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Chapter 4:  Probability

Forms the foundation for the inferential 
methods we will learn

Rare Event Rule for Inferential 
Statistics
Give a particular assumption, if the 
probability of a particular observed 
event is extremely rare, we conclude that 
the assumption is probably not correct.

Ex:  Consider tossing a fair coin.

What assumption are we making?

Rare Event Rule

Ex:  Consider tossing a fair coin.
For an individual toss of the coin we are 
assuming that probability of heads = 
probability of tails = 0.5

If after 100 tosses we observe:

TTTTHHTTHTHTTHHTHHTTHTTTTTTHH
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THTTHTTTHHHHHTHHHTHTTHHHHHHT
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What might we conclude?

Rare Event Rule

Ex:  Consider tossing a fair coin.
For an individual toss of the coin we are 
assuming that probability of heads = 
probability of tails = 0.5

If after 100 tosses of a different coin we 
observe:

THHTTTTHHTTTTTTTTTTTTTTHTTHTH 
TTTTTHHHTTTTTHTTTTTTHTTTTTTTT 
TTTTTTTTHTTTTTHTTTTHTTTTHTTTT 
THTTTTHTTTHTT

What might we conclude?

Basic Definitions

Toss a coin three times and record the 
sequences of  heads (H) and tails (T)

S = sample space;  
The set of all 
possible outcomes 
from a procedure —
all simple events

HHH   HHT   HTH   THH

HTT    THT   TTH   TTT

Simple event or 
sample point –
one possible 
outcome that 
cannot be broken 
down into simpler 
components

Event:  a 
collection of 
outcomes—
all outcomes 
resulting in 
two heads 
and one tail

Notation

• P denotes probability 

• Capital letters such as A, B, C, 
… denote specific events

• P(A) denotes the probability of 
event A occurring

Rule 1

The Relative Frequency 
Interpretation of Probability

Define the probability of a specific 
outcome as the proportion of times 
it would occur over the long run
(relative frequency of that 
particular outcome)

Applies to situations that you can 
imagine repeating many times
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Rule 1 Example

  number of times  occurred

number of times the trial was repeated

A
P A 

Define A to be the event “2 tails in a 
toss of three coins”

We toss the three coins 25 times and 
observe 7 sets that have 2 tails

  ?P A 

  7
0 28 or 28

25
P A . % 

Rule 2

Classical Approach to 
Probability

• Assume that a procedure has n 
different simple events
(n possible outcomes)

• Each of the n outcomes are 
equally likely

• If event A can occur in s of the n
ways, then

  number of ways  can occur

number of different simple events

A s
P A

n
 

Rule 2 Example

Consider the tossing three coins 
experiment

Define A to be the event “2 tails in a toss 
of three coins”

How many ways can A occur?  

HTT THT   TTH

How many different simple events are 
there?

HHH   HHT   HTH   THH   HTT   THT   
TTH   TTT

  ?P A 

  3
0 375

8
s

P A .
n

  

Law of Large Numbers

As a procedure is repeated many, 
many times, the relative frequency 
probability (from Rule 1) of an 
event tends to approach the actual 
probability (Rule 2 for equally 
likely outcomes)

Assigning Probabilities

• A value between 0 and 1 written 
either as a fraction or as a 
decimal fraction. 

• For the complete set of distinct 
possible outcomes of a random 
circumstance, the total of the 
assigned probabilities must 
equal 1.

• The Personal Probability 
Interpretation

• Personal probability of an 
event--the degree to which a 
given individual believes the 
event will happen--sometimes 
termed subjective probability

• Restrictions on personal 
probabilities:
 Must fall between 0 and 1

(or between 0 and 100%)
 Must be coherent

Rule 3
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Why Study Probability?

• Want to be able to make 
inferences about a population 
from a sample or samples

• Probability will allow 
inferences with a measure of 
reliability (or uncertainty) for 
the inferences

• Initially, we will assume that 
the population is known and 
will calculate the probability of 
observing various samples from 
the population; i.e., use the 
population to infer the 
probable nature of the sample
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