Speed comparisons (apply() family)
Generate a 500 x 500 matrix of random numbers and try to find the sums
of each column, timing each method

1. Two nested loops, one over columns, one over rows within a column

2. One loop, using sum() for each column

3. apply O
4. matrix multiplication by a vector of 500 1s.

Look at the source code for apply (). Why isn’t it faster than a for () loop?

Speed comparisons (general optimisation) You want to estimate the dis-
tribution of linear regression estimates when the error distribution is Cauchy
rather than Normal. A dumb method is

beta<-NULL
for(i in 1:5000){
x<-1:50
y<-NULL
for(j in 1:50){
y<-c(y,rcauchy(1)+x[i])
}
model<-1m(y~x)
coefs<-coef (model)
beta<-c(beta,coefs[2])
}

Investigate the improvements from vectorising the random number genera-
tion, using 1sfit () instead of 1m(), allocating space outside the loop, using
solve(cbind(1,x),y) instead of 1sfit() and anything else that occurs to
you.

Graph labelling (substitute)
Suppose you want to plot the Gamma density function (dgamma) for a
vector of shape parameters, and label eg the graph for shape= 1 as I'(1).



par (mfrow=c(2,2))
for (i in 1:4)

curve (dgamma (x, shape=i) ,ylab=expression(Gamma(i)))

labels each curve with I'(7). Use substitute() to get the right label.

Simulation for power calculations (loops, objects)

An easy way to perform power calculations is simulation. Suppose you
are testing a drug that reduces blood pressure. You have 50 people in each
of treatment and control groups, and expect the systolic blood pressure to
have a mean of 150mmHg and standard devation of 15mmHg in the control
group, and to have a mean of 140mmHg in the treatment group.

1.

Assuming the distributions to be approximately Normal, simulate one
set of data and perform a t-test using the t.test function.

. Using the names function, look at the components of the object re-

turned by t.test. The p-value is t.test(x,y)$p.value

. Write a loop to generate data and perform a t-test 1000 times, storing

the values in a vector a. What is the power of the study (the proportion
of times the p-value is below 0.05)? Compare the results with those
given by power.t.test.

Suppose in the treated group the standard deviation were increased
to 20mmHg. The power.t.test function can’t handle this, so rewrite
your simulation to compute the power.

Suppose that instead of having a 10mmHg difference and wanting to
find the power you want to find what difference gives 80% power. This
involves trying multiple simulations to find one that gives the right
answer. Decisions involve whether to simulate new random numbers
each time or just to add or subtract a constant from each one, and
whether to program your own search routine or use uniroot.

More apply functions (apply, data structures, user interface)

e Write a version of lapply that works on a tree structure represented

as a list. Initially you can assume that the ‘leaf’ nodes are identified
by is.atomic, but this should ideally be specified by the user. Add an
option to return the result as a tree or flattened into a vector.



e Write functions reduce and accumulate to accumulate a binary op-
erator over a vector, so that reduce(x,"+") would give sum(x) and
accumulate(x,"+") would give cumsum(x). Note that a binary oper-
ator is just a function of two arguments.

e sapply() allows you to vectorise a function over one argument. Write
a mapply function that takes a variable number of lists or vectors as
arguments and applies a function to the first element of each, the second
element of each, and so on. How would you pass other fixed arguments
to this fuction?

Receiver Operating Characteristic curves (graphics, indezing, effi-
ciency).

Given a continuous test variable T' and a binary status variable D the
receiver operating characteristic (ROC) curve summarises how well 7" pre-
dicts D. They first arose in radio engineering, but now are most used in
medical diagnostics research. The ROC curve plots the true positive rate
P(T > ¢|D = 1) against the false positive rate P(T" > ¢|D = 0) for every
possible threshold c. A perfect test has true positive rate 1 and false positive
rate 0; a perfectly useless test has equal true and false positive rates.

1. For any given cutpoint the true and false positive rates can be computed

ptrue<-mean (T [D==1]>c)
pfalse<-mean(T[D==0]>c])

2. Tt is only necessary to compute this for observed values of ¢ (and -Inf).
Write a for () loop to do it.

3. Rewrite the for () loop to use sapply (). Is it faster? Easier to under-
stand?

4. Write a function to draw the ROC curve from vectors D and 7.

5. A way to speed up the calculation is to find a different algorithm. You
can rewrite P(T' > ¢|D == 1) as P(T > ¢&D ==1)/P(D ==1). The
denominator doesn’t depend on c¢. The numerator can be computed
by ordering the data appropriately and using the cumsum() command,
which produces cumulative sums of a vector.



6. The area under the ROC curve is a useful summary of the discrimatory
power of T'. How would you compute it?

7. What if you only wanted the area under the portion of the curve with
P(D = 0|T > c¢) less than, say, 0.05, because the test would never
be operated at a higher false positive rate. Update your function to
compute this partial area under the curve.

8. Make your function return a ROC object that has sensible plot and
print methods and a summary method that computes partial area un-
der the curve.

9. Use package.skeleton() to start producing an R package with these
functions.

Data to test your code can be found in the “survival” package, data(pbc).
Use bilirubin levels (T<-pbc$bili) as the test value, and define the status
as two-year survival: D<-pbc$status==1 & pbc$time<730.

Processing text (connections, memory) The output from Rprof () is a
file where each line lists the call stack at one instant in time, so the lines are
of variable length

1. If you knew the maximum line length you could use scan to read in
the data. In fact there is a bound on the line length because R has
a maximum depth of expressions, by default 500. On the other hand,
you can tell if the maximum line length you specified has been used,
by seeing if the last column is always empty, so you could use a small
bound and reread if necessary. Which is more efficient?

2. The “Self %” column is the proportion of lines in which the given
function appears first. How would you calculate it?

3. The “total %” column is the proportion of lines in which the given
function appears at all. How would you calculate it?

4. The output from Rprof () can be very very long. Using a file connection
you can read one line at a time, or some fixed number (say 1000) lines
at a time. How does the processing need to be modified to handle this?



5. How would you count the number of times a given function called
another given function? This could be used to approximate a call
graph, as there is open-source software available to lay out and draw
graphs given their nodes and edges. How about a call tree?

6. Some function names, such as FUN and <Anonymous> refer to different
functions depending on where they are called from. How would you
allow for this?

Clustered data regression (model frames/formula, language) In linear
regression with clustered data the usual estimate for § works but the standard

errors are wrong. A valid estimate of var[(] is
(x"x) " (UTU) (x7X)

where U; = 3, @i (Yie — far)-

1. Suppose we have a function mylm(formula,data) The idiom for cre-
ating model matrices is

m<-match.call()
m[[1]]<-as.name(’’model.frame’’)
m<-eval(m,parent.frame())  ## the model frame
X<-model. ,matrix(terms(formula) ,m)
Y<-model.response (m)

. -1
Write a function to compute 3 and (X X ) .

2. Now we can add a cluster= argument to the function. When con-
structing the model frame the cluster argument will automatically be
added. We can extract it with

group<-model.extract(m,’’cluster’’)

and use the rowsum() function to compute the collapsed sums U. It is
then easy to produce the correct model-robust variance matrix



3. (tricky) Suppose we wanted to put the cluster specification in the model
formula, as, say, y“x+id (group).

It would be necessary to break this into two formulas y~x and “id (group).
Look at what terms(y x+id(group),specials=’’id’’) does. The
“specials” attribute identifies which part of the “variables” attribute
is id(group). So we can identify the real variables and the clustering
variable. One approach to constructing the formulas is seen in the code
for aov in handling the Error () term: use paste to produce character
strings and then as.formula to convert them back to formulas. Try
doing this.



