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1 Introduction

In this lab you will examine the Fourier series representation of periodic signals using mat-
lab. In particular, you’ll study the truncated Fourier series reconstruction of a periodic
function.

2 Useful matlab Commands

In addition to what you already know about matlab, you may need to use the following
commands. You’ve seen them in Lab 1, but use help to remind yourself of their syntax.

• abs – Computes the magnitude of a complex number.

• angle – Computes the phase angle of a complex number.

• stem – Draws discrete plots (as opposed to plot, which draws continuous plots).

3 Signal Synthesis

Later on in this lab you will use a Fourier series to approximate a square wave. The Fourier
series represents the sum of smooth sinusoids, but a square wave is full of sharp edges, so
this is a counter-intuitive result! Let’s start with something a little easier: synthesizing
the sound of a trumpet. Many musical instruments produce very periodic waveforms. In
particular, the pitch of certain notes is determined by specific frequencies, such as 440Hz
(which is Concert A, for tuning strings).

1Last revision: Mon May 3 02:48:54 EDT 2010
2http://www.creativecommons.org/licenses/by/2.0



3.1 Trumpet Synthesizer

First, download the trumpet sound sample called trumpet.mat from the lab webpage3. This
trumpet sound was sampled at a rate of Fs = 11,025 Hz.

Exercise 1:
• Play the trumpet sound to verify your setup.
• Plot a small section of the trumpet sound (100 samples).
This will show about three periods of the sampled signal. Is the signal periodic?
• Look at the frequency spectrum of the trumpet sound by doing the following:

>> Fs = 11025; % the sample rate is 11025 Hz

>> Y = fft(trumpet, 512); % take the FFT of trumpet

>> Ymag = abs(Y); % take the magnitude of Y

>> f = Fs * (0:256)/512; % scale the axis to be meaningful

>> plot(f, Ymag(1:257)); % plot Ymag (only half the points are needed)

>> xlabel(’Frequency (Hz)’)

>> ylabel(’Magnitude’)

The series of peaks that you see are the harmonics of the instrument.
• Use the “data cursor” tool in MATLAB’s figure window to read the graph data.
Write down the frequency and magnitude (the strength of the harmonic) for five to ten
of the strongest peaks.

You’ll now synthesize the trumpet using only the information from these peaks. Each
peak represents a scaled cosine at a particular frequency. The trumpet sound is the sum of
these (possibly infinitely many) scaled cosines.

Exercise 2:
• Create a function called addcosines that will add several cosines together and
normalize the output.
addcosines should take in three vectors: a time vector time, a vector of frequencies
freqs, and a vector of magnitudes mags.
The output should have the same dimensions as time. Furthermore, the output should
only take on the range of values [-1,1] because you will want to play it like a sound
vector.
• Verify your code by passing the inputs time = 0:1/Fs:1, freqs = [100 150], and
mags = [1 2] to addcosines. Plot the inputs and output. Are they what you expect?

3Or from http://cnx.org/content/m13854/latest/trumpet.mat
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Here are some hints for the above:

• Assume the time vector will have the form 0:1/Fs:duration, where duration is in
seconds.

• Each cosine function should look like mag(i)*cos(2*pi*freq(i)*t).

• Use a for loop to add together the cosines. You’ll have one cosine for each fre-
quency/magnitude pair in the freqs and mags vectors.

• To scale the output, recall that you did an identical thing in your mixer from Lab 2.
Alternatively, you may use soundsc this time.

Exercise 3:
• Use your addcosines function to sum the cosines specified by the peak data you
collected from the trumpet sound in the previous exercise.
• Play trumpet and your new synthesized sound. Do they sound the same?
• Use subplot to plot a small section of your new synthesized sound along with trumpet.
Do they look the same?
• Try synthesizing trumpet with fewer frequencies, then try again with more frequencies.
• How does this affect the sound of your synthesized trumpet?

3.2 That Funny Phase

Although the waveforms of your synthesized trumpet sounds look different from the origi-
nal, they ought to sound pretty similar. This should convince you that the Fourier series
coefficients are a valid approximation of the original signal! Let’s look at another example:

Exercise 4:
• Pick two harmonic frequencies and create two cosines, cos1 and cos2, at these
frequencies.
Use the time vector time = 0:1/Fs:1 with Fs = 8000, but remember that you can
only reproduce frequencies that are less than Fs/2.
• Add cos1 and cos2 to produce a signal sig1.
• Generate cos2b by time-delaying cos2 by half a cycle.
• Now create a second signal sig2 that is the sum of cos1 and cos2b.
• Use subplot to show a few cycles of sig1 and sig2. How do they compare?
What did the time delay do to the phase of sig2?
• Play both sig1 and sig2 with soundsc. How do they compare?
• Make a couple other variants of sig2 (call them sig2b, sig2c, etc) with different
delays on cos2, and compare the outputs to the original sig1.
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Exercise 5:
• Create a third cosine cos3 at an arbitrary frequency.
• Add cos3 with a quarter-cycle-delayed version of itself to generate sig3.
• Use subplot to show a few cycles of cos3 and sig3. How do they compare?
• Play both cos3 and sig3 with soundsc. How do they compare?
• What can you conclude about human hearing capabilities?

4 Truncated Fourier Series

In this exercise you’ll reconstruct the periodic function x(t), shown below in Figure 1, by
synthesizing a periodic signal from a number of Fourier Series coefficients. Along the way,
you’ll observe some similarities and differences between your reconstruction and the original
signal.

Figure 1: A periodic signal.

4.1 Gibbs Phenomena

Download the Ck.m function from the lab webpage4. This function takes one argument k ,
and computes the kth Fourier series coefficient for the square wave in Figure 1. The formula
for the coefficient is:

Ck =

{
0 if k = 0, or k is even;

1
jkπ

[cos 2kπ
3

− cos kπ
3

] if k is odd.

4Or from http://cnx.org/content/m13854/latest/Ck.m
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For example, Ck(1) = −1
jπ

= 0 + j0.3183.

Exercise 6:
• Compute the coefficients Ck for k ∈ {−10,−9, . . . , 9, 10}.
• Use subplot to show the magnitude and phase (versus frequency ω) for each coefficient.
The coefficients are a function of k, which is integer-valued, so use stem to draw the plots.

You’ve seen that a signal x(t) can be approximated with a truncated Fourier series. The
actual calculation, for a given coefficient range k ∈ {−Kmax,−Kmax+1, . . . , Kmax−1, Kmax}
is as follows:

x(t) =
Kmax∑

k=−Kmax

Cke
jkω0t

=
Kmax∑
k=0

2|Ck| cos (kω0t + ∠Ck)

The reason for using the cosine form is to avoid numerical problems and ensure a real answer.
For this example, ω0 = 1.

Exercise 7:
• Implement a function that approximates x(t) with a truncated Fourier series, as
described above. Show the TA your (commented) code.
• Compute x(t) over the time vector t = -6:.01:6 for each of the following three cases:
Kmax = 5, 15, and 30.
• Use subplot to plot all three approximations in the same figure. How do the vertical
and horizontal edges compare?

As you add more cosines to the approximation, you do get closer to the square wave (in
terms of squared error). However, at the edges there is some undershoot and overshoot that
becomes shorter in time, but the magnitude of the undershoot and overshoot stay large.
This persistent undershoot and overshoot at edges is called the Gibbs Phenomenon.

In general, this kind of “ringing” occurs at discontinuities – the sharp vertical jumps in
the square wave – when you try to synthesize a sharp edge out of too few low frequencies.
Another view is that low-pass filtering will trigger the ringing or Gibbs Phenomenon. If you
start with a real signal and filter out its higher frequencies, then this is equivalent to going
the other way and synthesizing the signal from low frequencies– which is what you just did
in the last exercise!

As an example, higher frequencies are usually removed when compressing an audio signal
(that is, the audio signal is low-pass filtered). Then, if there is an impulse edge or ”attack”
in the music, ringing will occur. However, the ringing (called ”pre-echo” in audio) can be
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heard only before the attack, because the attack masks the ringing that comes after it (this
masking effect is psychoacoustic; it happens in your head). High-quality MP3 systems put
a lot of effort into detecting attacks and processing the signals to avoid pre-echo.

5 Links

This applet5, from the National Taiwan University, provides a great interface for listening
to sinusoids and their harmonics.

eof

5http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=33

6


