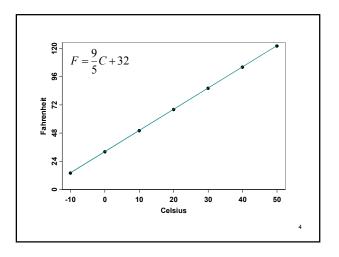


# Deterministic Model

A model that defines an exact relationship between variables.

Example: y = 1.5x

There is no allowance for error in the prediction of y for a given x.





### Probabilistic Model

A model that accounts for *random error*.

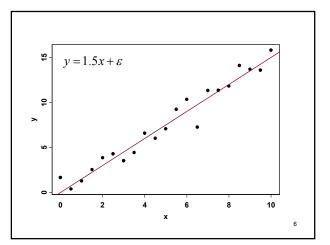
Includes both a deterministic component and a random error component.

y = 1.5x + random error

This model hypothesizes a probabilistic relationship between y and x.

5

7



#### Probabilistic Model—General Form

y = Deterministic component + Random component

where *y* is the "variable of interest".

Assume that the mean value of the random error is zero  $\rightarrow$  the mean value of *y*, *E*(*y*), equals the deterministic component of the model

<text><equation-block><text><text><text><text>



#### First-Order (Straight Line) Probabilistic Model

 $\beta_0$  and  $\beta_1$  are population parameters. They will only be known if the population of all (x, y) measurements are available.

 $\beta_0$  and  $\beta_1$ , along with a specific value of the independent variable *x* determine the *mean value* of the dependent variable *y*.

#### Model Development

 $\beta_0$  and  $\beta_1$  will generally be unknown.

The process of developing a model, estimating model parameters, and using the model can be summarized in these 5-steps:

1. Hypothesize the deterministic component of the model that relates the mean, *E*(*y*) to the independent variable *x* 

## $E(y) = \beta_0 + \beta_1 x$

2. Use sample data to estimate unknown model parameters

find estimates:  $\hat{\beta}_0$  or  $b_0$ ,  $\hat{\beta}_1$  or  $b_1$ 

Model Development (continued)

3. Specify the probability distribution of the random error term and estimate the SD of this distribution

 $\varepsilon \sim N(0,\sigma)$  – will revisit this later

4. Statistically evaluate the usefulness of the model

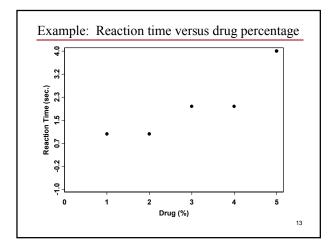
11

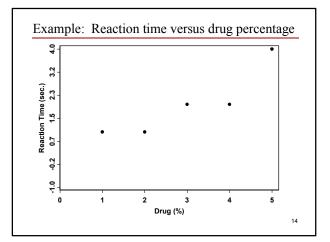
5. Use model for prediction, estimation or other purposes

Example: Reaction time versus drug percentage

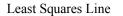
| Subject | Amount of Drug<br>(%)<br>x | Reaction Time<br>(seconds)<br>y |
|---------|----------------------------|---------------------------------|
| 1       | 1                          | 1                               |
| 2       | 2                          | 1                               |
| 3       | 3                          | 2                               |
| 4       | 4                          | 2                               |
| 5       | 5                          | 4                               |

12





|   |   | <i>liction</i> ver<br>nd the predi |                      | nces between of <i>y</i>           |
|---|---|------------------------------------|----------------------|------------------------------------|
| x | у | $\tilde{y} = -1 + x$               | $(y - \tilde{y})$    | $(y-\tilde{y})^2$                  |
| 1 | 1 | 0                                  | (1-0) = 1            | 1                                  |
| 2 | 1 | 1                                  | (1-1) = 0            | 0                                  |
| 3 | 2 | 2                                  | (2-2) = 0            | 0                                  |
| 4 | 2 | 3                                  | (2-3) = -1           | 1                                  |
| 5 | 4 | 4                                  | (4-4) = 0            | 0                                  |
|   |   |                                    | Sum of<br>errors = 0 | Sum of squared<br>errors (SSE) = 2 |



Also called *regression line*, or the *least squares prediction equation* 

Method to find this line is called the *method of least squares* 

For our example, we have a sample of n = 5 pairs of (x, y) values. The fitted line that we will calculate is written as  $\hat{y} = b_0 + b_1 x$ 

 $\hat{y}$  is an estimator of the mean value of y, E(y);

 $b_0$  and  $b_1$  are estimators of  $\beta_0$  and  $\beta_1$ 



## Least Squares Line (continued)

Define the sum of squares of the deviations of the y values about their predicted values for all n data points as:

SSE = 
$$\sum_{i=1}^{n} (y_i - \hat{y})^2 = \sum_{i=1}^{n} [y_i - (b_0 + b_1 x_i)]^2$$

17

We want to find  $b_0$  and  $b_1$  to make the SSE a minimum---termed *least squares estimates* 

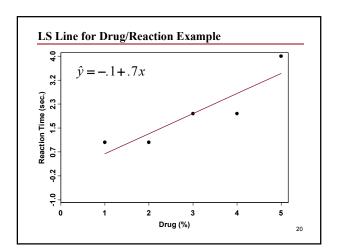
 $\hat{y} = b_0 + b_1 x$  is called the least squares line

Formulas for the Least Squares Estimates  

$$Slope: b_{l} = \frac{SS_{xy}}{SS_{xx}} \text{ or } b_{l} = r \frac{SD_{y}}{SD_{x}}$$

$$s_{xy} = SS_{xy} = \sum (x, -\bar{x})(y, -\bar{y}) \qquad s_{xx} = SS_{xx} = \sum (x, -\bar{x})^{2} \qquad = \sum x_{i}y_{i} - (\sum x_{i})(\sum y_{i})^{2} \qquad = \sum x_{i}^{2} - (\sum x_{i})^{2} \qquad = \sum x_{i}^{2} - (\sum x_{i})^{2} \qquad = \sum x_{i}^{2} - (\sum x_{i})^{2} \qquad = \sum x_{i}y_{i} - b_{i}\sum x_{i} \qquad = x \text{ anple size}$$

| $x_i$             | $\mathcal{Y}_i$          | $x_i^2$           | $x_i y_i$                    | 7                                       |
|-------------------|--------------------------|-------------------|------------------------------|-----------------------------------------|
| 1                 | 1                        | 1                 | 1                            | $b_1 = \frac{7}{10} = 0.7$              |
| 2                 | 1                        | 4                 | 2                            | 10                                      |
| 3                 | 2                        | 9                 | 6                            | $b_0 = \frac{10}{5} - (.7)\frac{15}{5}$ |
| 4                 | 2                        | 16                | 8                            | 5 5                                     |
| 5                 | 4                        | 25                | 20                           | = 2-(.7)(3)                             |
| $\sum x_i = 15$   | $\sum y_i = 10$          | $\sum x_i^2 = 55$ | $\sum x_i y_i = 37$          | = 2 - 2.1 = -                           |
| $SS_{xy} = 37 - $ | $\frac{(15)(10)}{5} = 3$ | 7 - 30 = 7        | $SS_{xx} = 55 - \frac{1}{2}$ | $\frac{5}{5}^2 = 55 - 45 = 10$          |

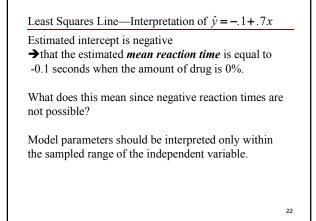




| x | y | $\hat{y} =1 + .7x$ | $(y-\hat{y})$        | $(y-\hat{y})^2$                       |
|---|---|--------------------|----------------------|---------------------------------------|
| 1 | 1 | .6                 | (16) = .4            | .16                                   |
| 2 | 1 | 1.3                | (1-1.3) =3           | .09                                   |
| 3 | 2 | 2.0                | (2-2.0) = 0          | .00                                   |
| 4 | 2 | 2.7                | (2-2.7) =7           | .49                                   |
| 5 | 4 | 3.4                | (4-3.4) = .6         | .36                                   |
|   |   |                    | Sum of<br>errors = 0 | Sum of squared<br>errors (SSE) = 1.10 |

The LS line has a sum of errors = 0, but SSE = 1.1 < 2.0 for visual model

21



Least Squares Line—Interpretation of  $\hat{y} = -.1 + .7x$ 

The slope of 0.7 implies that for every unit increase of x, the *mean value* of y is estimated to increase by 0.7 units.

#### In the context of the problem:

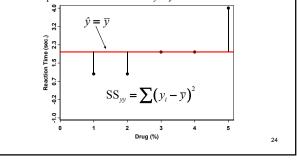
For every 1% increase in the amount of drug in the bloodstream, the mean reaction time is estimated to increase by 0.7 seconds over the sampled range of drug amounts from 1% to 5%.

23

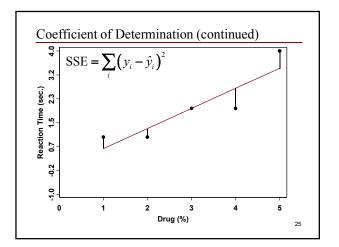
# Coefficient of Determination

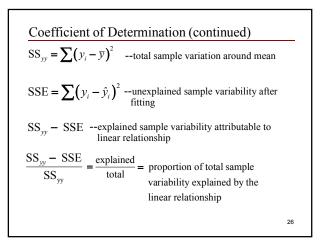
A measure of the contribution of x in predicting y

Assuming that *x* provides no information for the prediction of *y*, the best prediction for the value of *y* is  $\overline{y}$ 









Coefficient of Determination (continued)

$$r^{2} = \frac{SS_{yy} - SSE}{SS_{yy}} = 1 - \frac{SSE}{SS_{yy}}$$
Unexplained variability

*In simple linear regression*  $r^2$  is computed as the square of the correlation coefficient, r

### $0 \le r^2 \le 1$

<u>Interpretation</u>— $r^2 = .75$  means that the sum of squared deviations of the *y* values about their predicted values has been reduced by 75% by the use  $\hat{y}$ , instead of  $\overline{y}$ , to predict *y* of the least squares equation.

