
Spring 2013

EE 341

Lab 3: The DFT and Digital Filtering

When using a digital computer, frequency analysis and filtering requires that we use

the Discrete Fourier Transform (DFT). In this lab we spend some time becoming

familiar with using the Fast Fourier Transform (FFT) implementation of the DFT to

study the frequency content of a discrete-time signal.

1. MATLAB function FFT

In this problem you will learn how to use the MATLAB command fft. First, use the

help feature in MATLAB to learn the syntax of the fft function. The FFT function

computes the Discrete Fourier Transform (DFT) of a sequence. In general the FFT of

a sequence will be a complex function so you will need to look at the magnitude and

phase separately. The MATLAB commands abs and angle are useful for obtaining

the magnitude and phase of a complex valued sequence. Also, since the FFT only has

values at discrete frequencies, it may be useful to do the plots with stem to reinforce

that idea, but continuous frequency plots (i.e. using plot) are often used since they

approximate the DTFT that you are ultimately interested in. You may use either one

for your report.

The FFT outputs a sequence over the frequency range 0 2   . You are probably

more familiar with seeing the spectrum plotted over the range      . The

fftshift function can be used for this purpose.

Plot the magnitude of the FFT of the following signal before and after fftshift:

[] 1 cos(2), 0 127x n fn n   

for the cases where 0 25f   and 0 5f   . Use your understanding of the relation

between discrete and continuous time to plot the magnitude of the Fourier Transform

of the continuous time signal that these correspond to, assuming the sampling period

is 410T  . Be sure to label the frequency axis correctly and indicate whether you are

plotting in radians or Hertz or normalized frequency.

Turn in a 2-part plot (using the subplot command) for each signal: unshifted DFT

and shifted DFT. Each plot must have a frequency axis labeled in Hz. Discuss why

the frequency peak locations make sense.

In the second part of this assignment you will use frevalz01.m (on the class web

page) to look at the behavior of system functions in the frequency domain. (The z-

plane is also displayed, which we study in detail later, and is the discrete-time version

of the Laplace s-plane for continuous-time systems.) MATLAB has numerous built-in

functions for generating discrete-time filters. In this problem we are going to use a

few to look at how higher order systems behave in the frequency domain. This will

give you some insight into how digital filters are designed and into the properties of

different digital filter design algorithms. You will not be expected to understand the

details of how these algorithms work; you only need to evaluate their behavior.

Both the filter design programs in the problems below ask you to specify cut-offs W

in terms of a normalized frequency 0 1W  , where 1W  corresponds to half the

sampling frequency. In other words, 0 1W  corresponds to 0    in radians

for the DTFT. Another way to normalize frequency, as plotted by frevalz01, is in

Spring 2013

the range 0 0 5f   . Thus, a cut-off frequency of 0 5W   corresponds to 2c  

in radians and 0 25
cf   in normalized frequency on the frevalz01 frequency

response.

2. FIR (Finite Impulse Response) Digital Filters

Use the MATLAB function fir1 to create a low pass FIR filter of order 10 with

cutoff frequency of 0 3c   . Use frevalz01 to study the system. Turn in the

frevalz01 plots of the system responses. Save your filter in a vector since you

will use it again in parts 4 and 5.

3. IIR (Infinite Impulse Response) Digital Filters

Use the MATLAB function butter to create a low pass Butterworth filter with

cut-off frequency 0 3c   and filter order of 10. How does the performance of

this filter compare to that of the FIR filter? In this context, performance refers to

how close a filter matches an ideal low pass filter:

1, 0 3

()
0, otherwise

idealH
 


  

 


Comment on any differences in the phase of the two filters. Turn in the

frevalz01 plot of the system responses. Save your filter coefficients (a and b

vectors) since you’ll use them again in part 4.

4. Filter Implementation

Use the MATLAB function filter to implement the two low pass filters you

produced in problems 2 and 3 with the input signal 1[]x n defined below. Define a

pulse of length twenty:

[] [] [20]x n u n u n  

and let 1[]x n be a zero-padded version of total length 60 (so append 40 zeros on

the end of []x n before filtering). Comment on the differences in the output of the

two filters. Hand in plots of the time signal input and the outputs of both filters.

5. FIR Filtering using the DFT and Linear Convolution

Using your FIR filter from part 2, find the linear convolution with the 20-point

signal []x n defined in part 4 (without zero-padding, so only 20 points long). Use

the conv command in MATLAB. How long is the output signal? Hand in a plot

of the time-domain signal output.

Now you will use the DFT to compute the same convolution in the frequency

domain. Use fft to find []H k , the DFT of the FIR filter, and []X k , the DFT of

[]x n . Find the time-domain output signal by multiplying in the frequency domain

and then inverting the DFT:
y = ifft(X.*H);

The result in []y n should be the same as when you used conv. (A tiny

imaginary part may result from quantization error. You may use real to keep the

real part of []y n .) For this problem, what is the correct choice for the DFT-size N

when you make your calls to fft? Why is it not possible to use the DFT to find

the output with the IIR filter from part 3? Use E-Submit to turn in your code for

this problem, and include your code with your lab report hard copy.

