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Teacher's Corner 

Is Human Height Bimodal? 
Mark F. SCHILLING, Ann E. WATKINS, and William WATKINS 

The combined distribution of heights of men and women has 
become the canonical illustration of bimodality when teaching 
introductory statistics. But is this example appropriate? This ar- 
ticle investigates the conditions under which a mixture of two 
normal distributions is bimodal. A simple justification is pre- 
sented that a mixture of equally weighted normal distributions 
with common standard deviation a is bimodal if and only if the 
difference between the means of the distributions is greater than 
2a. More generally, a mixture of two normal distributions with 
similar variability cannot be bimodal unless their means differ 
by more than approximately the sum of their standard deviations. 
Examination of national survey data on young adults shows that 
the separation between the distributions of men's and women's 
heights is not wide enough to produce bimodality. We suggest 
reasons why histograms of height nevertheless often appear bi- 
modal. 

KEY WORDS: Bimodal distribution; Living histogram; Nor- 
mal distribution. 

1. THE DISTRIBUTION OF HUMAN HEIGHT 

Brian Joiner's (1975) living histogram (Figure 1) of his stu- 
dents at Penn State grouped by height inspired the standard 
classroom example of bimodality resulting from a mixture of 
two populations. 

Although the separate distributions of his male and female 
students are approximately normal, the histogram of men and 
women together is clearly bimodal. Joiner wrote, "Note that this 
histogram has a bi-modal shape due to the mixing of two sepa- 
rate groups, males and females." This appealing idea appears in 
several introductory textbooks: 

"A histogram of the heights of students in a statistics class would be bimodal, 
for example, when the class contains a mix of men and women." (Iversen and 
Gergen 1997, p. 132) 

"Bimodality often occurs when data consists of observations made on two 
different kinds of individuals or objects. For example, a histogram of heights of 
college students would show one peak at a typical male height of roughly 70" 
and another at a typical female height of about 65"." (Devore and Peck 1997, 
p. 43) 

"If you look at the heights of people without separating out males and fe- 
males, you get a bimodal distribution ..." (Wild and Seber 2000, p. 59) 

Still other textbooks include a problem that asks students to 
predict the shape of the height distribution of a group of stu- 
dents when there are an equal number of males and females. 
The expected answer is "bimodal." The distribution of height 
offers a plausible example of bimodality and is easy for students 
to visualize. 

Rather than sending our students out onto the football field a 
la Joiner to demonstrate bimodality, we decided to get some 

Figure 1. Joiner's living histogram of student height. 

government data and construct the approximate theoretical den- 
sity function for the mixture of the male and female popula- 
tions. The most recent National Health and Nutrition Exami- 
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males in the 20-29 age bracket (U. S. Census Bureau 1999). 
The data for each sex have the means and standard deviations in 
Table 1 and each follow a normal distribution reasonably well. 

Table 1. Summary Statistics for NHANES Height Data 

Mean SD* 

Males 69.3 2.92 
Females 64.1 2.75 

*Standard deviations were computed from the cumulative distributions, as they were not 

supplied by NHANES. 

Using the NHANES means and standard deviations as param- 
eters for two normal densities and assuming equal numbers of 
each sex, we get the graph in Figure 2 for the theoretical mixture 
distribution of height for persons aged 20-29. 

55 60 65 70 75 80 
Figure 2. Theoretical distribution of U.S. young adult human height in 

inches as a mixture of two normal distributions using means and standard 
deviations from NHANES data. 

This obviously is not a bimodal distribution! Yet Joiner's liv- 
ing histogram shows two clear peaks. We start our investigation 
of this paradox by studying the modality of a mixture of two 
unimodal densities, with particular focus on normal densities. 

2. AN INVESTIGATION OF BIMODALITY 

Most students are willing to believe that the mixture of two 
unimodal densities with differing modes will necessarily be bi- 
modal, as each of the component modes will generate a peak in 
the mixture distribution. It is quite easy to show that this is not 
the case. Consider a mixture of two triangular distributions, as 
shown in Figure 3. If neither distribution's support overlaps the 

Figure 3. Dashed lines represent an equal mixture of the component 
distributions (solid lines). 

other's mode (Figure 3a), then the mixture distribution is indeed 
bimodal. However, if each mode is contained within the support 
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of the other distribution (Figure 3b), then outside the compo- 
nent modes the mixture is monotone, while between modes the 
mixture is the sum of two linear functions, hence is itself linear. 
Thus the mixture is not bimodal. 

Now consider mixture densities of the form f(x) = pfl (x) + 
(1 -p)f2(x), where fl and f2 are each normal densities with 
means p1 < 12 and variances o2 and -2, respectively, and 0 < 
p < 1. Consider first the simplest situation where a2 = oj2 = a2 
and p = 0.5. If I1t and I2 are far apart, then f clearly will be 
bimodal, resembling two bell curves side by side. This certainly 
happens when 12 - P1 is greater than about 6a. Furthermore, 
it is easy to see that the modes of f occur not at 1I and I2, but 
between them: Both fl and f2 are strictly increasing below pi, 
so f has positive derivative there. At p1i, fi has a derivative of 
zero and f2 is increasing, so f has positive derivative at 111. Thus 
any mode must be larger than /t1. Similarly, any mode must be 
smaller than 12- 

But what happens when I,1 and I2 are much closer together? 
The result for this case is generally credited to Cohen's (1956) 
problem in the American Mathematical Monthly, but dates back 
at least to Helguerro (1904): 

Theorem 1. (Helguerro 1904). Let fl and f2 be normal den- 
sities with respective means It1 and 12 and common variance 
a2, and let f be the mixture density 0.5 fi + 0.5 f2. Then f is 
unimodal if and only if I12 - 1t l < 2ca. 

Helguerro and the Monthly include a proof of the seemingly 
obvious fact that a mixture of two normal densities must be 
either unimodal or bimodal. With that assumption, a simpler 
justification of Theorem 1 appears below. 

Proof: A normal density is concave down between its inflec- 
tion points Iu ? a and concave up elsewhere. Note that f is 
symmetric around m = (1I + 1U2)/2. Now if 112 - 11I > 2a, 
then both fl and f2 are concave up at m, hence so is f. Therefore 
f has a local minimum at m, which implies that f is bimodal. 
Conversely, if I12 - lI < 2c, then both fl and f2 are concave 
down at m, hence so is f. Thus, f has a local maximum at m and 
is therefore unimodal. In the borderline case 1t2 - 11 = 2a the 
second derivative of f vanishes, but the fourth derivative can be 
used to show that f has a maximum at m and thus is unimodal. 

a b 

m m 
Figure 4. (a) When pi1 - I|21<2a, both normal components (light 

lines) are concave down at m = (i 1 + IL2)/2, so the mixture f (heavy 
line) is also concave down at m and is therefore unimodal. (b) When 
Il1 - 12 1>2a, both components are concave up at m, so the mixture f 
is also concave up at m, hence is bimodal. The dots indicate inflection 
points of the component densities. 

Figure 4 illustrates this argument that a two standard devi- 
ation separation between the means is needed for bimodality. 
The symmetry in Figure 4 is crucial and so this proof does not 
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Table 2. The Mixture Density f = pf1 + ( 1 - p)f2 Is Bimodal If and Only 
If 1P2 - 11\ Exceeds (af1 + 02) Times the Value Indicated 

oai/2 p= 0.3 p= 0.4 p= 0.5 p= 0.6 p= 0.7 

1.00 1.36 1.22 1.00 1.22 1.36 
0.95 1.35 1.20 1.08 1.24 1.36 
0.9 1.34 1.16 1.11 1.25 1.36 
0.8 1.29 1.01 1.15 1.26 1.35 
0.7 1.18 1.06 1.16 1.24 1.32 
0.6 0.96 1.06 1.13 1.20 1.26 
0.5 0.96 1.03 1.08 1.14 1.19 

generalize to the case when o-2 V= oV2, as with the heights of men 
and women, or when there is an unequal mixture of fl and f2, 
which will occur more often than not in classroom experiments. 

The modality of an arbitrary mixture of two normal den- 
sities involves a complex interplay between the difference in 
means, the ratio of the variances, and the mixture propor- 
tions. Strong conditions for unimodality/bimodality were de- 
rived by Eisenberger (1964) and Behboodian (1970). Robert- 
son and Fryer (1969; reproduced by Titterington, Smith, and 
Makov 1985) obtained precise specifications of when bimodal- 
ity occurs. (See also Kakiuchi (1981) and Kemperman (1991), 
who addressed the question without the normality assumption.) 
We have attained bimodality conditions equivalent to those of 
Robertson and Fryer, although we derive and present them quite 
differently. These results follow from the observation that in 
order for a mixture f(x) of normal densities to be bimodal 
there must be at least one value x where f(x) satisfies both 
f'(x) = 0 and f"(x) > 0, so that f(x) possesses a rel- 
ative minimum. Solving pf(x) + (1 - p)f2(x) 0 and 

pf '(x) +(1 -p)f2 (x) > 0 simultaneously yields the inequality 
f2 (x)/f (x) < f2 (x)/ft(x). After extensive algebraic manip- 
ulations of this inequality, we obtain the following generalization 
of Theorem 1. 

Let r = o-2/U2 and define the separation factor S(r) to be 11 22al ~ll IL ttUU CIJLV J\ VV 

S(r)= 

Figure 5 shows that S(r) is close to 1 for cases in which the 
component variances are at all similar (as with heights), thus 
giving us the following rule of thumb: 

Regardless of the mixture proportion p, a mixture of two nor- 
mal densities with approximately equal variances cannot be bi- 
modal if the separation in means is much less than the sum of 
the component standard deviations. 

Although Figure 5 indicates that bimodality occurs for cer- 
tain mixture proportions if the separation in means is less than 
or equal to al + 02, for most mixture proportions a somewhat 
greater separation is required. Table 2 gives the factor for al +7a2 
that separates unimodal and bimodal mixtures of normal densi- 
ties for specific values of the mixture proportion p and various 
choices of C0l/r2. For example, if 1/02 = 0.9 and p = 0.6, 
then the mixture is bimodal if the means are farther apart than 
1.25(al + 0-2); if not, it is unimodal. 

Mixtures that are bimodal when the separation in means is 
less than the sum of the standard deviations have only a slight 
dip if the standard deviations are at all similar. Figure 6 shows 
the mixture with the most pronounced dip possible among all 
mixtures of two normal densities in which 0.6 < o1l/02 < 1. 

Figure 6. Mixture of two normal densities with a1 = 0.6022, I12--L 1 = 

a1 + 02, p = .288. This density has the most pronounced dip of any 
mixture in which 0.6 < U1/c2 < 1 and 12 - 11i <_ 1 + + 2- 

-2 + 3r+3r2 - 2r3 + 2(1 - r + r2)2 

v(1 + Vr) 

Then the mixture density f pfl + (1 -p) f2 is unimodal for all 
p if and only if 1/2- 1 | < S(r)( l + U2). Note that S(1) = 1, 
which for the case p = 0.5 yields Theorem 1. 

S 
1.00 

0.75 

0.50 

0.25 

1 2 4r 
Figure 5. Separation factor S(r) needed for possible bimodality of a 

mixture of two normal densities, where r is the ratio of their variances. If 

\L2 - A 11 < S(r)(a-1 + (2), any mixture proportion results in unimodality. 

3. THEORY VS. DATA 

Although the theoretical and numerical results of Section 2 give 
some guidelines for when a mixture density might be unimodal 
or bimodal, the modality issue becomes more complex when 
one is dealing with actual data such as students' heights. The 

study of bimodality and multimodality for data has a long and 
extensive history, beginning with Pearson (1894). Many inves- 

tigators have developed methods for resolving the distribution 
into its underlying (typically Gaussian) components, as well as 

testing whether the number of these components is greater than 
one. See Holgersson and Jomer (1978), Everitt and Hand (1981), 
and Titterington, Smith, and Makov (1985) for good overviews 
of the subject and extensive references. 

This section focuses on the modality of human height as it 

appears in sample data. In particular, why is Joiner's living his- 

togram bimodal? If we look at the NHANES data of female 
and male heights, al/0r2 = 2.75/2.92 = 0.94. According to 
the second row of Table 2, a separation in means of at least 

1.08(2.75 + 2.92) = 6.1 inches is necessary for bimodality of 
the corresponding mixture distribution for most typical class- 
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Figure 7. Living histogram of 143 student heights at University of Connecticut. 

room proportions of males and females. But the difference of 
5.6 inches in the men's and women's means in Joiner's sample 
(Figure 1) is less than that. 

Yet Joiner is not the only professor to get a bimodal distri- 
bution when male and female heights are combined. The living 
histogram in Figure 7, which appeared in The Hartford Courant 
(1996), Crow (1997), and Wild and Seber (2000), shows the male 
and female genetics students of Linda Strausbaugh at the Univer- 
sity of Connecticut in 1996. Crow writes, "Since both sexes are 
included, the distribution is bimodal." The effect is somewhat 
bimodal, but only slightly. The StatLab (Hodges, Krech, and 
Crutchfield 1975) data of 1296 male and 1296 female heights 
in the San Francisco Bay area also appear somewhat bimodal. 
We now consider possible reasons for this discrepancy between 
data and theory. 

3.1 Bad Parameters 

We cannot say for sure that the NHANES means and standard 
deviations in Table 1 apply precisely to college students. The 
NHANES sample consists only of around 600 of each sex aged 
20-29 and the heights are self-reported. College students are not 
demographically identical to the general population aged 20-29. 
And Joiner's histogram was made 20 years before the NHANES 
study. 

However, theoretical mixtures that use the sample means, 
standard deviations, and mixture proportions from the Joiner 
and Strausbaugh samples as parameters are still not bimodal. 
For Joiner's photograph, we found means of 64.6 inches for 
females and 70.2 inches for males, and respective standard de- 
viations of 2.6 and 2.8 inches. The group is 54% female. (We 
are uncertain about the exact counts for some heights but not 
enough to affect the analysis significantly.) The difference in 
means is 5.6 inches, which slightly exceeds the sum of the sd's, 
5.4 inches, but the separation needed for bimodality in this case 
is about 1.12(ai + J2) = 6.05 inches. 

The computed means and standard deviations in inches for 
Strausbaugh's students are 64.8 and 2.7 for females and 70.1 
and 3.0 for males; the mixture is about 45% female. Here the 
difference in means is not even as large as the sum of the sd's, 
and is again too small for bimodality. Figure 8 shows a mix- 
ture of two normal distributions with the same means and stan- 

dard deviations as the Strausbaugh sample and the same mixture 

proportion-it could easily pass for a bell curve, although the 

top is slightly less peaked. 

55 60 65 70 75 80 
Figure 8. Mixture of two normal densities with the same means, stan- 

dard deviations, and mixture proportions as the Strausbaugh sample. 

Indeed, unimodality is quite robust: as the means of the com- 

ponent normal densities separate, any bimodality remains quite 
unremarkable at first (see Figure 9). For an equal mixture of 

two normal densities having the same standard deviation a to 

have a dip of 36%, like that in the Joiner histogram, requires a 

separation in means of about 3a. 

-4 -2 2 4 
Figure 9. Six equal mixtures (p = .5) of two normal densities. Each 

component has a standard deviation of 1. The values of 1\/2 - l1 1 are 
2.0, 2.2, 2.4, 2.6, 2.8, and 3.0. 
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3.2 Bad Model 

The normal distribution is only an approximation to the dis- 
tribution of human height. What if the true distribution within 
each sex is somewhat different? Kemperman (1991) provided 
necessary and sufficient conditions for a mixture of unimodal 
component densities satisfying certain weak prerequisites to be 
itself unimodal. These constraints are rather complex; however 
the concavity arguments of Theorem 1 lead easily to a simple 
condition for the possibility of a bimodal mixture when normal- 
ity is not assumed: 

Theorem 2. Let fl and f2 be continuous and differentiable 
densities on the real line. Let fl be decreasing and concave up for 
x > P, and let f2 be increasing and concave up for x < Q, where 
P < Q. Then there exist mixtures f(x) = pfi (x)+(1l-p) f2 (x) 
that are not unimodal. 

Proof: Let x be any point in the interval (P, Q). Since at x, 
fl is decreasing and f2 is increasing, it is possible to choose p 
so that f'(x) - pf (x) + (1 -p)f2(x) 0. In addition, f is 
concave up in (P, Q) since fl and f2 are. Thus f has a local 
minimum at x, hence is not unimodal. 

For example, it is known that there are somewhat more very 
tall and very short people than what would be found for a perfect 
normal distribution, and so a properly scaled t distribution might 
be a reasonable alternative model. Student's t distribution with v 
degrees of freedom has inflection points at ? V/2v/(2v + 1). An 
equal mixture of two t distributions shifted apart by more than 
2 /2v/(2v + 1) therefore satisfies the conditions of Theorem 2 
with its local minimum occurring at the center of symmetry of 
f, and the mixture is bimodal. For the t distribution with v 
10, the required separation is 2/2 .10/(2 -10 + 1) = 1.95. 
This distribution has a standard deviation of /v/(v - 2) = 
1.12. The distributions of the heights of males and of females 
have standard deviations of approximately 2.8 inches. Thus the 
means need to be separated by (1.95)(2.8/1.12) = 4.9 inches, 
less than what is required with the normal model. The mean 
difference in the NHANES data is 5.2 inches, so with the t model, 
bimodality would result, though the dip would be very small. 
The available percentiles from NHANES, however, actually fit 
the normal model better than a t model with small to moderate 
degrees of freedom. 

Frequency 

15- 

10- 

^ lli 
64 68 72 

7 I 
76 

Height in Inches 
Figure 10. Self-reported heights of 77 male students at U.C. Davis. 

3.3 Bad Data 

We cannot be confident that the students lined up at their 
actual heights. For example, Figure 10 shows the heights of the 
men in a class at the University of California at Davis (Saville 
and Wood 1996). The instructor sent a sheet of paper around 
the class and asked students to record their height and gender. 
The spike at six feet cannot reasonably be attributed to chance 
variation, and it looks very much like students an inch or two 
shorter rounded their heights up to six feet. 

Separating the University of Connecticut students by gender 
shows that the impression of bimodality is largely due to a spike 
in women's heights at 5' 6" and spikes in men's heights at 5' 10" 
and six feet, apparently popular heights when lining up with 
classmates. The Joiner sample also has a modest peak at six 
feet. 

More subtly, students must round their height to inches. If men 
like to be thought of as taller and women prefer to be thought of 
as shorter (more likely for the women in 1975 than today), then 
it would be reasonable for the men to round their heights up to 
the next inch and for the women to round down to the next inch. 
That would produce an extra 1" separation between the means 
compared to rounding to the nearest inch. The resulting mixture 
is bimodal, although the dip is so slight (just 0.16% below the 
lower relative maximum) as to be nearly undetectable. Figure 
11 is the counterpart of Figure 2 but with an extra one-inch 
separation in the means. 

Figure 11. Theoretical distribution of U.S. young adult human height, 
if males round up to the next inch and females round down. 

3.4 Bad Bins 

Related to the issue of how students round their heights is the 
broader issue of placing continuous data into bins. When us- 

ing a histogram to determine whether a set of data has multiple 
modes, certain bin widths can hide the bimodal structure of the 
data. For example, Wand (1997) showed how the S-Plus default 
bandwidth oversmooths a histogram of British incomes. But we 
have the opposite problem-the smooth, mound-shaped distri- 
bution of Figure 1 being placed into one-inch bins and apparently 
coming out bimodal. The width of the bins cannot explain that. 

3.5 Variability Due to Sampling 

The earliest living histogram that we can find (Figure 12) 
shows the heights of students at Connecticut State Agricultural 
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Figure 12. Living histogram of 175 male college students (Blakeslee 1914). 

College (now the University of Connecticut). It looks bimodal 
too, with modal heights at 5' 8" and 5' 1"-but these students 
were all men! The explanation is not bad parameters, a bad 
model, or bad data: "Each of the 175 students shown ... was 
measured in his stocking feet and placed in the rank to which 
his height most nearly corresponded" (Blakeslee 1914). What 
could explain this? 

The distribution of bin counts in a histogram is a multinomial 
random variable with cell probabilities determined from the un- 
derlying distribution. There is more variability in the bins that 
have the larger counts than in the bins that have smaller counts. 
A density that is the sum of two normal densities with nearly 
equal standard deviations and means that are almost two stan- 
dard deviations apart is mound-shaped with a relatively flat top. 
In the case of an equal mixture of two normal densities with 
parameters matching the NHANES data, only six bins (64" to 
69") hold the middle 53% of the heights and their relative fre- 
quencies are quite similar: 0.085, 0.092, 0.093, 0.092, 0.088, and 
0.083. With this relatively constant central region, small number 
of bins, and high variability in their counts, it will not be unusual 
for samples to give two nonadjacent bins that appear taller than 
the others. 

The destruction of smoothness by sampling is well known. 
Murphy (1964) constructed 12 histograms for samples of 50 
random normal deviates. All but about four have enough irreg- 
ularity to be reasonably called bimodal. We generated a number 
of simulated histograms of heights ourselves; very few had a 
clear unimodal appearance. The literature establishes that using 
the multimodality of a histogram to infer multimodality of the 
underlying distribution is unreliable unless the sample size is 
very large. Both false positive and false negative errors occur 
frequently. 

3.6 Selection Bias 

Although the living histogram of heights is often used as an 
example of a bimodal situation, we have seen only two actual 
photographs that purport to show this bimodality. One can only 
wonder how many instructors got their students out on the foot- 

ball field and found themselves with nothing interesting to pho- 
tograph. 

4. SUMMARY 

A mixture of two normal densities will not be bimodal unless 
there is a very large difference between their means, typically 
larger than the sum of their standard deviations. If male and 
female heights are even approximately normally distributed with 
means and standard deviations close to those reported by the 
NHANES survey, the difference between the means of male 
and female heights is not enough to produce bimodality. Yet 
photographs of living histograms do show bimodality. 

We have discussed several reasons why a histogram of male 
and female heights may have a bimodal appearance even though, 
using reasonable estimates of the parameters, theory says the 
underlying distribution is mound-shaped. For example, the ten- 
dency of students to favor certain values when self-reporting 
their height may contribute to the phenomenon. And when tak- 
ing small random samples from a mound-shaped distribution, it 
is common to get a histogram that looks bimodal. 

So what's an instructor to do if he or she decides tojettison this 
compelling example? We haven't been able to find an equally 
appealing classroom demonstration of bimodality as the mixture 
of two populations. 

We ran some simulations to see what conditions would be 
likely to give consistent representations of true bimodality in a 
classroom experiment. With equal standard deviations and sam- 
ple sizes of 25 or more per group, a separation in the means of 
about three standard deviations usually produces good results 
when using around 15-20 intervals. Occasionally the histogram 
is too irregular to be clearly identified as bimodal, and in rare 
instances looks more unimodal than bimodal. Such cases are of 
course more rare for larger sample sizes than for small ones. 
Perhaps a reader will be able to provide an easy-to-implement 
classroom demonstration having approximately this degree of 
separation between the components. 

[Received May 2001. Revised August 2001.] 

228 Teacher's Corner 



REFERENCES 

Behboodian, J. (1970), "On the Modes of a Mixture of Two Normal Distribu- 
tions," Technometrics, 12, 131-139. 

Blakeslee, A. F. (1914), "Corn and Men," The Journal of Heredity, 5, 511-518. 
Cohen, A. C. (1956), "Compound Normal Distribution" (Advanced Problems 

and Solutions), American Mathematical Monthly, 63, 129. 
Crow, J. F. (1997), "Birth Defects, Jimson Weeds and Bell Curves," Genetics, 

147, 1-6. 
Devore, J., and Peck, R. (1997), Statistics: The Exploration and Analysis of 

Data, Belmont, CA: Duxbury. 
Eisenberger, I. (1964), "Genesis of Bimodal Distributions," Technometrics, 6, 

357-364. 
Everitt, B. S., and Hand, D. J. (1981), Finite Mixture Distributions, London: 

Chapman and Hall. 
The Hartford Courant (1996), "Reaching New Heights," November 23, 1996; 

photo by K. Hanley. 
Helguerro, F. (1904), "Sui Massimi Delle Curve Dimorfiche," Biometrika, 3, 

85-98. 

Hodges, J. L. Jr., Krech, D., and Crutchfield, R. S. (1975), StatLab: An Empirical 
Introduction to Statistics, New York: McGraw-Hill. 

Holgersson, M., and Jorner, U. (1978), "Decomposition of a Mixture into Two 
Normal Components: A Review," International Journal ofBio-Medical Com- 
puting, 9, 367-392. 

Iversen, G. R., and Gergen, M. (1997), Statistics, the Conceptual Approach, 
New York: Springer. 

Joiner, B. L. (1975), "Living Histograms," International Statistical Review, 3, 

339-340. 
Kakiuchi, I. (1981), "Unimodality Conditions of the Distribution of a Mixture of 

Two Distributions," Kobe University. Mathematics SeminarNotes 9,315-325. 

Kemperman, J. H. B. (1991), "Mixtures with a Limited Number of Modal In- 
tervals," The Annals of Statistics, 19, 2120-2144. 

Murphy, E. A. (1964), "One Cause? Many Causes? The Argument from the 
Bimodal Distribution," Journal of Chronic Diseases, 17, 301-324. 

Pearson, K. (1894), "Contribution to the Mathematical Theory of Evolution," 
Philosophical Transactions of the Royal Statistical Society of London, Ser. A, 
185,71-110. 

Robertson, C. A., and Fryer, J.G. (1969), "Some Descriptive Properties of Nor- 
mal Mixtures," Skandinavian Aktuarietidskrift, 52, 137-146. 

Saville, D. J., and Wood, G. R. (1996), Statistical Methods: A Geometric Primer, 
New York: Springer, 66. 

Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985), StatisticalAnalysis 
of Finite Mixture Distributions, Chichester: Wiley. 

U.S. Census Bureau (1999), Statistical Abstract of the United States: 1999. Table 
#243, p. 155. Source of table: U.S. National Center for Health Statistics, un- 

published data. Data apparently reorganized from: U.S. Department of Health 
and Human Services (DHHS), National Center for Health Statistics, Third Na- 
tional Health and Nutrition Examination Survey, 1988-1994, NHANES III 
Laboratory Data File. Public Use Data File Documentation Number 76200. 
Hyattsville, MD: Centers for Disease Control and Prevention, 1996. 

Wand. M. P. (1997), "Data-Based Choice of Histogram Bin Width," The Amer- 
ican Statistician, 51, 59-64. 

Wild, C. J., and Seber, G. A. F. (2000), Chance Encounters: A First Course in 
Data Analysis and Inference, New York: Wiley, pp. 58-60. 

The American Statistician, August 2002, Vol. 56, No. 3 229 


	Cover Page
	Article Contents
	p.223
	p.224
	p.225
	p.226
	p.227
	p.228
	p.229

	Issue Table of Contents
	American Statistician, Vol. 56, No. 3, Aug., 2002
	Front Matter
	Statistical Practice
	A Preliminary Investigation of Maximum Likelihood Logistic Regression versus Exact Logistic Regression [pp.163-170]
	A Note on the Use of Marginal Likelihood and Conditional Likelihood in Analyzing Clustered Data [pp.171-174]

	Quantitative Analysis of Literary Styles [pp.175-185]
	Probability Inequalities Related to Markov's Theorem [pp.186-190]
	Measuring Dependency with Volume Tests [pp.191-195]
	On the Sensitivity of Bayes Factors to the Prior Distributions [pp.196-201]
	Median of the p Value under the Alternative Hypothesis [pp.202-206]
	Bayesian Design of "Successful" Replications [pp.207-214]
	Hypothesis Testing about Proportions in Two Finite Populations [pp.215-222]
	Teacher's Corner
	Is Human Height Bimodal? [pp.223-229]
	Beyond Traditional Statistical Methods [pp.230-233]

	Statistical Computing and Graphics
	Statistical Computing Software Reviews
	Section Editor's Notes [p.234]
	An Examination of Statistical Software Packages for Categorical Data Analysis Using Exact Methods [pp.235-246]

	Reviews of Books and Teaching Materials
	untitled [p.247]
	untitled [p.248]
	untitled [p.248]
	untitled [pp.248-249]
	untitled [pp.249-250]
	untitled [pp.250-251]
	untitled [p.251]

	Letters to the Editor
	Winkler, R. L., Smith, J. E., and Fryback, D. G. (2002), "The Role of Informative Priors in Zero-Numerator Problems: Being Conservative versus Being Candid," The American Statistician, 56, 1-4: Comments by Browne and Eddings and Reply [pp.252-253]
	Barker, L., Rolka, H., Rolka, D., and Brown, C. (2001), "Equivalence Testing for Binomial Random Variables: Which Test to Use?" The American Statistician, 55, 279-287: Comment by Martín Andrés and Herranz Tejedor and Reply [pp.253-254]
	Khuri, A., and Casella, G. (2002), "The Existence of the First Negative Moment Revisited," The American Statistician, 56, 44-47: Comment by Terpstra and Reply [pp.254-255]
	McCue, K. F. (2001), "The Statistical Foundations of the EI Method," The American Statistician, 55, 106-110: Comment by Lewis and Reply [pp.255-257]

	Correction: Displays for Direct Comparison of ARIMA Models [pp.258-260]
	Back Matter



