

● ●

●

●

●

●

●

●●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●
●

● ●

● ●

● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●● ●●

●

●

●

●●

●

●

●●● ●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

● ●

●●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●
●

●

●

●

●

● ●

●

● ●

●

●● ●

●
●

●●

●

●

●

●

● ●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●● ●

●● ●●

●

●

● ●

●

●

●●● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●●

●

●

●

●

●● ●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●● ●

●

●

●●

● ●

●

●

●

●

●●● ● ●

●
●

●

● ●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●● ●●●

●

●● ●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

● ●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●● ●

●●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●● ● ●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●● ●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

● ●

●

●

●
●●

●

●

●

●

● ● ●● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●●
●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●●● ●●● ●

●

● ●

● ●

●

●●

● ●

●

●●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●

●

●●

● ●

●

●●● ●●

●

●

●

● ●

●

●

● ●

●●●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

● ●● ●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

● ●●

●

●● ●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●●●

●

●●

●

●

●

● ●

●

●

● ●●●

●●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●● ●

●●

●

●

● ●●

●

●

● ●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

● ● ●

●

●

● ●

●

●

●

●

●

● ●●

●

● ●

●

●●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●● ● ●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●●●

●

●● ●●● ● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●●●

●

●●

●

● ●● ●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

● ●

●

●● ●

●●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●●

●

●

●

● ● ●

●

● ●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●● ●●

●

●

●●

●

●

●

●●

●

● ●

● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●● ●● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

● ●●

●●

●

●

●

●

● ●

●● ●●

●

●●●

●●●

● ●

●●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●●

● ●

●

●● ●●● ●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●● ●

●●

●

●

●

●

●●

0 500 1000 1500 2000 2500 3000

0
1

2
3

4

ttodth

lo
g(

cr
p)

Data analysis

For the sensitivity and specificity we read ahead and notice that

three cutpoints are used, so we start off by writing a function

diagnostics<-function(threshold){
has.crp<-subset(inflamm, !is.na(crp))
prevpos<-with(has.crp, mean(ttodth<3*365 & death==1))
prevevent<-with(has.crp, mean(crp>threshold))
sens<-with(has.crp, mean(ttodth<3*365 & death==1

& crp>threshold)/mean(ttodth<3*365 & death==1))
spec<-with(has.crp, mean(!(ttodth<3*365 & death==1)

& !(crp>threshold))/mean(!(ttodth<3*365 & death==1)))
ppv<-with(has.crp, mean(ttodth<3*365 & death==1

& crp>threshold)/mean(crp>threshold))
npv<-with(has.crp, mean(!(ttodth<3*365 & death==1)

& !(crp>threshold))/mean(!(crp>threshold)))

list(prevpos=prevpos, prevent=prevevent,
sens=sens,spec=spec,
ppv=ppv, npv=npv)

}

Now run the function at the three thresholds

Data analysis

> diagnostics(threshold=2)

$prevpos

[1] 0.06770728

$prevent

[1] 0.380296

$sens

[1] 0.5718563

$spec

[1] 0.633616

$ppv

[1] 0.1018124

$npv

[1] 0.9532221

> diagnostics(threshold=3)

$prevpos

Data analysis

[1] 0.06770728

$prevent

[1] 0.2381918

$sens

[1] 0.4191617

$spec

[1] 0.774951

$ppv

[1] 0.1191489

$npv

[1] 0.9483768

> diagnostics(threshold=5)

$prevpos

[1] 0.06770728

$prevent

Data analysis

[1] 0.1617677

$sens

[1] 0.2934132

$spec

[1] 0.847793

$ppv

[1] 0.1228070

$npv

[1] 0.9429262

We might also look at the ROC curve, since we programmed

that earlier.

ROC <- function(test, disease){
cutpoints <- c(-Inf, sort(unique(test)), Inf)
sensitivity<-sapply(cutpoints,

function(result) mean(test>result & disease)/mean(disease))
specificity<-sapply(cutpoints,

Data analysis

function(result) mean(test<=result & !disease)/mean(!disease))
return(list(sens=sensitivity, spec=specificity, cutpoints=cutpoints))

}

crproc<-with(has.crp, ROC(crp, ttodth<3*365 & death==1))
plot(1-crproc$spec,crproc$sens,xlab="1 - specificity",

ylab="Sensitivity",type="l")

marks<-match(c(2,3,5), crproc$cutpoints)
points(1-crproc$spec[marks], crproc$sens[marks], col="red",pch=19)

Data analysis

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − specificity

S
en

si
tiv

ity ●

●

●

	Ratio of means
	
	
	
	Digression
	Data analysis

