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EE 341  

Lab 3: The DFT and Digital Filtering 

 

When using a digital computer, frequency analysis and filtering requires that we use 

the Discrete Fourier Transform (DFT). In this lab we spend some time becoming 

familiar with using the Fast Fourier Transform (FFT) implementation of the DFT to 

study the frequency content of a discrete-time signal.  

 

1. MATLAB function FFT  

In this problem you will learn how to use the MATLAB command fft. First, use the 

help feature in MATLAB to learn the syntax of the fft function. The FFT function 

computes the Discrete Fourier Transform (DFT) of a sequence. In general the FFT of 

a sequence will be a complex function so you will need to look at the magnitude and 

phase separately. The MATLAB commands abs and angle are useful for obtaining 

the magnitude and phase of a complex valued sequence. Also, since the FFT only has 

values at discrete frequencies, it may be useful to do the plots with stem to reinforce 

that idea, but continuous frequency plots (i.e. using plot) are often used since they 

approximate the DTFT that you are ultimately interested in. You may use either one 

for your report. 

 

The FFT outputs a sequence over the frequency range 0 2   . You are probably 

more familiar with seeing the spectrum plotted over the range      . The 

fftshift function can be used for this purpose. 

 

Plot the magnitude of the FFT of the following signal before and after fftshift:  
  

[ ] 1 cos(2 ), 0 127x n fn n     

 

for the cases where 0 25f    and 0 5f   . Use your understanding of the relation 

between discrete and continuous time to plot the magnitude of the Fourier Transform 

of the continuous time signal that these correspond to, assuming the sampling period 

is 410T  . Be sure to label the frequency axis correctly and indicate whether you are 

plotting in radians or Hertz or normalized frequency. 

 

Turn in a 2-part plot (using the subplot command) for each signal: unshifted DFT 

and shifted DFT. Each plot must have a frequency axis labeled in Hz. Discuss why 

the frequency peak locations make sense.  

 

In the second part of this assignment you will use frevalz01.m (on the class web 

page) to look at the behavior of system functions in the frequency domain. (The z-

plane is also displayed, which we study in detail later, and is the discrete-time version 

of the Laplace s-plane for continuous-time systems.) MATLAB has numerous built-in 

functions for generating discrete-time filters. In this problem we are going to use a 

few to look at how higher order systems behave in the frequency domain. This will 

give you some insight into how digital filters are designed and into the properties of 

different digital filter design algorithms. You will not be expected to understand the 

details of how these algorithms work; you only need to evaluate their behavior.  

Both the filter design programs in the problems below ask you to specify cut-offs W  

in terms of a normalized frequency 0 1W  , where 1W   corresponds to half the 

sampling frequency. In other words, 0 1W   corresponds to 0     in radians 

for the DTFT. Another way to normalize frequency, as plotted by frevalz01, is in 
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the range 0 0 5f   . Thus, a cut-off frequency of 0 5W    corresponds to 2c    

in radians and 0 25
cf    in normalized frequency on the frevalz01 frequency 

response. 

 

2. FIR (Finite Impulse Response) Digital Filters  

Use the MATLAB function fir1 to create a low pass FIR filter of order 10 with 

cutoff frequency of 0 3c   . Use frevalz01 to study the system. Turn in the 

frevalz01 plots of the system responses. Save your filter in a vector since you 

will use it again in parts 4 and 5.  

 

3. IIR (Infinite Impulse Response) Digital Filters   

Use the MATLAB function butter to create a low pass Butterworth filter with 

cut-off frequency 0 3c    and filter order of 10. How does the performance of 

this filter compare to that of the FIR filter? In this context, performance refers to 

how close a filter matches an ideal low pass filter:  
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Comment on any differences in the phase of the two filters. Turn in the 

frevalz01 plot of the system responses. Save your filter coefficients (a and b 

vectors) since you’ll use them again in part 4.  

 

4. Filter Implementation  

Use the MATLAB function filter to implement the two low pass filters you 

produced in problems 2 and 3 with the input signal 1[ ]x n  defined below. Define a 

pulse of length twenty: 

[ ] [ ] [ 20]x n u n u n    

and let 1[ ]x n  be a zero-padded version of total length 60 (so append 40 zeros on 

the end of [ ]x n  before filtering). Comment on the differences in the output of the 

two filters. Hand in plots of the time signal input and the outputs of both filters. 

 

5. FIR Filtering using the DFT and Linear Convolution 

Using your FIR filter from part 2, find the linear convolution with the 20-point 

signal [ ]x n  defined in part 4 (without zero-padding, so only 20 points long). Use 

the conv command in MATLAB. How long is the output signal? Hand in a plot 

of the time-domain signal output. 

Now you will use the DFT to compute the same convolution in the frequency 

domain. Use fft to find [ ]H k , the DFT of the FIR filter, and [ ]X k , the DFT of 

[ ]x n . Find the time-domain output signal by multiplying in the frequency domain 

and then inverting the DFT: 
y = ifft( X.*H ); 

 

The result in [ ]y n  should be the same as when you used conv. (A tiny 

imaginary part may result from quantization error. You may use real to keep the 

real part of [ ]y n .) For this problem, what is the correct choice for the DFT-size N 

when you make your calls to fft? Why is it not possible to use the DFT to find 

the output with the IIR filter from part 3? Use E-Submit to turn in your code for 

this problem, and include your code with your lab report hard copy. 


