

Introductory statistical computing with R

Thomas Lumley

Biostatistics

2005-9-29

Objectives

- Basic computations in R that will be needed in other courses
- Statistical methods that require some programming and so are not covered thoroughly in 517/518
- Programming techniques and concepts useful in statistical computing

Languages

There are three reasons to learn a programming language

- It is a good tool for problems you will have to solve
- You are going to be forced to use it
- It provides a way to learn new programming abstractions

R qualifies on all of these.

You should also find time to learn C while you are a student and consider learning Ruby or Java (or some other sufficiently different language).

R and S

S is a statistical and graphical programming language developed at Bell Labs over the past 30 years.

S-PLUS is a commercial version of S with many additional features. It is sold by Insightful Co., a Seattle company. The University has a site license, and you can buy copies from the University bookstore.

R is a free implementation of a language very similar to S. You can download it from http://www.r-project.org. I am one of the authors.

R and S

S-PLUS, and now R, are the favored systems for statistical research and teaching, because of

- easy programmability
- interfaces to other languages
- presentation-quality graphics
- interactive data analysis
- R package system for distribution and quality control

GUI for R

R does not have any built-in GUI. It can be run under Emacs, for which you can see the course notes from this summer at https://portal.biostat.washington.edu/computing/scs/

There is an add-on Java GUI available from http://www.rosuda.org/JGR/down.shtml

Other statistical software

The first-year courses and the second-year MS courses use Stata instead of S, and some more advanced courses use Stata as well as S. Health Sciences has a discount plan. You can buy online at http://www.stata.com or by phone, and then collect the software from the library.

SAS makes a brief appearance in BIOST 571. Few or none of the teaching faculty use it regularly. MS students interested in working in industry might want to teach themselves SAS. You can get SAS from the bookstore for \$100/year. UW Computing and Communications offers short courses in SAS.

Reading data

- Text files
- Stata datasets
- Web pages
- (Databases)

Much more information is in the Data Import/Export manual.

The easiest format has variable names in the first row

case	id	gender	deg	yrdeg	field	startyr	year	rank	admin
1	1	F	Other	92	Other	95	95	Assist	0
2	2	М	Other	91	Other	94	94	Assist	0
3	2	М	Other	91	Other	94	95	Assist	0
4	4	М	PhD	96	Other	95	95	Assist	0

and fields separated by spaces. In R, use

salary <- read.table("salary.txt", header=TRUE)</pre>

to read the data from the file salary.txt into the data frame salary.

http://courses.washington.edu/b570/datasets/salary.dat

Syntax notes

- Spaces in commands don't matter (except for readability), but Capitalisation Does Matter.
- TRUE (and FALSE) are logical constants
- Unlike many systems, R does not distinguish between commands that do something and commands that compute a value. Everything is a function: ie returns a value.
- Arguments to functions can be named (header=TRUE) or unnamed ("salary.txt")
- A whole data set (called a data frame is stored in a variable (salary), so more than one dataset can be available at the same time.

Reading text data

Sometimes columns are separated by commas (or tabs)

Ozone,Solar.R,Wind,Temp,Month,Day 41,190,7.4,67,5,1 36,118,8,72,5,2 12,149,12.6,74,5,3 18,313,11.5,62,5,4 NA,NA,14.3,56,5,5

Use

ozone <- read.table("ozone.csv", header=TRUE, sep=",")</pre>

or

ozone <- read.csv("ozone.csv")</pre>

Syntax notes

- Functions can have optional arguments (sep wasn't used the first time). Use help(read.table) for a complete description of the function and all the arguments.
- There's more than one way to do it.
- NA is the code for missing data. Think of it as "Don't Know". R handles it sensibly in computations: eg 1+NA, NA & FALSE, NA & TRUE.

Reading text data

Sometime the variable names aren't included

1	0.2	115	90	1	3	68	42 yes
2	0.7	193	90	3	1	61	48 yes
3	0.2	58	90	1	3	63	40 yes
4	0.2	5	80	2	3	65	75 yes

and you have to supply them

or

```
psa <- read.table("psa.txt")
names(psa) <- c("ptid","nadirpsa","pretxpsa", "ps",
                "bss","grade","age","obstime","inrem"))</pre>
```

https://courses.washington.edu/b518/datasets/psa.txt

Syntax notes

- c() is a function that makes a single vector from its arguments.
- names is a function that accesses the variable names of a data frame
- Some functions (such as names) can be used on the LHS of an assignment.

Reading Stata data

Stata saves data in files with a .dta extension.

```
library(foreign)
salary <- read.dta("salary.dta")</pre>
```

Notes:

- Many functions in R live in optional packages. The library() function lists packages, shows help, or loads packages from the package library.
- The foreign package is in the standard distribution. It handles import and export of data. Hundreds of extra packages are available at http://cran.us.r-project.org.

The web

Files for read.table can live on the web

```
antibiotics <- read.csv("http://courses.washington.edu/b518/
datasets/hospital.csv")
```

It's also possible to read from more complex web databases (such as the genome databases)

Operating on data

As R can have more than one data frame available you need to specify where to find a variable. The syntax antibiotics\$duration means the variable duration in the data frame antibiotics.

This is a comment
Convert temperature to real degrees
antibiotics\$tempC <- (antibiotics\$temp-32)*5/9
display mean, quartiles of all variables
summary(antibiotics)</pre>

Subsets

Everything in R is a vector (but some have only one element). Use [] to extract subsets

```
## First element
antibiotics$temp[1]
## All but first element
antibiotics$temp[-1]
## Elements 5 through 10
antibiotics$temp[5:10]
## Elements 5 and 7
antibiotics$temp[c(5,7)]
## People who received antibiotics (note ==)
antibiotics$temp[ antibiotics$antib==1 ]
## or
with(antibiotics, temp[antib==1])
```

Subsets

For data frames you need two indices

```
## First row
antibiotics[1,]
## Second column
antibiotics[,2]
## Some rows and columns
antibiotics[3:7, 2:4]
## Columns by name
antibiotics[, c("id","temp","wbc")]
## People who received antibiotics
antibiotics[antibiotics$antib==1, ]
## Put this subset into a new data frame
yes <- antibiotics[antibiotics$antib==1,]</pre>
```

Computations

```
mean(antibiotics$temp)
median(antibiotics$temp)
var(antibiotics$temp)
sd(antibiotics$temp)
mean(yes$temp)
mean(antibiotics$temp[antibiotics$antib==1]
with(antibiotics, mean(temp[sex==2]))
toohot <- with(antibiotics, temp>99)
mean(toohot)
```

Factors

Factors represent categorical variables. You can't do mathematical operations on them (except for ==)

> table(salary\$rank,salary\$field)

ArtsOtherProfAssist6682626754Assoc122942291071Full94262851984

> antibiotics\$antib<-factor(antibiotics\$antib, levels=c(1,2),</pre>

labels=c("Yes","No"))

- > antibiotics\$agegp<-cut(antibiotics\$age, c(0,18,65,100))</pre>
- > table(antibiotics\$agegp)

(0,18] (18,65] (65,100]

2 19 4

More tables

>	<pre>> with(salary, addmargins(table(rank, field)))</pre>						
	İ	field					
ra	ank	Arts	Prof	Other	Sum		
	Assist	668	754	2626	4048		
	Assoc	1229	1071	4229	6529		
	Full	942	1984	6285	9211		
	Sum	2839	3809	13140	19788		
>	with(sa	alary	, tab]	le(ranl	x,field,	deg))	
,	, deg =	= PhD					

field					
rank	Arts	Prof	Other		
Assist	534	692	2236		
Assoc	989	1002	3418		
Full	623	1608	5701		

More tables

, , deg = Prof

field						
rank	Arts	Prof	Other			
Assist	0	50	183			
Assoc	0	30	344			
Full	0	345	394			

, , deg = Other

field					
rank	Arts	Prof	Other		
Assist	134	12	207		
Assoc	240	39	467		
Full	319	31	190		

More tables

<pre>> with(salary,</pre>		<pre>ftable(table(rank,</pre>			<pre>field,deg)))</pre>
	deg	g PhD	Prof	Other	
rank	field				
Assist	Arts	534	0	134	
	Prof	692	50	12	
	Other	2236	183	207	
Assoc	Arts	989	0	240	
	Prof	1002	30	39	
	Other	3418	344	467	
Full	Arts	623	0	319	
	Prof	1608	345	31	
	Other	5701	394	190	

Help

- help(fn) for help on fn
- help.search("topic") for help pages related to "topic
- apropos("tab") for functions whose names contain "tab"
- Search function on the http://www.r-project.org web site.

When something doesn't work the best way to ask for help looks like

I did X. Y happened. I thought Z would happen.

with as much detail as possible about X. Questions like this are easy to answer, so they get answered faster.