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Basic Problem

(Frequentist) statistics is based on the sampling distribution of
statistics:

Given a statistic Tn and a true data distribution, what is the
distribution of Tn

• The mean of samples of size 10 from an Exponential

• The median of samples of size 20 from a Cauchy

• The difference in Pearson’s coefficient of skewness ((X̄ −
m)/s) between two samples of size 40 from a Weibull(3,7).

This is easy: you have written programs to do it. In 512-3 you
learn how to do it analytically in some cases.



But...

We really want to know:

What is the distribution of Tn in sampling from the true data

distribution

But we don’t know the true data distribution.



Empirical distribution

On the other hand, we do have an estimate of the true data

distribution. It should look like the sample data distribution.

(we write Fn for the sample data distribution and F for the true

data distribution). The Glivenko–Cantelli theorem says that

the cumulative distribution function of the sample converges

uniformly to the true cumulative distribution.

We can work out the sampling distribution of Tn(Fn) by

simulation, and hope that this is close to that of Tn(F ).

Simulating from Fn just involves taking a sample, with replace-

ment, from the observed data. This is called the bootstrap. We

write F∗n for the data distribution of a resample.



Too good to be true?

There are obviously some limits to this

• It requires large enough samples for Fn to be close to F .

• It works better for some statistics (eg mean, variance) than

others (eg median, quantiles)

• It doesn’t work at all for some statistics (eg min, max,

number of unique values)

The reason for the difference between statistics is that Fn

needs to be ”close to” F in an appropriate sense of ”close”

for the statistic. Precise discussions of this take a lot of math

[’Hadamard differentiable in the uniform norm’]



Uses of bootstrap

There are two main uses

• When you know the distribution of Tn is normal with mean

θ, you just don’t know how to compute the variance

• With a well-behaved statistic where the sample size is a little

small for the Normal approximation.

It can also be used when you don’t know what the asymptotic

distribution is, but then you do need quite a bit of analysis to be

sure that the bootstrap works for this statistic.



Example

Median bilirubin in PBC data

data(pbc, package="survival")

resample.a.median<-function(x){

xstar<- sample(x, size=length(x), replace=TRUE)

median(xstar)

}

lots.of.medians<-replicate(1000, resample.a.median(pbc$bili))

hist(lots.of.medians, col="peachpuff",prob=TRUE)



Example
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Notes

• sample() takes a sample from a given vector. This can

be with or without replacement and with equal or unequal

probabilities.

• replicate executes an expression many times and returns the

results. It is tidier than a loop or apply.

• data() has a package argument for when you want the

dataset but not the whole package.

• The histogram is fairly discrete, because the data are rounded

to 2 decimal places: the true sampling distribution of the

median is discrete. The true distribution of serum bilirubin

isn’t, but we have no data from that distribution.



How well does it work?

These graphs show the 5% and 95% points of the estimated

sampling distribution. 90% of these should cover the true value.

We need to use known distributions for this.

library(MASS) ## Modern Applied Statistic in S (V&R)

resample.a.corr<-function(xy){

index <- sample(nrow(xy),size=nrow(xy),replace=TRUE)

cor(xy[index,1],xy[index,2])

}

lots.of.corr<-replicate(30, {

dat<-mvrnorm(50,c(0,0), Sigma=matrix(c(1,.5,.5,1),2))

replicate(400, resample.a.corr(dat))

})



How well does it work?

qq<-apply(lots.of.corr,2,quantile, probs=c(0.05,0.95))

plot(1, 1, xlim=c(1,30), ylim=range(c(0.5,qq)),

ylab="Correlation", xlab="")

abline(h=0.5,lty=2)

in.interval<-qq[1,]<0.5 & qq[2,]>0.5

segments(1:30,qq[1,],1:30,

qq[2,],col=ifelse(in.interval,"grey50","purple"),lwd=2)



How well does it work?
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Notes

• We need to simulate the entire bootstrap process — draw a

real sample, take 400 resamples from it — thirty times

• We resample rows, by sampling from numbers 1...nrow(xy)

and then apply this as a subset index.

• 400 is a minimal reasonable number for boostraps and most

simulations. The uncertainty in the 90% range is about

1.5%, in a 95% range would be about 3.5%. Usually between

1000 and 10,000 is a good number.

• The percentile bootstrap will always give estimates between

-1 and 1 for correlation



Lower quartile

resample.a.q25<-function(x){

x <- sample(x,length(x),replace=TRUE)

quantile(x, prob=0.25)

}

lots.of.q25<-replicate(30, {

dat<-rnorm(20)

replicate(400, resample.a.q25(dat))

})

qq<-apply(lots.of.q25,2,quantile, probs=c(0.05,0.95))

plot(1,1,xlim=c(1,30),ylim=range(qq),ylab="Lower quartile",xlab="")

abline(h=qnorm(0.25),lty=2)

in.interval<-qq[1,]<qnorm(0.25) & qq[2,]>qnorm(0.25)

segments(1:30,qq[1,],1:30,

qq[2,],col=ifelse(in.interval,"grey50","purple"),lwd=2)



Lower quartile
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Minimum

resample.a.min<-function(x){

x <- sample(x,length(x),replace=TRUE)

min(x)

}

lots.of.min<-replicate(30, {

dat<-rgamma(20,2,2)

replicate(400, resample.a.min(dat))

})

qq<-apply(lots.of.min,2,quantile, probs=c(0.05,0.95))

plot(1,1,xlim=c(1,30),ylim=range(c(-0.5,qq)),ylab="Minimum",xlab="")

abline(h=0,lty=2)

in.interval <- qq[1,] < 0 & qq[2,]> 0

segments(1:30,qq[1,],1:30,

qq[2,],col=ifelse(in.interval,"grey50","purple"),lwd=2)
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Bootstrap packages

You don’t have to write your own bootstrap functions: there are

two packages

• boot, associated with a book by Davison and Hinkley, and

written by Angelo Canty

• bootstrap, associated with book by Efron and Tibshirani

The boot package comes with R and is more comprehensive.

S-PLUS also has nice bootstrap functions written by Tim

Hesterberg (at Insightful).



The boot package

As we did with resampling correlations, the boot function

resamples row indices rather than data. You have to provide

a function that takes a data set as its first argument and a set

of row indices as the second argument.

We could redo the correlation example changing just a few lines

library(MASS) ## Modern Applied Statistics in S (V&R)

resample.a.corr<-function(xy, index){

cor(xy[index,1],xy[index,2])

}

lots.of.corr<-replicate(30, {

dat<-mvrnorm(50,c(0,0), Sigma=matrix(c(1,.5,.5,1),2))

boot(dat, resample.a.corr, R=400)$t })



The boot package

qq<-apply(lots.of.corr,2,quantile, probs=c(0.05,0.95))

plot(1,1,xlim=c(1,30),ylim=range(c(0.5,qq)),ylab="Correlation",xlab="")

abline(h=0.5,lty=2)

in.interval<-qq[1,]<0.5 & qq[2,]>0.5

segments(1:30,qq[1,],1:30,

qq[2,],col=ifelse(in.interval,"grey50","purple"),lwd=2)



More usefully, the package provides a variety of bootstrap

estimates. For one sample we get

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 400 bootstrap replicates

CALL :

boot.ci(boot.out = b)

Intervals :

Level Normal Basic

95% ( 0.3008, 0.6914 ) ( 0.3069, 0.7266 )

Level Percentile BCa

95% ( 0.2692, 0.6889 ) ( 0.2446, 0.6665 )

Calculations and Intervals on Original Scale

Some BCa intervals may be unstable



The BCa interval should be slightly more accurate, so if it

agrees with the ”Percentile” interval they are both likely to be

trustworthy. If the BCa and Percentile intervals are importantly

different then the Percentile interval is not reliable (and BCa may

or may not be).

Stata has similar facilities. Programming the statistic to be

bootstrapped was a bit of a pain, but things have improved in

version 9.



Testing vs estimation

The bootstrap estimates the actual sampling distribution of a

statistic (more accurately as sample size increases). This is

useful for confidence intervals.

Sometimes we want a test of a precisely specified null hypothesis.

This requires the sampling distribution that the statistic would

have if the null hypothesis were true. We cannot just use

resampling, since the null hypothesis may not be true in the

real data.



Consider the randomized trial subset of the PBC data. If the

treatment (D–penicillamine) has no effect whatsoever, then the

data for everything except the treatment variable would stay the

same if different people had been treated.

This is often called the strong null hypothesis: we are not just

saying that survival is on average as good with treatment as

without, we are saying that treatment has no effect at all on

survival.

We can generate a sampling distribution where the strong null

hypothesis is true (eg for ratio of median survival time) by just

changing the values of the treatment variable. That is, we

permute the vector trt of treatment values and reanalyze.



• If the strong null hypothesis is really true this will be the real

sampling distribution.

• If the strong null hypothesis is not really true this will not

be the real sampling distribution: we hope it is very different

from the real sampling distribution.

• The p-value is the proportion of simulated differences that

exceed the real observed difference

This is a permutation test, or when the data come from a

randomized trial, a randomization test. Under the strong null

hypothesis the p-value is exact.



Permuting survival

library(survival)

data(pbc)

pbcrand <- subset(pbc, trt %in% c(1,2))

medsurv<-function(km) km$time[min(which(km$surv<0.5))]

survratio<-function(treatment){

km<-survfit(Surv(time,status)~treatment, data=pbcrand)

medsurv(km[1])/medsurv(km[2])

}

observed.ratio <- survratio(pbcrand$trt)

permuted <- replicate(1000, survratio(sample(pbcrand$trt)))

We end up with 31% of permuted ratios less than the observed
0.9574 and 37% greater than 1/0.9574, so the two-sided p-value
is 0.68.



Permuting survival
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PBC trial

• The p-value of 0.68 says there is no evidence at all that the

treatment affects survival.

• The data are consistent with the ratio of median survival

being 1.

• We would also want a confidence interval, to ask whether

the data are consistent with ratios of median survival

interestingly different from 1. A bootstrap gives a 95%

confidence interval (0.70, 1.26), so we can rule out large

benefit or harm of the treatment.



Weak null hypothesis

A treatment may increase survival for people and decrease it for

others, in a way that the ratio of median survival stays the same.

The strong null hypothesis is false, but a weak null hypothesis is

true.

The permutation test need not have the correct Type I error

rate: it can be too high or too low. When groups are the same

size the Type I error rate is often close to the nominal level.

Simulations are more complicated: we need many replications of

a permutation test. To simplify computations we will switch to

comparing means.



meandiff<-function(x,trt){

mean(x[trt==1])-mean(x[trt==2])

}

meanpermtest<-function(x,trt,n=1000){

observed<-meandiff(x,trt)

perms<-replicate(n, meandiff(x, sample(trt)))

mean(abs(observed)>abs(perms))

}

trt1<-rep(c(1,2),c(10,90))

perm.p<-replicate(1000, {

x1<-rnorm(100, 0, s=trt1)

meanpermtest(x1,trt1)})

table(cut(perm.p,c(0,.05,.1,.5,.9,.95,1)))



(0,0.05] (0.05,0.1] (0.1,0.5] (0.5,0.9] (0.9,0.95] (0.95,1]

86 99 564 244 6 0

The p-values are too small, relative to a uniform distribution. If

we reverse the standard errors we get

(0,0.05] (0.05,0.1] (0.1,0.5] (0.5,0.9] (0.9,0.95] (0.95,1]

27 28 275 354 67 249

If the two groups each have 50 observations we get

(0,0.05] (0.05,0.1] (0.1,0.5] (0.5,0.9] (0.9,0.95] (0.95,1]

50 45 403 407 52 43

which is much better.
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