
Connexions module: m13687 1

Investigation of Aliasing Effects
∗

University Of Washington Dept. of Electrical Engineering

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

This lab investigates the e�ect of aliasing.

This development of these labs was supported by the National Science Foundation under Grant No.

DUE-0511635. Any opinions, conclusions or recommendations expressed in this material are those of the

authors and do not necessarily re�ect the views of the National Science Foundation.

1 Introduction

Aliasing literally means "by a di�erent name" and is used to explain the e�ect of under-sampling a continuous
signal, which causes frequencies to show up as di�erent frequencies. This aliased signal is the signal at a
di�erent frequency. This is usually seen as higher frequencies being aliased to lower frequencies. For a 1d
signal in time, the aliased frequency components sound lower in pitch. In 2d space, such as images, this can
be observed as parallel lines in pinstripe shirts aliasing into large wavy lines. For 2d signals that vary in
time, an example of aliasing would be viewing propellers on a plane that seem to be turning slow when they
are actually moving at very high speeds.

note: The Nyquist sampling rate is twice the highest frequency of the signal. This is the minimum
rate needed to prevent aliasing.

2 Signals and Aliasing

In Figure 1 a 500Hz cosine signal is shown in red, and an under-sampled version of the signal in blue.

Figure 1: Aliased Signal

∗Version 1.8: Nov 24, 2007 6:58 pm US/Central
†http://creativecommons.org/licenses/by/2.0/

http://cnx.org/content/m13687/1.8/



Connexions module: m13687 2

Exercise 1

To see the e�ects of aliasing on a 1kHz cosine signal create an over-sampled, under-sampled, and
critically-sampled version of the signal.

1. Plot a cosine at 1kHz showing at least twenty periods. Use a step size (sampling period) of
1/10kHz. This will be our over-sampled signal. Try playing this signal with soundsc. How
many samples are needed to make the sound last 2 seconds if the step size is 1/10kHz?

2. Plot the critically-sampled version by applying what you know about Nyquist. Make sure the
plot contains at least twenty periods and that you sample at a non-zero point. Listen to this
signal with soundsc, does it sound the same?

3. Plot the under-sampled version. Make sure the plot contains at least twenty periods. Listen
to this signal with soundsc, how does it sound now?

4. Plot all three signals stacked on top of each other using subplot. Note that the plot command
uses straight line interpolation, so your plots will not look smooth like Figure 1 (which actually
uses a much �ner sampling period an knowledge of the aliased frequency to generate the
smooth undersampled result).

3 Temporal Aliasing

Have you ever seen an old western movie and noticed that the wagon wheels appear to turn backwards even
though the coach is moving forward? This phenomenon is sometimes referred to as the wagon-wheel e�ect,
but is really an e�ect of temporal aliasing. You can see the same e�ect easily on anything with a spoked
wheel, such as wheels on a stage coach and airplane propellers.

Wagon-wheels, stage coaches, horses, and airplane propellers?? What's this have to do with signal
processing? Actually, quite a lot, not the wagon-wheels directly, but how the images of the wagon-wheels
are captured. The video you watch from a movie or tv show is actually sampled in time (hence temporal).
Typically a movie is captured at 24 frames per second (FPS).

Exercise 2

Now it's your turn to be the cinematographer. For this problem you will take an image of a
wagon-wheel and "capture" a MATLAB movie at di�erent frame rates of the wheel rotating. After
the movie is made, you will be able to play it back, and if everything worked, be able to see the
wheel spin.

A movie of a rotating wheel is a signal in time, and at each instant in time, instead of just
one point (like a normal x(t) signal), you have a whole image de�ned. Thus, if you have an image
of an arrow rotating, Figure 2, where the image rotates ten times per second, then the period
is 1/10 second, because every 1/10 second the image (signal) is at the same value again. Thus
image(t+n/10) = image(t) for all integers n.

Figure 2: Frames of rotating arrow.

http://cnx.org/content/m13687/1.8/



Connexions module: m13687 3

If an image rotates at 10 Hz (10 rotations per second), then what is the Nyquist sampling rate
so that you can reconstruct the temporal signal? Recall that the signal will be critically sampled
when using a sampling rate that is twice the highest frequency in the signal (20 Hz, in this case).
Anything above that will be over-sampled, and fewer samples/second will be under-sampled.

Check your understanding: standard �lm is captured at 24 frames per second. What's the
highest frequency of motion that can be reconstructed without aliasing?

Create three movies to show the wheel being over-sampled (appears to be rotating clockwise),
under-sampled (appears to be rotating counter-clockwise), and critically-sampled (appears station-
ary). In each case rotate the wheel at the same rate and only change the frame rate in the movie2avi
command (keep the FPS under 30).

Write a Matlab function named wheel.m to create a movie showing the spokes image (down-
load it here1 ) rotate clockwise at a constant speed. The function should take parameters to
change the frame rate and the speed of the rotation. Save the movies as wheel-oversample.avi,
wheel-undersample.avi, and wheel-critsample.avi. Label the plot with the frame rate used
for each of the movies and the degrees per frame. Here some tips below to help you get started.

• You will need to use the following Matlab commands: imread, imshow, imrotate, getframe,
and movie2avi.

note: Passing a negative angle in the imrotate command rotates clockwise, and a positive
angle rotates counterclockwise.

Another useful command you can use to help formatting labels for the �gure is sprintf. For
more information use the help system in Matlab.

• Use myImageRotated = imrotate(myImage, theta, 'bilinear', 'crop') for the rotate
command.

• One way to do this is rotate the image by a number of degrees for each frame. The angle
can be split into two variables; degPerFrame will be our speed and theta will be the actual
number of degrees to rotate for the rotate command. Remember to change degPerFrame to
re�ect the same speed when changing the frame rate. Now we can setup a for loop something
like this,

for i = 1:FPS*TIME

% rotate the image

% display the image

% label the plot showing the FPS and speed of the wheel

pause(0.01) % allows time for the plot to draw

myMovie(i) = getframe(gcf); % Capture the frame

theta = theta + degPerFrame; % Calculate the angle for next frame

end

% save the avi file

• Can you use degPerFrame to relate to degrees per second? Given some frame rate, how many
degrees pass each frame to make a rotation of 360◦ take 1 second? At a given frame rate, can
you calculate the number of frames are needed to last a given amount of time, say 3 seconds?.

1http://cnx.org/content/m13687/latest/spokes.tif

http://cnx.org/content/m13687/1.8/



Connexions module: m13687 4

• Once your for loop is done, you will need to save the movie as an avi to watch it. Use the
movie2avi function to save the movie. Why can't we just watch the wheel as it is drawing
in the for loop?

Now try the same problem with a di�erent picture of your choice. Can you get it to appear to move
backwards? Save the movie as myMovie.avi.

Show the TA the following �les:

wheel.m

wheel-oversample.avi

wheel-undersample.avi

wheel-critsample.avi

myMovie.avi

http://cnx.org/content/m13687/1.8/


