Chapter 4: Probability

Forms the foundation for the inferential methods we will learn

Rare Event Rule for Inferential Statistics

Give a particular assumption, if the probability of a particular observed event is extremely rare, we conclude that the assumption is probably not correct.

Ex: Consider tossing a fair coin.

What assumption are we making?

Rare Event Rule

Ex: Consider tossing a fair coin. For an individual toss of the coin we are assuming that probability of heads = probability of tails = 0.5

If after 100 tosses we observe:

What might we conclude?

Rare Event Rule

Ex: Consider tossing a fair coin. For an individual toss of the coin we are assuming that probability of heads = probability of tails = 0.5

If after 100 tosses of a different coin we observe:

What might we conclude?

Notation

· P denotes probability

- Capital letters such as *A*, *B*, *C*, ... denote specific events
- *P*(*A*) denotes the probability of event *A* occurring

Rule 1

The Relative Frequency Interpretation of Probability

Define the **probability** of a specific outcome as *the proportion of times it would occur over the long run* (**relative frequency** of that particular outcome)

Applies to situations that you can imagine repeating many times

Rule 1 Example number of times A occurred $P(A) = \frac{\text{number of times } A \text{ occurred}}{\text{number of times the trial was repeated}}$ Define A to be the event "2 tails in a toss of three coins We toss the three coins 25 times and observe 7 sets that have 2 tails P(A) = ? $P(A) = \frac{7}{25} = 0.28 \text{ or } 28\%$

Consi experi	der the tossing three coins iment
Defin of thre	e A to be the event "2 tails in a toss ee coins"
How	many ways can A occur?
	HTT THT TTH
How there?	many different simple events are
HHH TTH P(HHT HTH THH HTT THT TTT A) = ?
Р(.	$A = \frac{s}{r} = \frac{3}{8} = 0.375$

Assigning Probabilities

- A value between 0 and 1 written either as a fraction or as a decimal fraction.
- For the complete set of distinct possible outcomes of a random circumstance, the total of the assigned probabilities must equal 1.

Law of Large Numbers

As a procedure is repeated many, many times, the relative frequency probability (from Rule 1) of an event tends to approach the actual probability (Rule 2 for equally likely outcomes)

Rule 3

- The Personal Probability Interpretation
- Personal probability of an event--the degree to which a given individual believes the event will happen--sometimes termed subjective probability
 Restrictions on personal
- Restrictions of probabilities:
 - Must fall between 0 and 1
 - (or between 0 and 100%)
 - Must be coherent

Why Study Probability?

- Want to be able to make inferences about a population from a sample or samples
- Probability will allow inferences with a measure of reliability (or uncertainty) for the inferences
- Initially, we will assume that the population is known and will calculate the probability of observing various samples from the population; *i.e., use the population to infer the probable nature of the sample*

